Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Theory of 1,3-Dipolar Cycloadditions: Distortion/Interaction and Frontier Molecular Orbital Models

View Author Information
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
Cite this: J. Am. Chem. Soc. 2008, 130, 31, 10187–10198
Publication Date (Web):July 10, 2008
https://doi.org/10.1021/ja800009z
Copyright © 2008 American Chemical Society

    Article Views

    8510

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Quantum chemical calculations of activation barriers and reaction energies for 1,3-dipolar cycloadditions by the high-accuracy CBS-QB3 method reveal previously unrecognized quantitative trends in activation barriers. The distortion/interaction model of reactivity explains why (1) there is a monotonic decrease of ∼6 kcal/mol in the activation energy along the series oxides, imine, and ylide for the diazonium, nitrilium, and azomethine betaine classes of 1,3-dipoles; (2) nitrilium and azomethine betaines with the same trio of atoms have almost identical cycloaddition barrier heights; (3) barrier heights for the cycloadditions of a given 1,3-dipole with ethylene and acetylene have the same activation energies (mean absolute deviation of 0.6 kcal/mol) in spite of very different reaction thermodynamics (ΔΔHrxn range = 14−43 kcal/mol) and frontier molecular orbital (FMO) energy gaps. The energy to distort the 1,3-dipole and dipolarophile to the transition state geometry, rather than FMO interactions or reaction thermodynamics, controls reactivity for cycloadditions of 1,3-dipoles with alkenes or alkynes. A distortion/interaction energy analysis was also carried out on the transition states for the cycloadditions of diazonium dipoles with a set of substituted alkenes (CH2CHX, X = OMe, Me, CO2Me, Cl, CN) and reveals that FMO interaction energies between the 1,3-dipole and the dipolarophile differentiate reactivity when transition state distortion energies are nearly constant.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Absolute energies and Cartesian coordinates of stationary points. Complete ref 27. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 723 publications.

    1. Zheng-Feng Zhang, Ming-Der Su. Understanding the Impact of Group 14 Elements on the Reactivity of [1 + 2] Cycloaddition Reaction between a Cyclic (Alkyl)(amino)carbene Analogue with a Group 14 Element and a Heavy Acetylene Molecule. Inorganic Chemistry 2024, 63 (24) , 11219-11232. https://doi.org/10.1021/acs.inorgchem.4c00995
    2. Haojie Yang, Hongbao Sun, Yinghan Chen, Yayue Wang, Cheng Yang, Fang Yuan, Xiaoai Wu, Wei Chen, Ping Yin, Yong Liang, Haoxing Wu. Enabling Universal Access to Rapid and Stable Tetrazine Bioorthogonal Probes through Triazolyl-Tetrazine Formation. JACS Au 2024, Article ASAP.
    3. Hongzhi Yang, Jingyang Zhang, Sen Zhang, Zhengwen Xue, Shengkun Hu, Yi Chen, Yefeng Tang. Chiral Bisphosphine-Catalyzed Asymmetric Staudinger/aza-Wittig Reaction: An Enantioselective Desymmetrizing Approach to Crinine-Type Amaryllidaceae Alkaloids. Journal of the American Chemical Society 2024, 146 (20) , 14136-14148. https://doi.org/10.1021/jacs.4c02755
    4. Yi-Wen Gu, Man Chen, Wei Deng, Zheng-Yang Xu. Computational Exploration of 1,2-Carboamine Carbonylation Catalyzed by Nickel. The Journal of Organic Chemistry 2024, 89 (7) , 4484-4495. https://doi.org/10.1021/acs.joc.3c02667
    5. Trisha Bhattacharya, Chitrala Teja, Nikunj Kumar, Kanhaiya Kumar Bhagat, Goutam K. Lahiri, Puneet Gupta, Sameer Tyagi, Debabrata Maiti. Harnessing the “Methyl Effect” in the Development of Novel meta-Directing Template for C–H Cyanation. ACS Catalysis 2024, 14 (4) , 2216-2228. https://doi.org/10.1021/acscatal.3c04953
    6. Yu Tian, Shigeyoshi Sakaki. Theoretical Study on Bismuth(III) Catalysts for Synthesis of Phenylsulfonyl Fluoride: Reasons of Their Catalysis. ACS Catalysis 2024, 14 (4) , 2758-2774. https://doi.org/10.1021/acscatal.3c04874
    7. Frederik Ø. Kjeldal, Janus J. Eriksen. Properties of Local Electronic Structures. Journal of Chemical Theory and Computation 2023, 19 (24) , 9228-9238. https://doi.org/10.1021/acs.jctc.3c00963
    8. Chi-Shiun Wu, Ming-Der Su. Reactivity Analysis of the [2 + 2] Cycloaddition between Group-6 ≡ Group-14 Triple-Bonded Complexes and Acetylene: Insights from Theoretical Studies. Inorganic Chemistry 2023, 62 (40) , 16388-16400. https://doi.org/10.1021/acs.inorgchem.3c02020
    9. Yiming Xiong, Mengyang Li, Hong Zheng, Jingshuang Dang, Xiang Zhao. Insights into the Diels–Alder Reaction of [M3N@Ih-C80]0/1+ (M = Sc or Y): Effects of Oxidation on the Reactivity and Regioselectivity. Organometallics 2023, 42 (19) , 2784-2791. https://doi.org/10.1021/acs.organomet.3c00258
    10. Man Chen, Yi-Wen Gu, Wei Deng, Zheng-Yang Xu. Mechanism and Origins of Regio- and Stereoselective Alkylboration of Endocyclic Olefins Enabled by Nickel Catalysis. The Journal of Organic Chemistry 2023, 88 (19) , 14115-14130. https://doi.org/10.1021/acs.joc.3c01676
    11. Constanze Keck, Caecilia Maichle-Mössmer, Holger F. Bettinger. Strain-Release Promoted Thermal [2 + 2] Cycloaddition and Photochemical [2 + 2] Cycloreversion of a Tetraorganylaminoborane. Organometallics 2023, 42 (16) , 2269-2276. https://doi.org/10.1021/acs.organomet.3c00251
    12. Nupur Goswami, Nikunj Kumar, Sukdev Bag, Puneet Gupta, Debabrata Maiti. Deciphering the Mechanistic Insights of Temporary Directing-Group-Assisted meta-Alkenylation of Complex Biaryl Systems. ACS Catalysis 2023, 13 (16) , 11091-11103. https://doi.org/10.1021/acscatal.3c02383
    13. Sarah L. Hejnosz, Danielle R. Beres, Alexander H. Cocolas, Martin J. Neal, Benjamin S. Musiak, Marianne M. B. Hanna, Aaron J. Bloomfield, Thomas D. Montgomery. [3 + 2] Cycloadditions of Tertiary Amine N-Oxides and Silyl Imines as an Innovative Route to 1,2-Diamines. Organic Letters 2023, 25 (25) , 4638-4643. https://doi.org/10.1021/acs.orglett.3c01396
    14. Aidar R. Yarullin, Sergey L. Khursan. Comprehensive Study of the Mechanism of the “Aromatic Nitroso Oxide–Olefin” Interaction as a Function of the Reagents’ Structure. The Journal of Physical Chemistry A 2023, 127 (20) , 4415-4428. https://doi.org/10.1021/acs.jpca.3c00812
    15. Austin Pounder, Megan Farkas, Leanne D. Chen, William Tam. Iridium/Zinc-Co-Catalyzed Ring-Opening Reactions of Oxabicyclic Alkenes with Indole Nucleophiles: A Combined Experimental and Theoretical Study. Organometallics 2023, 42 (9) , 780-792. https://doi.org/10.1021/acs.organomet.3c00017
    16. Robert H. Lavroff, Jason Wang, Michael G. White, Philippe Sautet, Anastassia N. Alexandrova. Mechanism of Stoichiometrically Governed Titanium Oxide Brownian Tree Formation on Stepped Au(111). The Journal of Physical Chemistry C 2023, 127 (17) , 8030-8040. https://doi.org/10.1021/acs.jpcc.3c00715
    17. Le Li, Robert J. Mayer, Armin R. Ofial, Herbert Mayr. One-Bond-Nucleophilicity and -Electrophilicity Parameters: An Efficient Ordering System for 1,3-Dipolar Cycloadditions. Journal of the American Chemical Society 2023, 145 (13) , 7416-7434. https://doi.org/10.1021/jacs.2c13872
    18. Daniel Chabeda, H. Ray Kelly, Patrick L. Holland, Victor S. Batista. Small, Electron-Donating Substituents Give CO2 Activation by Permethylpentalene Zirconium Amido Complexes the Upper Hand: A DFT Study of Distortion and Interaction. Inorganic Chemistry 2023, 62 (7) , 3000-3006. https://doi.org/10.1021/acs.inorgchem.2c03533
    19. Nery Villegas-Escobar, Preston R. Hoobler, Alejandro Toro-Labbé, Henry F. Schaefer, III. High-Level Coupled-Cluster Study on Substituent Effects in H2 Activation by Low-Valent Aluminyl Anions. The Journal of Physical Chemistry A 2023, 127 (4) , 956-965. https://doi.org/10.1021/acs.jpca.2c08403
    20. Qian Gao, Yu-Hang Li, De-Zhan Chen, Jian-Biao Liu. Exploration of Ligand-Centered Hydride Transfer in La/Y-Catalyzed Deoxygenative Reduction of Tertiary Amides with Pinacolborane. Inorganic Chemistry 2023, 62 (4) , 1580-1590. https://doi.org/10.1021/acs.inorgchem.2c03793
    21. Ruirui Su, Kaili Xie, Yong Liang, K. N. Houk, Fang Liu. Fluoro, Trifluoromethyl, and Trifluoroacetyl Substituent Effects on Cycloaddition Reactivities: Computations and Analysis. The Journal of Organic Chemistry 2023, 88 (2) , 893-900. https://doi.org/10.1021/acs.joc.2c02264
    22. Michael J. Holzmann, Namrata Khanal, Pavel Yamanushkin, Brian Gold. Remote Strain Activation in a Sulfate-Linked Dibenzocycloalkyne. Organic Letters 2023, 25 (2) , 309-313. https://doi.org/10.1021/acs.orglett.2c03397
    23. Zheng-Feng Zhang, Ming-Der Su. Influence of the Element and Substituent Effects on the Reactivity of Catching Reactions of Difluorocarbene by Benzene-Bridged and Group-13/Group-15-Based Frustrated Lewis Pairs. Inorganic Chemistry 2023, 62 (2) , 1018-1031. https://doi.org/10.1021/acs.inorgchem.2c03968
    24. Natalia Labadie, Silvina C. Pellegrinet. Diels–Alder Reactivity of Allenylboronic Acid Pinacol Ester and Related Dienophiles: Mechanistic Studies and Distortion/Interaction-Activation Strain Model Analysis. The Journal of Organic Chemistry 2022, 87 (24) , 16776-16784. https://doi.org/10.1021/acs.joc.2c02445
    25. Hang Wang, Huiling Li, Xiahe Chen, Chunlin Zhou, Shangda Li, Yun-Fang Yang, Gang Li. Asymmetric Remote meta-C–H Activation Controlled by a Chiral Ligand. ACS Catalysis 2022, 12 (21) , 13435-13445. https://doi.org/10.1021/acscatal.2c03187
    26. Yoshimitsu Hashimoto, Dean J. Tantillo. Mechanism and the Origins of Periselectivity in Cycloaddition Reactions of Benzyne with Dienes. The Journal of Organic Chemistry 2022, 87 (19) , 12954-12962. https://doi.org/10.1021/acs.joc.2c01509
    27. Cristian A. Morales-Rivera, Glenn Cormack, James Burrington, Nicolas Proust, Giannis Mpourmpakis. Understanding and Optimizing the Behavior of Al- and Ru-Based Catalysts for the Synthesis of Polyisobutenyl Succinic Anhydrides. Industrial & Engineering Chemistry Research 2022, 61 (39) , 14462-14471. https://doi.org/10.1021/acs.iecr.2c02003
    28. Thomas Hansen, Pascal Vermeeren, Lea de Jong, F. Matthias Bickelhaupt, Trevor A. Hamlin. SN2 versus SN2′ Competition. The Journal of Organic Chemistry 2022, 87 (14) , 8892-8901. https://doi.org/10.1021/acs.joc.2c00527
    29. Feng Yu. Origin of the Microsolvation Effect on the Central Barriers of SN2 Reactions. The Journal of Physical Chemistry A 2022, 126 (27) , 4342-4348. https://doi.org/10.1021/acs.jpca.2c01677
    30. Li-Ping Xu, Zhe Zhuang, Shaoqun Qian, Jin-Quan Yu, Djamaladdin G. Musaev. Roles of Ligand and Oxidant in Pd(II)-Catalyzed and Ligand-Enabled C(sp3)–H Lactonization in Aliphatic Carboxylic Acid: Mechanistic Studies. ACS Catalysis 2022, 12 (9) , 4848-4858. https://doi.org/10.1021/acscatal.2c00879
    31. KaiNi Zhang, Hong Zheng, Yanbo Han, Yonghong Cheng, Xiang Zhao. On the Origins of Stereo- and Regio-Selectivities in the Formation of Fullerene–Fluorene Dyads. The Journal of Organic Chemistry 2022, 87 (7) , 4702-4711. https://doi.org/10.1021/acs.joc.1c03161
    32. Pavel Yamanushkin, Kemal Kaya, Mark Aldren M. Feliciano, Brian Gold. SuFExable NH-Pyrazoles via 1,3-Dipolar Cycloadditions of Diazo Compounds with Bromoethenylsulfonyl Fluoride. The Journal of Organic Chemistry 2022, 87 (5) , 3868-3873. https://doi.org/10.1021/acs.joc.1c03105
    33. Thomas Hansen, Jasper C. Roozee, F. Matthias Bickelhaupt, Trevor A. Hamlin. How Solvation Influences the SN2 versus E2 Competition. The Journal of Organic Chemistry 2022, 87 (3) , 1805-1813. https://doi.org/10.1021/acs.joc.1c02354
    34. Peng Zhao, Masahiro Ehara, Atsushi Satsuma, Shigeyoshi Sakaki. Theoretical Study of the Propene Combustion Catalysis of Chromite Spinels: Reaction Mechanism and Relation between the Activity and Electronic Structure of Spinels. The Journal of Physical Chemistry C 2021, 125 (47) , 25983-26002. https://doi.org/10.1021/acs.jpcc.1c06760
    35. Jiaming Zhang, Jing Luo, Xue Li, Qiaoyu Zhang, Zhoujie Wu, Yu Lan, Donghui Wei. Insights into Organoamine-Catalyzed Asymmetric Synthesis of Axially Chiral Allenoates Using Morita–Baylis–Hillman Carbonates and Trisubstituted Allenoates: Mechanism and Origin of Stereoselectivity. The Journal of Organic Chemistry 2021, 86 (21) , 15276-15283. https://doi.org/10.1021/acs.joc.1c01871
    36. Zheng-Feng Zhang, Ming-Chung Yang, Ming-Der Su. Significant Insight into the Origin of Reaction Barriers Determining Dihydrogen Activation by G13-P-P (G13 = Group 13 Element) and G15-P-Ga (G15 = Group 15 Element) Frustrated Lewis Pairs. Inorganic Chemistry 2021, 60 (20) , 15253-15269. https://doi.org/10.1021/acs.inorgchem.1c01809
    37. Luis R. Domingo, Karolina Kula, Mar Ríos-Gutiérrez, Radomir Jasiński. Understanding the Participation of Fluorinated Azomethine Ylides in Carbenoid-Type [3 + 2] Cycloaddition Reactions with Ynal Systems: A Molecular Electron Density Theory Study. The Journal of Organic Chemistry 2021, 86 (18) , 12644-12653. https://doi.org/10.1021/acs.joc.1c01126
    38. Martin J. Neal, Sarah L. Hejnosz, Jeffrey J. Rohde, Jeffrey D. Evanseck, Thomas D. Montgomery. Multi-Ion Bridged Pathway of N-Oxides to 1,3-Dipole Dilithium Oxide Complexes. The Journal of Organic Chemistry 2021, 86 (17) , 11502-11518. https://doi.org/10.1021/acs.joc.1c01047
    39. Myuto Kashihara, Yoshiaki Nakao. Cross-Coupling Reactions of Nitroarenes. Accounts of Chemical Research 2021, 54 (14) , 2928-2935. https://doi.org/10.1021/acs.accounts.1c00220
    40. Li-Juan Yu, Michelle L. Coote. Electrostatic Switching of Stereoselectivity in Aldol Reactions. The Journal of Organic Chemistry 2021, 86 (13) , 9076-9083. https://doi.org/10.1021/acs.joc.1c01032
    41. Jesús M. Dones, Nile S. Abularrage, Namrata Khanal, Brian Gold, Ronald T. Raines. Acceleration of 1,3-Dipolar Cycloadditions by Integration of Strain and Electronic Tuning. Journal of the American Chemical Society 2021, 143 (25) , 9489-9497. https://doi.org/10.1021/jacs.1c03133
    42. Dominic Campeau, Alice Pommainville, Fabien Gagosz. Ynamides as Three-Atom Components in Cycloadditions: An Unexplored Chemical Reaction Space. Journal of the American Chemical Society 2021, 143 (25) , 9601-9611. https://doi.org/10.1021/jacs.1c04051
    43. Expédite Yen-Pon, Floris Buttard, Lucas Frédéric, Pierre Thuéry, Frédéric Taran, Grégory Pieters, Pier Alexandre Champagne, Davide Audisio. Heterohelicenes through 1,3-Dipolar Cycloaddition of Sydnones with Arynes: Synthesis, Origins of Selectivity, and Application to pH-Triggered Chiroptical Switch with CPL Sign Reversal. JACS Au 2021, 1 (6) , 807-818. https://doi.org/10.1021/jacsau.1c00084
    44. Gangam Srikanth Kumar, Qing Lin. Light-Triggered Click Chemistry. Chemical Reviews 2021, 121 (12) , 6991-7031. https://doi.org/10.1021/acs.chemrev.0c00799
    45. Titas Deb, Julian Tu, Raphael M. Franzini. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chemical Reviews 2021, 121 (12) , 6850-6914. https://doi.org/10.1021/acs.chemrev.0c01013
    46. Ken Yamazaki, Pablo Gabriel, Graziano Di Carmine, Julia Pedroni, Mirxan Farizyan, Trevor A. Hamlin, Darren J. Dixon. General Pyrrolidine Synthesis via Iridium-Catalyzed Reductive Azomethine Ylide Generation from Tertiary Amides and Lactams. ACS Catalysis 2021, 11 (12) , 7489-7497. https://doi.org/10.1021/acscatal.1c01589
    47. Leandro Ayarde-Henríquez, Cristian Guerra, Mario Duque-Noreña, Elizabeth Rincón, Patricia Pérez, Eduardo Chamorro. Are There Only Fold Catastrophes in the Diels–Alder Reaction Between Ethylene and 1,3-Butadiene?. The Journal of Physical Chemistry A 2021, 125 (23) , 5152-5165. https://doi.org/10.1021/acs.jpca.1c01448
    48. Xun-Kun Zhu, Yu-Qing Zheng, Jian-Biao Liu. A Computational Mechanistic Study of Cp*Co(III)-Catalyzed Three-Component C–H Bond Addition to Terpenes and Formaldehydes: Insights into the Origins of Regioselectivity. The Journal of Physical Chemistry A 2021, 125 (23) , 5031-5039. https://doi.org/10.1021/acs.jpca.1c02826
    49. Shuming Chen, Tuo Hu, K. N. Houk. Energy of Concert and Origins of Regioselectivity for 1,3-Dipolar Cycloadditions of Diazomethane. The Journal of Organic Chemistry 2021, 86 (9) , 6840-6846. https://doi.org/10.1021/acs.joc.1c00743
    50. Xin Chang, Yuhong Yang, Chong Shen, Kun-Shan Xue, Zuo-Fei Wang, Hengjiang Cong, Hai-Yan Tao, Lung Wa Chung, Chun-Jiang Wang. β-Substituted Alkenyl Heteroarenes as Dipolarophiles in the Cu(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides Empowered by a Dual Activation Strategy: Stereoselectivity and Mechanistic Insight. Journal of the American Chemical Society 2021, 143 (9) , 3519-3535. https://doi.org/10.1021/jacs.0c12911
    51. Yuting Qiu, Haiyan Yuan, Xiaoying Zhang, Jingping Zhang. Insights into the Chiral Phosphoric Acid-Catalyzed Dynamic Kinetic Asymmetric Hydroamination of Racemic Allenes: An Allyl Carbocation/Phosphate Pair Mechanism. The Journal of Organic Chemistry 2021, 86 (5) , 4121-4130. https://doi.org/10.1021/acs.joc.0c02956
    52. Thomas Hansen, Pascal Vermeeren, Ryoji Yoshisada, Dmitri V. Filippov, Gijsbert A. van der Marel, Jeroen D. C. Codée, Trevor A. Hamlin. How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide. The Journal of Organic Chemistry 2021, 86 (4) , 3565-3573. https://doi.org/10.1021/acs.joc.0c02955
    53. Hajime Kameo, Shigeyoshi Sakaki, Yasuhiro Ohki, Naoki Uehara, Takuya Kosukegawa, Hiroharu Suzuki, Toshiro Takao. Four-Electron Reduction of Dioxygen on a Metal Surface: Models of Dissociative and Associative Mechanisms in a Homogeneous System. Inorganic Chemistry 2021, 60 (3) , 1550-1560. https://doi.org/10.1021/acs.inorgchem.0c02936
    54. César Barrales-Martínez, Jorge I. Martínez-Araya, Pablo Jaque. 1,3-Dipolar Cycloadditions by a Unified Perspective Based on Conceptual and Thermodynamics Models of Chemical Reactivity. The Journal of Physical Chemistry A 2021, 125 (3) , 801-815. https://doi.org/10.1021/acs.jpca.0c10013
    55. Yuantai Xu, Yifan Shao, Mårten S. G. Ahlquist, Haizhu Yu, Yao Fu. Pivotal Electron Delivery Effect of the Cobalt Catalyst in Photocarboxylation of Alkynes: A DFT Calculation. The Journal of Organic Chemistry 2021, 86 (2) , 1540-1548. https://doi.org/10.1021/acs.joc.0c02393
    56. Tatsuya Orihara, Masaki Kawaguchi, Keisuke Hosoya, Ryosuke Tsutsumi, Masahiro Yamanaka, Minami Odagi, Kazuo Nagasawa. Enantioselective Epoxidation of 2,3-Disubstituted Naphthoquinones by a Side Chain Truncated Guanidine–Urea Bifunctional Organocatalyst. The Journal of Organic Chemistry 2020, 85 (23) , 15232-15240. https://doi.org/10.1021/acs.joc.0c02084
    57. Pascal Vermeeren, Thomas Hansen, Maxime Grasser, Daniela Rodrigues Silva, Trevor A. Hamlin, F. Matthias Bickelhaupt. SN2 versus E2 Competition of F– and PH2– Revisited. The Journal of Organic Chemistry 2020, 85 (21) , 14087-14093. https://doi.org/10.1021/acs.joc.0c02112
    58. Yun Hu, Jessica M. Roberts, Henry R. Kilgore, Amirah S. Mat Lani, Ronald T. Raines, Jennifer M. Schomaker. Triple, Mutually Orthogonal Bioorthogonal Pairs through the Design of Electronically Activated Sulfamate-Containing Cycloalkynes. Journal of the American Chemical Society 2020, 142 (44) , 18826-18835. https://doi.org/10.1021/jacs.0c06725
    59. Yang Liu, Jun Li. Quantitative Dynamics of the N2O + C2H2 → Oxadiazole Reaction: A Model for 1,3-Dipolar Cycloadditions. ACS Omega 2020, 5 (36) , 23343-23350. https://doi.org/10.1021/acsomega.0c03210
    60. Didier Bégué, Alain Dargelos, Curt Wentrup. Aryl Nitrile Imines and Diazo Compounds. Formation of Indazole, Pyridine N-Imine, and 2-Pyridyldiazomethane from Tetrazoles. The Journal of Organic Chemistry 2020, 85 (12) , 7952-7958. https://doi.org/10.1021/acs.joc.0c00773
    61. Mingbin Yuan, Zhihui Song, Shorouk O. Badir, Gary A. Molander, Osvaldo Gutierrez. On the Nature of C(sp3)–C(sp2) Bond Formation in Nickel-Catalyzed Tertiary Radical Cross-Couplings: A Case Study of Ni/Photoredox Catalytic Cross-Coupling of Alkyl Radicals and Aryl Halides. Journal of the American Chemical Society 2020, 142 (15) , 7225-7234. https://doi.org/10.1021/jacs.0c02355
    62. Hajime Kameo, Yuki Baba, Shigeyoshi Sakaki, Yudai Tanaka, Hiroyuki Matsuzaka. Experimental and Theoretical Investigation of an SN2-type Pathway for Borate–Fluorine Bond Cleavage by Electron-Rich Late-Transition Metal Complexes. Inorganic Chemistry 2020, 59 (7) , 4282-4291. https://doi.org/10.1021/acs.inorgchem.9b03053
    63. Joshua A. Kammeraad, Jack Goetz, Eric A. Walker, Ambuj Tewari, Paul M. Zimmerman. What Does the Machine Learn? Knowledge Representations of Chemical Reactivity. Journal of Chemical Information and Modeling 2020, 60 (3) , 1290-1301. https://doi.org/10.1021/acs.jcim.9b00721
    64. Joao M. J. M. Ravasco, Jaime A. S. Coelho. Predictive Multivariate Models for Bioorthogonal Inverse-Electron Demand Diels–Alder Reactions. Journal of the American Chemical Society 2020, 142 (9) , 4235-4241. https://doi.org/10.1021/jacs.9b11948
    65. Krishna Sharma, Alexander V. Strizhak, Elaine Fowler, Wenshu Xu, Ben Chappell, Hannah F. Sore, Warren R. J. D. Galloway, Matthew N. Grayson, Yu Heng Lau, Laura S. Itzhaki, David R. Spring. Functionalized Double Strain-Promoted Stapled Peptides for Inhibiting the p53-MDM2 Interaction. ACS Omega 2020, 5 (2) , 1157-1169. https://doi.org/10.1021/acsomega.9b03459
    66. Yanhong Liu, Yiying Yang, Rongxiu Zhu, Chengbu Liu, Dongju Zhang. DFT Study on Photosensitizer-Free Visible-Light-Mediated Au-Catalyzed cis-Difunctionalization of Alkynes: Mechanism and Selectivities as Compared to Rh Catalysis. The Journal of Organic Chemistry 2019, 84 (24) , 16171-16182. https://doi.org/10.1021/acs.joc.9b02681
    67. Christoph Fricke, Amit Dahiya, William B. Reid, Franziska Schoenebeck. Gold-Catalyzed C–H Functionalization with Aryl Germanes. ACS Catalysis 2019, 9 (10) , 9231-9236. https://doi.org/10.1021/acscatal.9b02841
    68. Logan T. Vaughn, Kyle A. Baseden, Jesse W. Tye. Factors Affecting the Regiochemical Outcome of Alkene Insertions into Rhodium–Carbon and Rhodium–Nitrogen Bonds. Organic Process Research & Development 2019, 23 (8) , 1499-1508. https://doi.org/10.1021/acs.oprd.9b00165
    69. Yiying Yang, Yanhong Liu, Rongxiu Zhu, Chengbu Liu, Dongju Zhang. Theoretical Insight into the Mechanism and Origin of Divergent Reactivity in the Synthesis of Benzo-Heterocycles from o-Alkynylbenzamides Catalyzed by Gold and Platinum Complexes. The Journal of Organic Chemistry 2019, 84 (15) , 9705-9713. https://doi.org/10.1021/acs.joc.9b01441
    70. Didier Bégué, Alain Dargelos, Curt Wentrup. Rearrangements of Nitrile Imines: Ring Expansion of Benzonitrile Imines to Cycloheptatetraenes and Ring Closure to 3-Phenyl-3H-diazirines. The Journal of Organic Chemistry 2019, 84 (13) , 8668-8673. https://doi.org/10.1021/acs.joc.9b01183
    71. Rong-Lin Zhong, Shigeyoshi Sakaki. sp3 C–H Borylation Catalyzed by Iridium(III) Triboryl Complex: Comprehensive Theoretical Study of Reactivity, Regioselectivity, and Prediction of Excellent Ligand. Journal of the American Chemical Society 2019, 141 (25) , 9854-9866. https://doi.org/10.1021/jacs.9b01767
    72. Jorge Juan Cabrera-Trujillo, Israel Fernández. Carbones and Heavier Ylidones (EL2) in Frustrated Lewis Pair Chemistry: Influence of the Nature of EL2 on Dihydrogen Activation. Inorganic Chemistry 2019, 58 (12) , 7828-7836. https://doi.org/10.1021/acs.inorgchem.9b00501
    73. Xue Li, Ruihong Duan, Yanyan Wang, Ling-Bo Qu, Zhongjun Li, Donghui Wei. Insights into N-Heterocyclic Carbene-Catalyzed Oxidative α-C(sp3)–H Activation of Aliphatic Aldehydes and Cascade [2 + 2] Cycloaddition with Ketimines. The Journal of Organic Chemistry 2019, 84 (10) , 6117-6125. https://doi.org/10.1021/acs.joc.9b00295
    74. Yago García-Rodeja, Israel Fernández. Factors Controlling the Reactivity of Strained-Alkyne Embedded Cycloparaphenylenes. The Journal of Organic Chemistry 2019, 84 (7) , 4330-4337. https://doi.org/10.1021/acs.joc.9b00292
    75. Ji-Ren Liu, Ye-Qing Duan, Shuo-Qing Zhang, Lu-Jing Zhu, Yuan-Ye Jiang, Siwei Bi, Xin Hong. C–H Acidity and Arene Nucleophilicity as Orthogonal Control of Chemoselectivity in Dual C–H Bond Activation. Organic Letters 2019, 21 (7) , 2360-2364. https://doi.org/10.1021/acs.orglett.9b00633
    76. Tian Zhang, Ting Li, Xiajun Wu, Juan Li. Theoretical Study of Ruthenium(0)-Catalyzed Transfer Hydrogenative Cycloaddition of Cyclohexadiene and Norbornadiene with 1,2-Diols to Form Bridged Carbocycles. The Journal of Organic Chemistry 2019, 84 (6) , 3377-3387. https://doi.org/10.1021/acs.joc.8b03276
    77. Yernaidu Reddi, Cheng-Che Tsai, Carolina M. Avila, F. Dean Toste, Raghavan B. Sunoj. Harnessing Noncovalent Interactions in Dual-Catalytic Enantioselective Heck–Matsuda Arylation. Journal of the American Chemical Society 2019, 141 (2) , 998-1009. https://doi.org/10.1021/jacs.8b11062
    78. Harish Jangra, Quan Chen, Elina Fuks, Ivo Zenz, Peter Mayer, Armin R. Ofial, Hendrik Zipse, Herbert Mayr. Nucleophilicity and Electrophilicity Parameters for Predicting Absolute Rate Constants of Highly Asynchronous 1,3-Dipolar Cycloadditions of Aryldiazomethanes. Journal of the American Chemical Society 2018, 140 (48) , 16758-16772. https://doi.org/10.1021/jacs.8b09995
    79. Yongsheng Yang, Xin Yang, Yan Zhang, Ying Xue. Computational Mechanism Study on Allylic Oxidation of cis-Internal Alkenes: Insight into the Lewis Acid-Assisted Brønsted Acid (LBA) Catalysis in Heteroene Reactions. The Journal of Organic Chemistry 2018, 83 (21) , 13344-13355. https://doi.org/10.1021/acs.joc.8b02130
    80. Rong-Lin Zhong, Masahiro Nagaoka, Yoshiaki Nakao, Shigeyoshi Sakaki. How To Perform Suzuki–Miyaura Reactions of Nitroarene or Nitrations of Bromoarene Using a Pd0 Phosphine Complex: Theoretical Insight and Prediction. Organometallics 2018, 37 (20) , 3480-3487. https://doi.org/10.1021/acs.organomet.8b00199
    81. Yiying Yang, Jinghua Li, Rongxiu Zhu, Chengbu Liu, Dongju Zhang. Theoretical Insight into Ligand- and Counterion-Controlled Regiodivergent Reactivity in Synthesis of Borylated Furans: 1,2-H vs 1,2-B Migration. ACS Catalysis 2018, 8 (10) , 9252-9261. https://doi.org/10.1021/acscatal.8b02188
    82. Hanbin Lee, Manoj V. Mane, Ho Ryu, Debashis Sahu, Mu-Hyun Baik, Chae S. Yi. Experimental and Computational Study of the (Z)-Selective Formation of Trisubstituted Olefins and Benzo-Fused Oxacycles from the Ruthenium-Catalyzed Dehydrative C–H Coupling of Phenols with Ketones. Journal of the American Chemical Society 2018, 140 (32) , 10289-10296. https://doi.org/10.1021/jacs.8b05875
    83. Qian Zhang, Yang Liu, Ting Wang, Xinhao Zhang, Chao Long, Yun-Dong Wu, Mei-Xiang Wang. Mechanistic Study on Cu(II)-Catalyzed Oxidative Cross-Coupling Reaction between Arenes and Boronic Acids under Aerobic Conditions. Journal of the American Chemical Society 2018, 140 (16) , 5579-5587. https://doi.org/10.1021/jacs.8b01896
    84. Brian J. Levandowski, Trevor A. Hamlin, Roger C. Helgeson, F. Matthias Bickelhaupt, K. N. Houk. Origins of the Endo and Exo Selectivities in Cyclopropenone, Iminocyclopropene, and Triafulvene Diels–Alder Cycloadditions. The Journal of Organic Chemistry 2018, 83 (6) , 3164-3170. https://doi.org/10.1021/acs.joc.8b00025
    85. Shuming Chen, K. N. Houk. Origins of Stereoselectivity in Mannich Reactions Catalyzed by Chiral Vicinal Diamines. The Journal of Organic Chemistry 2018, 83 (6) , 3171-3176. https://doi.org/10.1021/acs.joc.8b00037
    86. Yago García-Rodeja, Miquel Solà, Israel Fernández. Rationalizing the Regioselectivity of the Diels–Alder Biscycloaddition of Fullerenes. The Journal of Organic Chemistry 2018, 83 (6) , 3285-3292. https://doi.org/10.1021/acs.joc.8b00218
    87. Alejandra Riesco-Domínguez, Jeroen van de Wiel, Trevor A. Hamlin, Bas van Beek, Stephen D. Lindell, Daniel Blanco-Ania, F. Matthias Bickelhaupt, and Floris P. J. T. Rutjes . Trifluoromethyl Vinyl Sulfide: A Building Block for the Synthesis of CF3S-Containing Isoxazolidines. The Journal of Organic Chemistry 2018, 83 (4) , 1779-1789. https://doi.org/10.1021/acs.joc.7b02639
    88. Mahendra Patil . Stereocontrol through Synergistic Catalysis in the Enantioselective α-Alkenylation of Aldehyde: A Computational Study. The Journal of Organic Chemistry 2018, 83 (3) , 1304-1311. https://doi.org/10.1021/acs.joc.7b02822
    89. Manoj Kumar and Joseph S. Francisco . H–X (X = H, CH3, CH2F, CHF2, CF3, and SiH3) Bond Activation by Criegee Intermediates: A Theoretical Perspective. The Journal of Physical Chemistry A 2017, 121 (49) , 9421-9428. https://doi.org/10.1021/acs.jpca.7b10535
    90. Shuming Chen, Xiaoqiang Huang, Eric Meggers, and K. N. Houk . Origins of Enantioselectivity in Asymmetric Radical Additions to Octahedral Chiral-at-Rhodium Enolates: A Computational Study. Journal of the American Chemical Society 2017, 139 (49) , 17902-17907. https://doi.org/10.1021/jacs.7b08650
    91. Cristian A. Morales-Rivera, Paul E. Floreancig, and Peng Liu . Predictive Model for Oxidative C–H Bond Functionalization Reactivity with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. Journal of the American Chemical Society 2017, 139 (49) , 17935-17944. https://doi.org/10.1021/jacs.7b08902
    92. Janice B. Lin, Yu Jin, Steven A. Lopez, Nathaniel Druckerman, Steven E. Wheeler, and K. N. Houk . Torsional Barriers to Rotation and Planarization in Heterocyclic Oligomers of Value in Organic Electronics. Journal of Chemical Theory and Computation 2017, 13 (11) , 5624-5638. https://doi.org/10.1021/acs.jctc.7b00709
    93. Man Li, Xiao-Song Xue, and Jin-Pei Cheng . Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of β-Keto Esters with N-Trifluoromethylthiophthalimide as Electrophilic SCF3 Source. ACS Catalysis 2017, 7 (11) , 7977-7986. https://doi.org/10.1021/acscatal.7b03007
    94. Lauren C. Burrows, Luke T. Jesikiewicz, Gang Lu, Steven J. Geib, Peng Liu, and Kay M. Brummond . Computationally Guided Catalyst Design in the Type I Dynamic Kinetic Asymmetric Pauson–Khand Reaction of Allenyl Acetates. Journal of the American Chemical Society 2017, 139 (42) , 15022-15032. https://doi.org/10.1021/jacs.7b07121
    95. Pier Alexandre Champagne and K. N. Houk . Influence of Endo- and Exocyclic Heteroatoms on Stabilities and 1,3-Dipolar Cycloaddition Reactivities of Mesoionic Azomethine Ylides and Imines. The Journal of Organic Chemistry 2017, 82 (20) , 10980-10988. https://doi.org/10.1021/acs.joc.7b01928
    96. Hong Zheng, Kazuhiko Semba, Yoshiaki Nakao, and Shigeyoshi Sakaki . How to Control Inversion vs Retention Transmetalation between PdII–Phenyl and CuI–Alkyl Complexes: Theoretical Insight. Journal of the American Chemical Society 2017, 139 (40) , 14065-14076. https://doi.org/10.1021/jacs.7b04383
    97. Rajat Maji, Pier Alexandre Champagne, K. N. Houk, and Steven E. Wheeler . Activation Mode and Origin of Selectivity in Chiral Phosphoric Acid-Catalyzed Oxacycle Formation by Intramolecular Oxetane Desymmetrizations. ACS Catalysis 2017, 7 (10) , 7332-7339. https://doi.org/10.1021/acscatal.7b02993
    98. Dominik S. Allgäuer, Harish Jangra, Haruyasu Asahara, Zhen Li, Quan Chen, Hendrik Zipse, Armin R. Ofial, and Herbert Mayr . Quantification and Theoretical Analysis of the Electrophilicities of Michael Acceptors. Journal of the American Chemical Society 2017, 139 (38) , 13318-13329. https://doi.org/10.1021/jacs.7b05106
    99. Fang Liu, Yong Liang, and K. N. Houk . Bioorthogonal Cycloadditions: Computational Analysis with the Distortion/Interaction Model and Predictions of Reactivities. Accounts of Chemical Research 2017, 50 (9) , 2297-2308. https://doi.org/10.1021/acs.accounts.7b00265
    100. Chen Wang, Yuan-Ye Jiang, and Chen-Ze Qi . Mechanism and Origin of Chemical Selectivity in Oxaziridine-Based Methionine Modification: A Computational Study. The Journal of Organic Chemistry 2017, 82 (18) , 9765-9772. https://doi.org/10.1021/acs.joc.7b02026
    Load more citations