ACS Publications. Most Trusted. Most Cited. Most Read
Janus Micelles Induced by Olefin Metathesis
My Activity

Figure 1Loading Img
    Communication

    Janus Micelles Induced by Olefin Metathesis
    Click to copy article linkArticle link copied!

    View Author Information
    Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 18, 5876–5877
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja801919y
    Published April 15, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A facile one-step procedure for hydrophobic modification and simultaneous TEM contrast enhancement via a regioselective olefin metathesis reaction using Grubbs’ catalyst is presented. Polyether diblock copolymers were investigated, and both the chain ends of the hydrophilic and the hydrophobic block were hydrophobically modified. Modification of the hydrophilic block results in nonsymmetric supramolecular structures (Janus micelles) which self-assemble into larger hierarchically organized super-micelles.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures, compound analyses, and more electron microscopy images. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 51 publications.

    1. Ankita Mandal, Indradip Mandal, Andreas F. M. Kilbinger. Catalytic Syntheses of Degradable Polymers via Ring-Opening Metathesis Copolymerization Using Vinyl Ethers as Chain Transfer Agents. Macromolecules 2022, 55 (17) , 7827-7833. https://doi.org/10.1021/acs.macromol.2c01373
    2. Subhajit Pal, Indradip Mandal, Andreas F. M. Kilbinger. Controlled Alternating Metathesis Copolymerization of Terminal Alkynes. ACS Macro Letters 2022, 11 (7) , 847-853. https://doi.org/10.1021/acsmacrolett.2c00258
    3. Adeeba Shakeel, Rohan Bhattacharya, Sampathkumar Jeevanandham, Dakshi Kochhar, Aarti Singh, Lalita Mehra, Maryam Ghufran, Piyush Garg, Sujata Sangam, Subhrajit Biswas, Amit Tyagi, Dinesh Kalyanasundaram, Sandip Chakrabarti, Monalisa Mukherjee. Graphene Quantum Dots in the Game of Directing Polymer Self-Assembly to Exotic Kagome Lattice and Janus Nanostructures. ACS Nano 2019, 13 (8) , 9397-9407. https://doi.org/10.1021/acsnano.9b04188
    4. Brad H. Jones, George D. Bachand, Sun Hae Ra Shin, Millicent A. Firestone, Walter F. Paxton. Dynamic Control over Aqueous Poly(butadiene-b-ethylene oxide) Self-Assembly through Olefin Metathesis. Macromolecules 2018, 51 (17) , 6543-6551. https://doi.org/10.1021/acs.macromol.8b01417
    5. Guocan Yu, Kecheng Jie, and Feihe Huang . Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chemical Reviews 2015, 115 (15) , 7240-7303. https://doi.org/10.1021/cr5005315
    6. Renhua Deng, Fuxin Liang, Xiaozhong Qu, Qian Wang, Jintao Zhu, and Zhenzhong Yang . Diblock Copolymer Based Janus Nanoparticles. Macromolecules 2015, 48 (3) , 750-755. https://doi.org/10.1021/ma502339s
    7. Andreas Walther and Axel H. E. Müller . Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications. Chemical Reviews 2013, 113 (7) , 5194-5261. https://doi.org/10.1021/cr300089t
    8. Adam O. Moughton, Marc A. Hillmyer, and Timothy P. Lodge . Multicompartment Block Polymer Micelles. Macromolecules 2012, 45 (1) , 2-19. https://doi.org/10.1021/ma201865s
    9. Christine Mangold, Carsten Dingels, Boris Obermeier, Holger Frey, and Frederik Wurm . PEG-based Multifunctional Polyethers with Highly Reactive Vinyl-Ether Side Chains for Click-Type Functionalization. Macromolecules 2011, 44 (16) , 6326-6334. https://doi.org/10.1021/ma200898n
    10. Yanhong Wang, Chengliang Zhang, Chen Tang, Jing Li, Ke Shen, Jiguang Liu, Xiaozhong Qu, Jiaoli Li, Qian Wang, and Zhenzhong Yang . Emulsion Interfacial Synthesis of Asymmetric Janus Particles. Macromolecules 2011, 44 (10) , 3787-3794. https://doi.org/10.1021/ma102945t
    11. Christine Mangold Frederik Wurm Andreas F. M. Kilbinger . Asymmetric Micellization of Oragnometallic Polyether Block Copolymers. 2011, 103-115. https://doi.org/10.1021/bk-2011-1066.ch008
    12. Chen Tang, Chengliang Zhang, Jiguang Liu, Xiaozhong Qu, Jiaoli Li and Zhenzhong Yang. Large Scale Synthesis of Janus Submicrometer Sized Colloids by Seeded Emulsion Polymerization. Macromolecules 2010, 43 (11) , 5114-5120. https://doi.org/10.1021/ma100437t
    13. Ankita Mandal, Subhajit Pal, Andreas F. M. Kilbinger. Controlled Ring Opening Metathesis Polymerization of a New Monomer: On Switching the Solvent—Water‐Soluble Homopolymers to Degradable Copolymers. Macromolecular Rapid Communications 2023, 44 (18) https://doi.org/10.1002/marc.202300218
    14. Ankita Mandal, Indradip Mandal, Andreas F. M. Kilbinger. Catalytic Living Ring‐Opening Metathesis Polymerization Using Vinyl Ethers as Effective Chain‐Transfer Agents. Angewandte Chemie 2023, 135 (4) https://doi.org/10.1002/ange.202211842
    15. Ankita Mandal, Indradip Mandal, Andreas F. M. Kilbinger. Catalytic Living Ring‐Opening Metathesis Polymerization Using Vinyl Ethers as Effective Chain‐Transfer Agents. Angewandte Chemie International Edition 2023, 62 (4) https://doi.org/10.1002/anie.202211842
    16. Michael Schwarze. Recycling of Catalysts from Surfactant Systems . Chemie Ingenieur Technik 2021, 93 (1-2) , 31-41. https://doi.org/10.1002/cite.202000164
    17. Sudipta Biswas, Satadru Pramanik, Suman Mandal, Sudeshna Sarkar, Sujata Chaudhuri, Swati De. Facile synthesis of asymmetric patchy Janus Ag/Cu particles and study of their antifungal activity. Frontiers of Materials Science 2020, 14 (1) , 24-32. https://doi.org/10.1007/s11706-020-0496-6
    18. Meiwei Qi, Yongfeng Zhou. Multimicelle aggregate mechanism for spherical multimolecular micelles: from theories, characteristics and properties to applications. Materials Chemistry Frontiers 2019, 3 (10) , 1994-2009. https://doi.org/10.1039/C9QM00442D
    19. Ana Maria Percebom, Lais Helena Moreira Costa. Formation and assembly of amphiphilic Janus nanoparticles promoted by polymer interactions. Advances in Colloid and Interface Science 2019, 269 , 256-269. https://doi.org/10.1016/j.cis.2019.05.001
    20. Guosheng Tang, Ranhua Xiong, Dan Lv, Ronald X. Xu, Kevin Braeckmans, Chaobo Huang, Stefaan C. De Smedt. Gas‐Shearing Fabrication of Multicompartmental Microspheres: A One‐Step and Oil‐Free Approach. Advanced Science 2019, 6 (9) https://doi.org/10.1002/advs.201802342
    21. Xiaoshan Fan, Jing Yang, Xian Jun Loh, Zibiao Li. Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications. Macromolecular Rapid Communications 2019, 40 (5) https://doi.org/10.1002/marc.201800203
    22. Hongyao Yin, Wei Wang, Meng Mu, Yujun Feng. CO 2 ‐Induced Morphological Transition of Co‐Assemblies from Block‐Random Segmented Polymers. Macromolecular Rapid Communications 2017, 38 (23) https://doi.org/10.1002/marc.201700437
    23. Renhua Deng, Fuxin Liang, Jintao Zhu, Zhenzhong Yang. Recent advances in the synthesis of Janus nanomaterials of block copolymers. Materials Chemistry Frontiers 2017, 1 (3) , 431-443. https://doi.org/10.1039/C6QM00116E
    24. Xinchang Pang, Congshan Wan, Mengye Wang, Zhiqun Lin. Streng zweiphasige weiche und harte Janus‐Strukturen – Synthese, Eigenschaften und Anwendungen. Angewandte Chemie 2014, 126 (22) , 5630-5644. https://doi.org/10.1002/ange.201309352
    25. Xinchang Pang, Congshan Wan, Mengye Wang, Zhiqun Lin. Strictly Biphasic Soft and Hard Janus Structures: Synthesis, Properties, and Applications. Angewandte Chemie International Edition 2014, 53 (22) , 5524-5538. https://doi.org/10.1002/anie.201309352
    26. Yang Song, Shaowei Chen. Janus Nanoparticles: Preparation, Characterization, and Applications. Chemistry – An Asian Journal 2014, 9 (2) , 418-430. https://doi.org/10.1002/asia.201301398
    27. Zhipeng Wang, Floris P. J. T. Rutjes, Jan C. M. van Hest. pH responsive polymersome Pickering emulsion for simple and efficient Janus polymersome fabrication. Chem. Commun. 2014, 50 (93) , 14550-14553. https://doi.org/10.1039/C4CC07048H
    28. Conghui Yuan, Yiting Xu, Lina Zhong, Long Zhang, Cangjie Yang, Binjie Jiang, Yuanming Deng, Birong Zeng, Ning He, Weiang Luo, Lizong Dai. Heterogeneous silver–polyaniline nanocomposites with tunable morphology and controllable catalytic properties. Nanotechnology 2013, 24 (18) , 185602. https://doi.org/10.1088/0957-4484/24/18/185602
    29. Bin Liu, Wei Zhang, Dongwei Zhang, Xinlin Yang. Facile method for large scale synthesis of magnetic inorganic–organic hybrid anisotropic Janus particles. Journal of Colloid and Interface Science 2012, 385 (1) , 34-40. https://doi.org/10.1016/j.jcis.2012.06.032
    30. Gang Wu, Si‐Chong Chen, Xiu‐Li Wang, Ke‐Ke Yang, Yu‐Zhong Wang. Dynamic Origin and Thermally Induced Evolution of New Self‐Assembled Aggregates from an Amphiphilic Comb‐Like Graft Copolymer: A Multiscale and Multimorphological Procedure. Chemistry – A European Journal 2012, 18 (39) , 12237-12241. https://doi.org/10.1002/chem.201103961
    31. Kaka Zhang, Ming Jiang, Daoyong Chen. Self-assembly of particles—The regulatory role of particle flexibility. Progress in Polymer Science 2012, 37 (3) , 445-486. https://doi.org/10.1016/j.progpolymsci.2011.09.003
    32. Jing Hu, Shuxue Zhou, Yangyi Sun, Xiaosheng Fang, Limin Wu. Fabrication, properties and applications of Janus particles. Chemical Society Reviews 2012, 41 (11) , 4356. https://doi.org/10.1039/c2cs35032g
    33. Gabriel Loget, Alexander Kuhn. Bulk synthesis of Janus objects and asymmetric patchy particles. Journal of Materials Chemistry 2012, 22 (31) , 15457. https://doi.org/10.1039/c2jm31740k
    34. Christine Mangold, Frederik Wurm, Holger Frey. Functional PEG-based polymers with reactive groups via anionic ROP of tailor-made epoxides. Polymer Chemistry 2012, 3 (7) , 1714. https://doi.org/10.1039/c2py00489e
    35. Tingling Rao, Xue-Hui Dong, Byran C. Katzenmeyer, Chrys Wesdemiotis, Stephen Z. D. Cheng, Matthew L. Becker. High-fidelity fabrication of Au–polymer Janus nanoparticles using a solution template approach. Soft Matter 2012, 8 (10) , 2965. https://doi.org/10.1039/c2sm07002b
    36. Hao-Jan Sun, Chien-Lung Wang, I-Fan Hsieh, Chih-Hao Hsu, Ryan M. Van Horn, Chi-Chun Tsai, Kwang-Un Jeong, Bernard Lotz, Stephen Z. D. Cheng. Phase behaviour and Janus hierarchical supramolecular structures based on asymmetric tapered bisamide. Soft Matter 2012, 8 (17) , 4767. https://doi.org/10.1039/c2sm07332c
    37. Jing Ji, Yanbin Fan, Ming Jiang, Daoyong Chen. Linear coupling of spherical block copolymer micelles induced by gradually depositing an insoluble component onto the core–shell interface. Soft Matter 2012, 8 (33) , 8636. https://doi.org/10.1039/c2sm26068a
    38. Xiaoning Fu, Jun Liu, Hui Yang, Jiuchuan Sun, Xue Li, Xiaokai Zhang, Yuxi Jia. Arrays of Au–TiO2 Janus-like nanoparticles fabricated by block copolymer templates and their photocatalytic activity in the degradation of methylene blue. Materials Chemistry and Physics 2011, 130 (1-2) , 334-339. https://doi.org/10.1016/j.matchemphys.2011.06.054
    39. Marco Lattuada, T. Alan Hatton. Synthesis, properties and applications of Janus nanoparticles. Nano Today 2011, 6 (3) , 286-308. https://doi.org/10.1016/j.nantod.2011.04.008
    40. Jianzhong Du, Rachel K. O'Reilly. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chemical Society Reviews 2011, 40 (5) , 2402. https://doi.org/10.1039/c0cs00216j
    41. Jaewon Yoon, Kyung Jin Lee, Joerg Lahann. Multifunctional polymer particles with distinct compartments. Journal of Materials Chemistry 2011, 21 (24) , 8502. https://doi.org/10.1039/c1jm10673b
    42. Haw‐Lih Su, Chayanant Hongfa, Hassan S. Bazzi, David E. Bergbreiter. Polyisobutylene Phase‐Anchored Ruthenium Complexes. Macromolecular Symposia 2010, 297 (1) , 25-32. https://doi.org/10.1002/masy.200900092
    43. Xue Li, Hui Yang, Limei Xu, Xiaoning Fu, Huanwang Guo, Xiaokai Zhang. Janus Micelle Formation Induced by Protonation/Deprotonation of Poly(2‐vinylpyridine) ‐block‐ Poly(ethylene oxide) Diblock Copolymers. Macromolecular Chemistry and Physics 2010, 211 (3) , 297-302. https://doi.org/10.1002/macp.200900366
    44. James W. Herndon. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2008. Coordination Chemistry Reviews 2010, 254 (1-2) , 103-194. https://doi.org/10.1016/j.ccr.2009.07.018
    45. Chengliang Zhang, Bing Liu, Chen Tang, Jiguang Liu, Xiaozhong Qu, Jiaoli Li, Zhenzhong Yang. Large scale synthesis of Janus submicron sized colloids by wet etching anisotropic ones. Chemical Communications 2010, 46 (25) , 4610. https://doi.org/10.1039/c0cc00054j
    46. Jianzhong Du, Steven P. Armes. Patchy multi-compartment micelles are formed by direct dissolution of an ABC triblock copolymer in water. Soft Matter 2010, 6 (19) , 4851. https://doi.org/10.1039/c0sm00258e
    47. Frederik Wurm, Andreas F. M. Kilbinger. Polymere Janus‐Partikel. Angewandte Chemie 2009, 121 (45) , 8564-8574. https://doi.org/10.1002/ange.200901735
    48. Frederik Wurm, Andreas F. M. Kilbinger. Polymeric Janus Particles. Angewandte Chemie International Edition 2009, 48 (45) , 8412-8421. https://doi.org/10.1002/anie.200901735
    49. Andreas Herrmann. Makromolekulare Chemie 2008. Nachrichten aus der Chemie 2009, 57 (3) , 297-304. https://doi.org/10.1002/nadc.200960768
    50. Danielle E. Schuehler Sherwood, Joseph E. Williams, Michael B. Sponsler. Ruthenium‐incorporated, metathesis‐active polyacetylene. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (4) , 1061-1072. https://doi.org/10.1002/pola.23213
    51. Ilja K. Voets, Remco Fokkink, Thomas Hellweg, Stephen M. King, Pieter de Waard, Arie de Keizer, Martien A. Cohen Stuart. Spontaneous symmetry breaking: formation of Janus micelles. Soft Matter 2009, 5 (5) , 999-1005. https://doi.org/10.1039/B812793J

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 18, 5876–5877
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja801919y
    Published April 15, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    1559

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.