ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Artificial Chemokines: Combining Chemistry and Molecular Biology for the Elucidation of Interleukin-8 Functionality

View Author Information
Institut für Biochemie, Fakultät für Biowissenschaften, Pharmazie and Psychologie, Universität Leipzig, Brüderstrasse 34, D-04103 Leipzig, Germany, and Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg HCI, CH-8093 Zürich, Switzerland
†Universität Leipzig.
‡ETH Zürich, Hönggerberg HCI.
Cite this: J. Am. Chem. Soc. 2008, 130, 46, 15311–15317
Publication Date (Web):October 22, 2008
https://doi.org/10.1021/ja802453x
Copyright © 2008 American Chemical Society

    Article Views

    1345

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (871 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    How can we understand the contribution of individual parts or segments to complex structures? A typical strategy to answer this question is simulation of a segmental replacement followed by realization and investigation of the resulting effect in structure−activity studies. For proteins, this problem is commonly addressed by site-directed mutagenesis. A more general approach represents the exchange of whole secondary structure elements by rationally designed segments. For a demonstration of this possibility we identified the α-helix at the C-terminus of human interleukin-8 (hIL-8). Since this chemokine possesses four conserved cysteine residues, it can easily be altered by ligation strategies. A set of different segments, which are able to form amphiphilic helices, was synthesized to mimic the C-terminal α-helix. Beside sequences of α-amino acids, oligomers of non-natural β3-amino acids with the side chains of canonical amino acids were introduced. Such β-peptides form helices, which differ from the α-helix in handedness and dipole orientation. Variants of the semisynthetic hIL-8 proteins demonstrated clearly that the exact side chain orientation is of more importance than helix handedness and dipole orientation. The activity of a chimeric protein with a β-peptide helix that mimics the side chain orientation of the native α-helix most perfectly is comparable to that of the native hIL-8. Concepts like this could be a first step toward the synthesis of proteins consisting of large artificial secondary structure elements.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supporting Information includes a detailed description on cloning of hIL-8 cDNA, purification of hIL-8 (1−77), and CD, HPLC, and FT-ICR mass spectra of the various hIL8-analogues. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 68 publications.

    1. Robert E. Thompson, Tom W. Muir. Chemoenzymatic Semisynthesis of Proteins. Chemical Reviews 2020, 120 (6) , 3051-3126. https://doi.org/10.1021/acs.chemrev.9b00450
    2. Caterina Maria Lombardo, Vasantha Kumar M. V., Céline Douat, Frédéric Rosu, Jean-Louis Mergny, Gilmar F. Salgado, Gilles Guichard. Design and Structure Determination of a Composite Zinc Finger Containing a Nonpeptide Foldamer Helical Domain. Journal of the American Chemical Society 2019, 141 (6) , 2516-2525. https://doi.org/10.1021/jacs.8b12240
    3. Dale F. Kreitler, David E. Mortenson, Katrina T. Forest, and Samuel H. Gellman . Effects of Single α-to-β Residue Replacements on Structure and Stability in a Small Protein: Insights from Quasiracemic Crystallization. Journal of the American Chemical Society 2016, 138 (20) , 6498-6505. https://doi.org/10.1021/jacs.6b01454
    4. Chiara Cabrele, Tamás A. Martinek, Oliver Reiser, and Łukasz Berlicki . Peptides Containing β-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. Journal of Medicinal Chemistry 2014, 57 (23) , 9718-9739. https://doi.org/10.1021/jm5010896
    5. Jonathan P. Miller, Michael S. Melicher, and Alanna Schepartz . Positive Allostery in Metal Ion Binding by a Cooperatively Folded β-Peptide Bundle. Journal of the American Chemical Society 2014, 136 (42) , 14726-14729. https://doi.org/10.1021/ja508872q
    6. Lorenzo Milli, Michele Larocca, Mattia Tedesco, Nicola Castellucci, Elena Ghibaudi, Andrea Cornia, Matteo Calvaresi, Francesco Zerbetto, and Claudia Tomasini . α,ε-Hybrid Foldamers with 1,2,3-Triazole Rings: Order versus Disorder. The Journal of Organic Chemistry 2014, 79 (13) , 5958-5969. https://doi.org/10.1021/jo500963n
    7. Zachary E. Reinert, George A. Lengyel, and W. Seth Horne . Protein-like Tertiary Folding Behavior from Heterogeneous Backbones. Journal of the American Chemical Society 2013, 135 (34) , 12528-12531. https://doi.org/10.1021/ja405422v
    8. George A. Lengyel and W. Seth Horne . Design Strategies for the Sequence-Based Mimicry of Side-Chain Display in Protein β-Sheets by α/β-Peptides. Journal of the American Chemical Society 2012, 134 (38) , 15906-15913. https://doi.org/10.1021/ja306311r
    9. David E. Mortenson, Kenneth A. Satyshur, Ilia A. Guzei, Katrina T. Forest, and Samuel H. Gellman . Quasiracemic Crystallization as a Tool To Assess the Accommodation of Noncanonical Residues in Nativelike Protein Conformations. Journal of the American Chemical Society 2012, 134 (5) , 2473-2476. https://doi.org/10.1021/ja210045s
    10. Byoung-Chul Lee and Ronald N. Zuckermann . Protein Side-Chain Translocation Mutagenesis via Incorporation of Peptoid Residues. ACS Chemical Biology 2011, 6 (12) , 1367-1374. https://doi.org/10.1021/cb200300w
    11. Neha S. Gandhi and Ricardo L. Mancera . Molecular Dynamics Simulations of CXCL-8 and Its Interactions with a Receptor Peptide, Heparin Fragments, and Sulfated Linked Cyclitols. Journal of Chemical Information and Modeling 2011, 51 (2) , 335-358. https://doi.org/10.1021/ci1003366
    12. Prema. G. Vasudev, Sunanda Chatterjee, Narayanaswamy Shamala, and Padmanabhan Balaram . Structural Chemistry of Peptides Containing Backbone Expanded Amino Acid Residues: Conformational Features of β, γ, and Hybrid Peptides. Chemical Reviews 2011, 111 (2) , 657-687. https://doi.org/10.1021/cr100100x
    13. Joshua L. Price, W. Seth Horne and Samuel H. Gellman. Structural Consequences of β-Amino Acid Preorganization in a Self-Assembling α/β-Peptide: Fundamental Studies of Foldameric Helix Bundles. Journal of the American Chemical Society 2010, 132 (35) , 12378-12387. https://doi.org/10.1021/ja103543s
    14. Gangavaram V. M. Sharma, Nagula Chandramouli, Madavi Choudhary, Pendem Nagendar, Kallaganti V. S. Ramakrishna, Ajit C. Kunwar, Peter Schramm and Hans-Jörg Hofmann . Hybrid Helices: Motifs for Secondary Structure Scaffolds in Foldamers. Journal of the American Chemical Society 2009, 131 (47) , 17335-17344. https://doi.org/10.1021/ja907074u
    15. Gangavaram V. M. Sharma, Bommagani Shoban Babu, Deepak Chatterjee, Kallaganti V. S. Ramakrishna, Ajit C. Kunwar, Peter Schramm and Hans-Jörg Hofmann . Theoretical and Experimental Studies on α/ε-Hybrid Peptides: Design of a 14/12-Helix from Peptides with Alternating (S)-C-Linked Carbo-ε-amino Acid [(S)-ε-Caa(x)] and l-Ala. The Journal of Organic Chemistry 2009, 74 (17) , 6703-6713. https://doi.org/10.1021/jo901277a
    16. Carlos Saavedra, Rosendo Hernández, Alicia Boto and Eleuterio Álvarez. Catalytic, One-Pot Synthesis of β-Amino Acids from α-Amino Acids. Preparation of α,β-Peptide Derivatives. The Journal of Organic Chemistry 2009, 74 (13) , 4655-4665. https://doi.org/10.1021/jo9004487
    17. Zhiyong Wang, Cristian Valenzuela, Jianhua Wu, Yuanhao Chen, Ling Wang, Wei Feng. Bioinspired Freeze‐Tolerant Soft Materials: Design, Properties, and Applications. Small 2022, 18 (37) https://doi.org/10.1002/smll.202201597
    18. Magdalena Bejger, Paulina Fortuna, Magda Drewniak-Świtalska, Jacek Plewka, Wojciech Rypniewski, Łukasz Berlicki. A computationally designed β-amino acid-containing miniprotein. Chemical Communications 2021, 57 (49) , 6015-6018. https://doi.org/10.1039/D1CC02192C
    19. Chino C. Cabalteja, W. Seth Horne. Application of Chemical Synthesis to Engineer Protein Backbone Connectivity. 2021, 515-532. https://doi.org/10.1002/9783527823567.ch19
    20. Baptiste Legrand, Julie Aguesseau-Kondrotas, Matthieu Simon, Ludovic Maillard. Catalytic Foldamers: When the Structure Guides the Function. Catalysts 2020, 10 (6) , 700. https://doi.org/10.3390/catal10060700
    21. W. Seth Horne, Tom N. Grossmann. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns. Nature Chemistry 2020, 12 (4) , 331-337. https://doi.org/10.1038/s41557-020-0420-9
    22. Zsofia Hegedus, Claire M. Grison, Jennifer A. Miles, Silvia Rodriguez-Marin, Stuart L. Warriner, Michael E. Webb, Andrew J. Wilson. A catalytic protein–proteomimetic complex: using aromatic oligoamide foldamers as activators of RNase S. Chemical Science 2019, 10 (14) , 3956-3962. https://doi.org/10.1039/C9SC00374F
    23. Karoline Nordsieck, Lars Baumann, Vera Hintze, M. Teresa Pisabarro, Matthias Schnabelrauch, Annette G. Beck‐Sickinger, Sergey A. Samsonov. The effect of interleukin‐8 truncations on its interactions with glycosaminoglycans. Biopolymers 2018, 109 (10) https://doi.org/10.1002/bip.23103
    24. Nydia Panitz, Annette G. Beck‐Sickinger. Synthesis of Chemokines by Chemical Ligation. 2017, 223-250. https://doi.org/10.1002/9781119044116.ch5
    25. M. Pasco, C. Dolain, G. Guichard. Foldamers in Medicinal Chemistry. 2017, 89-125. https://doi.org/10.1016/B978-0-12-409547-2.12565-X
    26. Irene Arrata, Anna Barnard, Darren C. Tomlinson, Andrew J. Wilson. Interfacing native and non-native peptides: using Affimers to recognise α-helix mimicking foldamers. Chemical Communications 2017, 53 (19) , 2834-2837. https://doi.org/10.1039/C6CC09395G
    27. Valerie Spieler, Tessa Lühmann. 67th Mosbacher Kolloquium: Protein Design: From First Principles to Biomedical Applications. ChemBioChem 2016, 17 (14) , 1297-1300. https://doi.org/10.1002/cbic.201600256
    28. Nydia Panitz, Stephan Theisgen, Sergey A Samsonov, Jan-Philip Gehrcke, Lars Baumann, Kathrin Bellmann-Sickert, Sebastian Köhling, M Teresa Pisabarro, Jörg Rademann, Daniel Huster, Annette G Beck-Sickinger. The structural investigation of glycosaminoglycan binding to CXCL12 displays distinct interaction sites. Glycobiology 2016, 69 https://doi.org/10.1093/glycob/cww059
    29. George M. Burslem, Hannah F. Kyle, Alexander L. Breeze, Thomas A. Edwards, Adam Nelson, Stuart L. Warriner, Andrew J. Wilson. Towards “bionic” proteins: replacement of continuous sequences from HIF-1α with proteomimetics to create functional p300 binding HIF-1α mimics. Chemical Communications 2016, 52 (31) , 5421-5424. https://doi.org/10.1039/C6CC01812B
    30. Juliette Fremaux, Laura Mauran, Karolina Pulka‐Ziach, Brice Kauffmann, Benoit Odaert, Gilles Guichard. α‐Peptide–Oligourea Chimeras: Stabilization of Short α‐Helices by Non‐Peptide Helical Foldamers. Angewandte Chemie 2015, 127 (34) , 9954-9958. https://doi.org/10.1002/ange.201500901
    31. Juliette Fremaux, Laura Mauran, Karolina Pulka‐Ziach, Brice Kauffmann, Benoit Odaert, Gilles Guichard. α‐Peptide–Oligourea Chimeras: Stabilization of Short α‐Helices by Non‐Peptide Helical Foldamers. Angewandte Chemie International Edition 2015, 54 (34) , 9816-9820. https://doi.org/10.1002/anie.201500901
    32. Annette G Beck-Sickinger, Nydia Panitz. Semi-synthesis of chemokines. Current Opinion in Chemical Biology 2014, 22 , 100-107. https://doi.org/10.1016/j.cbpa.2014.09.024
    33. Clemens Mayer, Manuel M. Müller, Samuel H. Gellman, Donald Hilvert. Building Proficient Enzymes with Foldamer Prostheses. Angewandte Chemie 2014, 126 (27) , 7098-7101. https://doi.org/10.1002/ange.201400945
    34. Clemens Mayer, Manuel M. Müller, Samuel H. Gellman, Donald Hilvert. Building Proficient Enzymes with Foldamer Prostheses. Angewandte Chemie International Edition 2014, 53 (27) , 6978-6981. https://doi.org/10.1002/anie.201400945
    35. Je-Wen Liou, Fang-Tzu Chang, Yi Chung, Wen-Yi Chen, Wolfgang B. Fischer, Hao-Jen Hsu, . In Silico Analysis Reveals Sequential Interactions and Protein Conformational Changes during the Binding of Chemokine CXCL-8 to Its Receptor CXCR1. PLoS ONE 2014, 9 (4) , e94178. https://doi.org/10.1371/journal.pone.0094178
    36. Takashi Kaneko, Kyohei Iwamura, Ryo Nishikawa, Masahiro Teraguchi, Toshiki Aoki. Synthesis of sequential poly(1,3-phenyleneethynylene)-based polyradicals and through-space antiferromagnetic interaction of their solid state. Polymer 2014, 55 (5) , 1097-1102. https://doi.org/10.1016/j.polymer.2014.01.019
    37. Zachary E. Reinert, W. Seth Horne. Protein backbone engineering as a strategy to advance foldamers toward the frontier of protein-like tertiary structure. Org. Biomol. Chem. 2014, 12 (44) , 8796-8802. https://doi.org/10.1039/C4OB01769B
    38. Zachary E. Reinert, W. Seth Horne. Folding thermodynamics of protein-like oligomers with heterogeneous backbones. Chem. Sci. 2014, 5 (8) , 3325-3330. https://doi.org/10.1039/C4SC01094A
    39. George A. Lengyel, Zachary E. Reinert, Brian D. Griffith, W. Seth Horne. Comparison of backbone modification in protein β-sheets by α→γ residue replacement and α-residue methylation. Organic & Biomolecular Chemistry 2014, 12 (29) , 5375. https://doi.org/10.1039/c4ob00886c
    40. David E. Mortenson, Dale F. Kreitler, Hyun Gi Yun, Samuel H. Gellman, Katrina T. Forest. Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain. Acta Crystallographica Section D Biological Crystallography 2013, 69 (12) , 2506-2512. https://doi.org/10.1107/S090744491302444X
    41. Christof Sparr, Nirupam Purkayastha, Tomohiro Yoshinari, Dieter Seebach, Simone Maschauer, Olaf Prante, Harald Hübner, Peter Gmeiner, Beata Kolesinska, Renzo Cescato, Beatrice Waser, Jean Claude Reubi. Syntheses, Receptor Bindings, in vitro and in vivo Stabilities and Biodistributions of DOTA‐Neurotensin(8–13) Derivatives Containing β ‐Amino Acid Residues – A Lesson about the Importance of Animal Experiments. Chemistry & Biodiversity 2013, 10 (12) , 2101-2121. https://doi.org/10.1002/cbdv.201300331
    42. K. Mobius, K. Nordsieck, A. Pichert, S. A. Samsonov, L. Thomas, J. Schiller, S. Kalkhof, M. Teresa Pisabarro, A. G. Beck-Sickinger, D. Huster. Investigation of lysine side chain interactions of interleukin-8 with heparin and other glycosaminoglycans studied by a methylation-NMR approach. Glycobiology 2013, 23 (11) , 1260-1269. https://doi.org/10.1093/glycob/cwt062
    43. Lars Baumann, Annette G. Beck‐Sickinger. Photoactivatable Chemokines – Controlling Protein Activity by Light. Angewandte Chemie 2013, 125 (36) , 9729-9732. https://doi.org/10.1002/ange.201302242
    44. Lars Baumann, Annette G. Beck‐Sickinger. Photoactivatable Chemokines – Controlling Protein Activity by Light. Angewandte Chemie International Edition 2013, 52 (36) , 9550-9553. https://doi.org/10.1002/anie.201302242
    45. Ulrich Arnold, Bayard R. Huck, Samuel H. Gellman, Ronald T. Raines. Protein prosthesis: β‐peptides as reverse‐turn surrogates. Protein Science 2013, 22 (3) , 274-279. https://doi.org/10.1002/pro.2208
    46. Lisa M. Johnson, Samuel H. Gellman. α-Helix Mimicry with α/β-Peptides. 2013, 407-429. https://doi.org/10.1016/B978-0-12-394292-0.00019-9
    47. Paul M. Levine, Timothy W. Craven, Richard Bonneau, Kent Kirshenbaum. Chemoselective fragment condensation between peptide and peptidomimetic oligomers. Organic & Biomolecular Chemistry 2013, 11 (25) , 4142. https://doi.org/10.1039/c3ob40606g
    48. Carsten Baldauf, Hans‐Jörg Hofmann. Ab initio MO Theory – An Important Tool in Foldamer Research: Prediction of Helices in Oligomers of ω ‐Amino Acids. Helvetica Chimica Acta 2012, 95 (12) , 2348-2383. https://doi.org/10.1002/hlca.201200436
    49. Ying‐Ling Chiang, Justin A. Russak, Nancy Carrillo, Jeffrey W. Bode. Synthesis of Enantiomerically Pure Isoxazolidine Monomers for the Preparation of β 3 ‐Oligopeptides by Iterative α ‐Keto AcidHydroxylamine (KAHA) Ligations. Helvetica Chimica Acta 2012, 95 (12) , 2481-2501. https://doi.org/10.1002/hlca.201200484
    50. Karoline Nordsieck, Annelie Pichert, Sergey A. Samsonov, Lars Thomas, Christian Berger, M. Teresa Pisabarro, Daniel Huster, Annette G. Beck‐Sickinger. Residue 75 of Interleukin‐8 is Crucial for its Interactions with Glycosaminoglycans. ChemBioChem 2012, 13 (17) , 2558-2566. https://doi.org/10.1002/cbic.201200467
    51. Annelie Pichert, Denise Schlorke, Sandra Franz, Juergen Arnhold. Functional aspects of the interaction between interleukin-8 and sulfated glycosaminoglycans. Biomatter 2012, 2 (3) , 142-148. https://doi.org/10.4161/biom.21316
    52. Zachary E. Reinert, Eli D. Musselman, Adrian H. Elcock, W. Seth Horne. A PEG‐Based Oligomer as a Backbone Replacement for Surface‐Exposed Loops in a Protein Tertiary Structure. ChemBioChem 2012, 13 (8) , 1107-1111. https://doi.org/10.1002/cbic.201200200
    53. Annette G. Beck‐Sickinger, Nediljko Budisa. Genetisch kodierte Photovernetzer als molekulare Sonden zur Untersuchung von G‐Protein‐gekoppelten Rezeptoren (GPCR). Angewandte Chemie 2012, 124 (2) , 317-319. https://doi.org/10.1002/ange.201107211
    54. Annette G. Beck‐Sickinger, Nediljko Budisa. Genetically Encoded Photocrosslinkers as Molecular Probes To Study G‐Protein‐Coupled Receptors (GPCRs). Angewandte Chemie International Edition 2012, 51 (2) , 310-312. https://doi.org/10.1002/anie.201107211
    55. Annelie Pichert, Sergey A Samsonov, Stephan Theisgen, Lars Thomas, Lars Baumann, Jürgen Schiller, Annette G Beck-Sickinger, Daniel Huster, M Teresa Pisabarro. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Glycobiology 2012, 22 (1) , 134-145. https://doi.org/10.1093/glycob/cwr120
    56. W Seth Horne. Peptide and peptoid foldamers in medicinal chemistry. Expert Opinion on Drug Discovery 2011, 6 (12) , 1247-1262. https://doi.org/10.1517/17460441.2011.632002
    57. Juliette Fremaux, Lucile Fischer, Thomas Arbogast, Brice Kauffmann, Gilles Guichard. Condensation Approach to Aliphatic Oligourea Foldamers: Helices with N ‐(Pyrrolidin‐2‐ylmethyl)ureido Junctions. Angewandte Chemie 2011, 123 (48) , 11584-11587. https://doi.org/10.1002/ange.201105416
    58. Juliette Fremaux, Lucile Fischer, Thomas Arbogast, Brice Kauffmann, Gilles Guichard. Condensation Approach to Aliphatic Oligourea Foldamers: Helices with N ‐(Pyrrolidin‐2‐ylmethyl)ureido Junctions. Angewandte Chemie International Edition 2011, 50 (48) , 11382-11385. https://doi.org/10.1002/anie.201105416
    59. Ludwig K. A. Pilsl, Oliver Reiser. α/β-Peptide foldamers: state of the art. Amino Acids 2011, 41 (3) , 709-718. https://doi.org/10.1007/s00726-011-0894-2
    60. Dieter Seebach, Aneta Lukaszuk, Krystyna Patora‐Komisarska, Dominika Podwysocka, James Gardiner, Marc‐Olivier Ebert, Jean Claude Reubi, Renzo Cescato, Beatrice Waser, Peter Gmeiner, Harald Hübner, Catherine Rougeot. On the Terminal Homologation of Physiologically Active Peptides as a Means of Increasing Stability in Human Serum – Neurotensin, Opiorphin, B27‐KK10 Epitope, NPY. Chemistry & Biodiversity 2011, 8 (5) , 711-739. https://doi.org/10.1002/cbdv.201100093
    61. Gilles Guichard, Ivan Huc. Synthetic foldamers. Chemical Communications 2011, 47 (21) , 5933. https://doi.org/10.1039/c1cc11137j
    62. Kathrin Bellmann‐Sickert, Lars Baumann, Annette G. Beck‐Sickinger. Selective labelling of stromal cell‐derived factor 1α with carboxyfluorescein to study receptor internalisation. Journal of Peptide Science 2010, 16 (10) , 568-574. https://doi.org/10.1002/psc.1228
    63. Raheleh Rezaei Araghi, Christian Jäckel, Helmut Cölfen, Mario Salwiczek, Antje Völkel, Sara C. Wagner, Sebastian Wieczorek, Carsten Baldauf , Beate Koksch. A β/γ Motif to Mimic α‐Helical Turns in Proteins. ChemBioChem 2010, 11 (3) , 335-339. https://doi.org/10.1002/cbic.200900700
    64. Joshua L. Price, Erik B. Hadley, Jay D. Steinkruger, Samuel H. Gellman. Detection and Analysis of Chimeric Tertiary Structures by Backbone Thioester Exchange: Packing of an α Helix against an α/β‐Peptide Helix. Angewandte Chemie 2010, 122 (2) , 378-381. https://doi.org/10.1002/ange.200904714
    65. Joshua L. Price, Erik B. Hadley, Jay D. Steinkruger, Samuel H. Gellman. Detection and Analysis of Chimeric Tertiary Structures by Backbone Thioester Exchange: Packing of an α Helix against an α/β‐Peptide Helix. Angewandte Chemie International Edition 2010, 49 (2) , 368-371. https://doi.org/10.1002/anie.200904714
    66. Lars Baumann, Annette G. Beck‐Sickinger. Identification of a potential modification site in human stromal cell‐derived factor‐1. Peptide Science 2010, 94 (6) , 771-778. https://doi.org/10.1002/bip.21465
    67. Benoit Baptiste, Frédéric Godde, Ivan Huc. How Can Folded Biopolymers and Synthetic Foldamers Recognize Each Other?. ChemBioChem 2009, 10 (11) , 1765-1767. https://doi.org/10.1002/cbic.200900295
    68. Niranjan Thota, Debaraj Mukherjee, Mallepally Venkat Reddy, Syed Khalid Yousuf, Surrinder Koul, Subhash Chandra Taneja. Reaction of carbohydrates with Vilsmeier reagent: a tandem selective chloro O-formylation of sugars. Organic & Biomolecular Chemistry 2009, 7 (7) , 1280. https://doi.org/10.1039/b900026g

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect