ACS Publications. Most Trusted. Most Cited. Most Read
Mechanism of Photocatalytic Water Splitting in TiO2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry
My Activity

Figure 1Loading Img
    Article

    Mechanism of Photocatalytic Water Splitting in TiO2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, U.K., and UK Energy Research Center (UKERC), 58 Prince’s Gate, Exhibition Road, London SW7 2PG, U.K.
    †Imperial College London.
    ‡UKERC.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 42, 13885–13891
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja8034637
    Published September 26, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We show for the first time that the photogenerated hole lifetime in TiO2 is a strong determinant of the ability of TiO2 to split water. Hole lifetimes were measured using transient absorption spectroscopy over a range of excitation intensities. The lifetimes of the holes were modulated by the use of exogenous scavengers and were also found to vary systematically with the excitation intensity. In all cases the quantum yield of oxygen production is found to be linked to the light intensity used, ranging from below 1 sun equivalent to nearly 1 sun equivalent. We also provide evidence that oxygen production requires four photons for each molecule of oxygen, which is reminiscent of the natural photosynthetic water-splitting mechanism. This in turn suggests a mechanism for oxygen production which requires four-hole chemistry, presumably via three, as yet unidentified intermediates. It is also shown that at excitation densities on the order of 1 sun, nongeminate electron−hole recombination limits the quantum yield significantly.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Calcuation of photon number per TiO2nanoparticle; transient absorption study of photoholes as a function of Pt loading and kinetics of photoholes on the nanosecond time scale with Pt and Ag+ ions as electron scavengers. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 919 publications.

    1. Lingfang Liu, Liangyan Deng, Yachao Wang, Yu Wang, Yaxiong Wei, Guofeng Zhao, Cong Fu. Unraveling the Critical Role of Li in Au/Li-TiO2 Photocatalysts for Enhanced Photocatalytic Oxidative Coupling of Methane. ACS Catalysis 2025, Article ASAP.
    2. Yuuki Tomitsuka, Takeru Saito, Ryuzi Katoh. Enhancement of Luminescence in Anatase TiO2 Photocatalysts by Ethanol under Hole-Scavenging Conditions. The Journal of Physical Chemistry C 2025, Article ASAP.
    3. Shihua Zhu, Yachao Wang, Mengya Yang, Yu Wang, Yaxiong Wei, Guofeng Zhao, Cong Fu. In Situ Generated Ti3+ over Ag/TiO2 Enables Highly Efficient Photocatalytic Oxidative Coupling of Methane in Flow Reactors. The Journal of Physical Chemistry Letters 2025, 16 (15) , 3847-3855. https://doi.org/10.1021/acs.jpclett.5c00505
    4. Daraksha Bano, Shanshan Qin, Nikita Denisov, Hyesung Kim, Patrik Schmuki. Sacrificial Agent-Controlled Photodeposition: Revealing Pt-Photodeposition Key Features of Pt-Nanoparticle Co-catalysts for Maximized Photocatalytic H2 Evolution. ACS Electrochemistry 2025, Article ASAP.
    5. Jiaqiang Sun, Yachao Wang, Yu Wang, Yaxiong Wei, Xinsheng Xu, Shuo Chen, Weixin Huang, Guofeng Zhao, Cong Fu. Spectroscopic Kinetic Insights into the Critical Role of Metal–Oxide Interfaces in Enhancing the Concentration of Surface-Reaching Photoexcited Charges. The Journal of Physical Chemistry Letters 2025, 16 (6) , 1535-1542. https://doi.org/10.1021/acs.jpclett.4c03606
    6. Yufeng Li, Songqing Zhang, Chunmei He, Hongxia Yao, Changfa Guo, Wentao Wang, Yong Hu. Modulation of Schottky Barrier Height and Electronic Structure in Transition-Metal@Nitrogen-Doped-Carbon Core–Shell Cocatalysts Loaded with MnxCd1–xS Nanorods for Enhanced Photocatalytic Hydrogen Evolution. ACS Catalysis 2025, 15 (3) , 2315-2327. https://doi.org/10.1021/acscatal.4c06476
    7. En Cao, Xu Shi, Haruo Inoue, Tomoya Oshikiri, Yen-En Liu, Hiroaki Misawa. Activation Energy in the Electron Transfer Process and Water Oxidation Intermediate Generation under Plasmon–Nanocavity Strong Coupling. The Journal of Physical Chemistry C 2025, 129 (3) , 1590-1597. https://doi.org/10.1021/acs.jpcc.4c07398
    8. Zhicheng Yang, Nandan Ghorai, Shengxiang Wu, Sheng He, Tianquan Lian. Direct and Indirect Interfacial Electron Transfer at a Plasmonic p-Cu7S4/CdS Heterojunction. ACS Nano 2025, 19 (1) , 1547-1556. https://doi.org/10.1021/acsnano.4c14556
    9. Yuming Jiao, Haochun Yin, Jianhui Sun, Ya Wang, Hong Yu, Xin Jin, Xiaomeng Zhao, Bowen Tian, Xudong Yan, Min Zhao, Jingyi Ren, Wensen Li, Daxiang Wang, Linlu Bai, Liqiang Jing. Subnano Polyhydroxylated C60 and Co-oxo Clusters Enable Accelerated Electron Kinetics for CO2 Photoreduction in Pure Water. ACS Sustainable Chemistry & Engineering 2024, 12 (49) , 17681-17692. https://doi.org/10.1021/acssuschemeng.4c05851
    10. Liam Wrigley, Doyk Hwang, Sebastian V. Pios, Cody W. Schlenker. Optically Gated Dissociation of a Heptazinyl Radical Liberates H• through a Reactive πσ* State. ACS Physical Chemistry Au 2024, 4 (6) , 598-604. https://doi.org/10.1021/acsphyschemau.4c00030
    11. Mingrui Wang, Guanghui Zhang, Hao Wang, Zhiqun Wang, Yu Zhou, Xiaowa Nie, Ben Hang Yin, Chunshan Song, Xinwen Guo. Understanding and Tuning the Effects of H2O on Catalytic CO and CO2 Hydrogenation. Chemical Reviews 2024, 124 (21) , 12006-12085. https://doi.org/10.1021/acs.chemrev.4c00282
    12. Kana Ueda, Mutsumi Sugiyama. “Optoiontronic” Insights into the Water-Splitting Reaction Mechanism in the Cu(In,Ga)Se2 Photoelectrode/Electrolyte Interface. ACS Applied Energy Materials 2024, 7 (21) , 10149-10154. https://doi.org/10.1021/acsaem.4c02281
    13. Yohei Cho, Tianhao He, Benjamin Moss, Daniele Benetti, Caiwu Liang, Lei Tian, Lucy Jessica F. Hart, Anna A. Wilson, Yu Taniguchi, Junyi Cui, Mengya Yang, Salvador Eslava, Akira Yamaguchi, Masahiro Miyauchi, James R. Durrant. Analyzing the Temperature Dependence of Titania Photocatalysis: Kinetic Competition between Water Oxidation Catalysis and Back Electron–Hole Recombination. ACS Catalysis 2024, 14 (21) , 16543-16550. https://doi.org/10.1021/acscatal.4c03685
    14. Cong Fu, Lingfang Liu, Yu Wang, Yaxiong Wei, Weixin Huang, Guofeng Zhao. Quantitative Spectroscopic Analysis of Surface-Reaching Photoexcited Holes in g-C3N4/TiO2 Z-Scheme Heterojunctions. ACS Applied Materials & Interfaces 2024, 16 (42) , 57927-57935. https://doi.org/10.1021/acsami.4c14255
    15. Yachao Wang, Lingfang Liu, Yaxiong Wei, Xinsheng Xu, Guofeng Zhao, Rui Zhong, Cong Fu. Synergy of Ag and Interfacial Oxygen Vacancies on TiO2 for Highly Efficient Photocatalytic Production of H2O2. ACS Applied Materials & Interfaces 2024, 16 (38) , 50879-50886. https://doi.org/10.1021/acsami.4c11426
    16. William Mulewa, Muhammad Tahir. Perspectives in the Synergetic Photothermocatalysis of Hydrogen Sulfide Decomposition for Hydrogen Production: A Comprehensive Review. Energy & Fuels 2024, 38 (17) , 15972-15997. https://doi.org/10.1021/acs.energyfuels.4c02471
    17. Olesya A. Reutova, Elena D. Fakhrutdinova, Daria A. Goncharova, Andrey I. Stadnichenko, Olga A. Stonkus, Tamara S. Kharlamova, Valery A. Svetlichnyi, Olga V. Vodyankina. Strong Metal–Support Interactions in Cu(I)-Dark TiO2 Nanoscale Photocatalysts Prepared by Pulsed Laser Ablation for Hydrogen Evolution Reaction. ACS Applied Nano Materials 2024, 7 (14) , 17062-17073. https://doi.org/10.1021/acsanm.4c03268
    18. Lei Li, Huanhuan Liu, Chao Cheng, Xinyan Dai, Fang Chen, Jiqiang Ning, Wentao Wang, Yong Hu. Photochemical Tuning of Tricoordinated Nitrogen Deficiency in Carbon Nitride to Create Delocalized π Electron Clouds for Efficient CO2 Photoreduction. ACS Catalysis 2024, 14 (13) , 10204-10213. https://doi.org/10.1021/acscatal.4c01636
    19. Rosaria Verduci, Fabrizio Creazzo, Francesco Tavella, Salvatore Abate, Claudio Ampelli, Sandra Luber, Siglinda Perathoner, Giuseppe Cassone, Gabriele Centi, Giovanna D’Angelo. Water Structure in the First Layers on TiO2: A Key Factor for Boosting Solar-Driven Water-Splitting Performances. Journal of the American Chemical Society 2024, 146 (26) , 18061-18073. https://doi.org/10.1021/jacs.4c05042
    20. Cong Fu, Lingfang Liu, Yaxiong Wei, Weixin Huang, Guofeng Zhao. Linking the Doping-Induced Trap States to the Concentration of Surface-Reaching Photoexcited Holes in Transition-Metal-Doped TiO2 Nanoparticles. The Journal of Physical Chemistry Letters 2024, 15 (25) , 6504-6511. https://doi.org/10.1021/acs.jpclett.4c00977
    21. Feiyue Ge, Yuji Zhao, Changsheng Feng, Xuefei Li, Jiaqi Wang, Haixia Liu, Lijun Hu, Yue Chen, Feifan Chen, Fang Cheng, Hai-Yan Wei, Xue-Jun Wu. Elucidating Facet-Dependent Photocatalytic Activities of Metastable CdS and Au@CdS Core–Shell Nanocrystals. ACS Applied Materials & Interfaces 2024, 16 (25) , 32847-32856. https://doi.org/10.1021/acsami.4c04195
    22. Tomohiro Higashi, Kazuhiko Seki, Vikas Nandal, Yuriy Pihosh, Mamiko Nakabayashi, Naoya Shibata, Kazunari Domen. Understanding the Activation Mechanism of RhCrOx Cocatalysts for Hydrogen Evolution with Nanoparticulate Electrodes. ACS Applied Materials & Interfaces 2024, 16 (20) , 26325-26339. https://doi.org/10.1021/acsami.4c04841
    23. Rijith S Akhila M Sumi V S . Sulfide-Based Photocatalysts for Efficient H2 Production. , 333-362. https://doi.org/10.1021/bk-2024-1468.ch013
    24. Pierpaolo Vecchi, Federica Ruani, Michele Mazzanti, Quentin R. Loague, Raffaello Mazzaro, Federico Boscherini, Barbara Ventura, Gerald J. Meyer, Nicola Armaroli, Stefano Caramori, Luca Pasquini. Impact of Co–Fe Overlayers on Charge Carrier Dynamics at WO3/BiVO4 Heterojunctions: A Picosecond-to-Second Spectroscopic Analysis. ACS Energy Letters 2024, 9 (5) , 2193-2200. https://doi.org/10.1021/acsenergylett.4c00650
    25. Amirhossein Bayani, Julian Gebhardt, Christian Elsässer. Electronic Bulk and Surface Properties of Titanium Dioxide Studied by DFT-1/2. Langmuir 2023, 39 (42) , 14922-14934. https://doi.org/10.1021/acs.langmuir.3c01698
    26. Abdelmoumin Yahia Zerga, Muhammad Tahir, Hajar Alias, Naveen Kumar. Titanium Carbide MXenes Cocatalyst with Graphitic Carbon Nitride for Photocatalytic H2 Production, CO2 Reduction, and Reforming Applications: A Review on Fundamentals and Recent Advances. Energy & Fuels 2023, 37 (17) , 12623-12664. https://doi.org/10.1021/acs.energyfuels.3c01887
    27. Cong Fu, Lingfang Liu, Zhaorui Li, Yaxiong Wei, Weixin Huang, Xiaojun Zhang. Synergy of Bulk Defects and Surface Defects on TiO2 for Highly Efficient Photocatalytic Production of H2O2. The Journal of Physical Chemistry Letters 2023, 14 (34) , 7690-7696. https://doi.org/10.1021/acs.jpclett.3c01865
    28. Ryuzi Katoh, Tatsuo Nakagawa. Effect of Surface-Adsorbed Oxygen on Charge Recombination in a Nanocrystalline TiO2 Film Studied by Ultrasensitive Transient Absorption Spectroscopy. The Journal of Physical Chemistry C 2023, 127 (30) , 14797-14804. https://doi.org/10.1021/acs.jpcc.3c02516
    29. Beatriu Domingo-Tafalla, Tamal Chatterjee, Federico Franco, Javier Perez Hernandez, Eugenia Martinez-Ferrero, Pablo Ballester, Emilio Palomares. Electro- and Photoinduced Interfacial Charge Transfers in Nanocrystalline Mesoporous TiO2 and TiO2/Iron Porphyrin Sensitized Films under CO2 Reduction Catalysis. ACS Applied Materials & Interfaces 2023, 15 (11) , 14304-14315. https://doi.org/10.1021/acsami.2c22458
    30. Shuai Zhang, Haobo Li, Lei Wang, Jiandang Liu, Guijie Liang, Kenneth Davey, Jingrun Ran, Shi-Zhang Qiao. Boosted Photoreforming of Plastic Waste via Defect-Rich NiPS3 Nanosheets. Journal of the American Chemical Society 2023, 145 (11) , 6410-6419. https://doi.org/10.1021/jacs.2c13590
    31. Xinbo Ma, Wenjun Chu, Youxi Wang, Zhenyu Li, Jinlong Yang. Increasing the Efficiency of Photocatalytic Water Splitting via Introducing Intermediate Bands. The Journal of Physical Chemistry Letters 2023, 14 (3) , 779-784. https://doi.org/10.1021/acs.jpclett.2c03221
    32. Jiamei Cao, Jiankang Zhang, Wangui Guo, Hao Chen, Jinghua Li, Dengwei Jing, Bing Luo, Lijing Ma. A Type-I Heterojunction by Anchoring Ultrafine Cu2O on Defective TiO2 Framework for Efficient Photocatalytic H2 Production. Industrial & Engineering Chemistry Research 2023, 62 (3) , 1310-1321. https://doi.org/10.1021/acs.iecr.2c03875
    33. Heonjae Jeong, Edmund G. Seebauer. Effects of Ultraviolet Illumination on Oxygen Interstitial Injection from TiO2 under Liquid Water. The Journal of Physical Chemistry C 2022, 126 (49) , 20800-20806. https://doi.org/10.1021/acs.jpcc.2c05648
    34. Yiou Wang, Enqi Chen, Junwang Tang. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catalysis 2022, 12 (12) , 7300-7316. https://doi.org/10.1021/acscatal.2c01012
    35. So-Dam Sohn, Yohan Kim, Sungchul Jung, Jeong Su Kang, Huijun Han, Kwang S. Kim, Kibog Park, Hyung-Joon Shin. C60 Adsorbed on TiO2 Drives Dark Generation of Hydroxyl Radicals. ACS Catalysis 2022, 12 (10) , 5990-5996. https://doi.org/10.1021/acscatal.2c00755
    36. Sebastian Pios, Wolfgang Domcke. Ab Initio Electronic Structure Study of the Photoinduced Reduction of Carbon Dioxide with the Heptazinyl Radical. The Journal of Physical Chemistry A 2022, 126 (18) , 2778-2787. https://doi.org/10.1021/acs.jpca.2c00615
    37. Wolfgang Domcke, Andrzej L. Sobolewski. Water Oxidation and Hydrogen Evolution with Organic Photooxidants: A Theoretical Perspective. The Journal of Physical Chemistry B 2022, 126 (15) , 2777-2788. https://doi.org/10.1021/acs.jpcb.2c00705
    38. Feilong Dong, Zhen Pang, Shuyi Yang, Qiufeng Lin, Shuang Song, Cong Li, Xiaoyan Ma, Shuangxi Nie. Improving Wastewater Treatment by Triboelectric-Photo/Electric Coupling Effect. ACS Nano 2022, 16 (3) , 3449-3475. https://doi.org/10.1021/acsnano.1c10755
    39. Shiquan Lin, Xiangyu Chen, Zhong Lin Wang. Contact Electrification at the Liquid–Solid Interface. Chemical Reviews 2022, 122 (5) , 5209-5232. https://doi.org/10.1021/acs.chemrev.1c00176
    40. Ya-nan Jiang, Min Zhang, Xiao Zhang, Yuchen Ma. Reaction Pathway of Photocatalytic Water Splitting on Two-Dimensional TiO2 Nanosheets. The Journal of Physical Chemistry C 2022, 126 (8) , 3915-3922. https://doi.org/10.1021/acs.jpcc.1c08443
    41. Daniel Glass, Raul Quesada-Cabrera, Steven Bardey, Premrudee Promdet, Riccardo Sapienza, Valérie Keller, Stefan A. Maier, Valérie Caps, Ivan P. Parkin, Emiliano Cortés. Probing the Role of Atomic Defects in Photocatalytic Systems through Photoinduced Enhanced Raman Scattering. ACS Energy Letters 2021, 6 (12) , 4273-4281. https://doi.org/10.1021/acsenergylett.1c01772
    42. Zhebin Fu, Takuya Hirai, Hiroshi Onishi. Long-Life Electrons in Metal-Doped Alkali-Metal Tantalate Photocatalysts Excited under Water. The Journal of Physical Chemistry C 2021, 125 (48) , 26398-26405. https://doi.org/10.1021/acs.jpcc.1c06618
    43. Rui Sun, Haochun Yin, Ziqing Zhang, Yilin Wang, Teng Liang, Shengyu Zhang, Liqiang Jing. Graphene-Modulated PDI/g-C3N4 All-Organic S-Scheme Heterojunction Photocatalysts for Efficient CO2 Reduction under Full-Spectrum Irradiation. The Journal of Physical Chemistry C 2021, 125 (43) , 23830-23839. https://doi.org/10.1021/acs.jpcc.1c07726
    44. Rani Pavithran Mohanachandran Nair Sumangaladevi Sreevidya . Metal−Organic Frameworks as Photocatalysts for Hydrogen Evolution. , 499-511. https://doi.org/10.1021/bk-2021-1393.ch017
    45. Shaowen Wu, Yuanzhi Li, Qianqian Hu, Jichun Wu, Qian Zhang. Photothermocatalytic Dry Reforming of Methane for Efficient CO2 Reduction and Solar Energy Storage. ACS Sustainable Chemistry & Engineering 2021, 9 (35) , 11635-11651. https://doi.org/10.1021/acssuschemeng.1c03692
    46. Rongrong Pan, Min Hu, Jia Liu, Dongfeng Li, Xiaodong Wan, Hongzhi Wang, Yuemei Li, Xiuming Zhang, Xiuli Wang, Jun Jiang, Jiatao Zhang. Two-Dimensional All-in-One Sulfide Monolayers Driving Photocatalytic Overall Water Splitting. Nano Letters 2021, 21 (14) , 6228-6236. https://doi.org/10.1021/acs.nanolett.1c02008
    47. Tina Jingyan Miao, Chao Wang, Lunqiao Xiong, Xiyi Li, Jijia Xie, Junwang Tang. In Situ Investigation of Charge Performance in Anatase TiO2 Powder for Methane Conversion by Vis–NIR Spectroscopy. ACS Catalysis 2021, 11 (13) , 8226-8238. https://doi.org/10.1021/acscatal.1c01998
    48. Varun Mohan, Eric Wu, Jaeyoung Heo, Ankita Das, Prashant K. Jain. Synergistic Photochemistry of Alcohols Catalyzed by Plasmonic Nanoparticles and a Metal Complex. ACS Energy Letters 2021, 6 (5) , 1980-1989. https://doi.org/10.1021/acsenergylett.1c00563
    49. Hong Zhang, Baoshun Liu. Preparation, Characterization, and Photocatalytic Properties of Self-Standing Pure and Cu-Doped TiO2 Nanobelt Membranes. ACS Omega 2021, 6 (7) , 4534-4541. https://doi.org/10.1021/acsomega.0c03873
    50. Takumu Kosaka, Yuya Teduka, Takuya Ogura, Yuanshu Zhou, Takashi Hisatomi, Hiroshi Nishiyama, Kazunari Domen, Yasufumi Takahashi, Hiroshi Onishi. Transient Kinetics of O2 Evolution in Photocatalytic Water-Splitting Reaction. ACS Catalysis 2020, 10 (22) , 13159-13164. https://doi.org/10.1021/acscatal.0c04115
    51. Yihui Zhao, Shashank Balasubramanyam, Ageeth. A. Bol, Anja Bieberle-Hütter. Relating the 3D Geometry and Photoelectrochemical Activity of WO3-Loaded n-Si Nanowires: Design Rules for Photoelectrodes. ACS Applied Energy Materials 2020, 3 (10) , 9628-9634. https://doi.org/10.1021/acsaem.0c01115
    52. Dan Kong, Xiaoyu Han, Stephen A. Shevlin, Christopher Windle, Jamie H. Warner, Zheng-Xiao Guo, Junwang Tang. A Metal-Free Oxygenated Covalent Triazine 2-D Photocatalyst Works Effectively from the Ultraviolet to Near-Infrared Spectrum for Water Oxidation Apart from Water Reduction. ACS Applied Energy Materials 2020, 3 (9) , 8960-8968. https://doi.org/10.1021/acsaem.0c01153
    53. Jie-Qiong Li, Lingyi Meng, Michiel Sprik, Jun Cheng. Thermodynamic Investigation of Proton/Electron Interplay on the Pourbaix Diagram at the TiO2/Electrolyte Interface. The Journal of Physical Chemistry C 2020, 124 (35) , 19003-19014. https://doi.org/10.1021/acs.jpcc.0c03546
    54. Xi Chen, Qiang Li, Meng Zhang, Juanjuan Li, Songcai Cai, Jing Chen, Hongpeng Jia. MOF-Templated Preparation of Highly Dispersed Co/Al2O3 Composite as the Photothermal Catalyst with High Solar-to-Fuel Efficiency for CO2 Methanation. ACS Applied Materials & Interfaces 2020, 12 (35) , 39304-39317. https://doi.org/10.1021/acsami.0c11576
    55. Xu Shi, Xiaowei Li, Takahiro Toda, Tomoya Oshikiri, Kosei Ueno, Kentaro Suzuki, Kei Murakoshi, Hiroaki Misawa. Interfacial Structure-Modulated Plasmon-Induced Water Oxidation on Strontium Titanate. ACS Applied Energy Materials 2020, 3 (6) , 5675-5683. https://doi.org/10.1021/acsaem.0c00648
    56. Markus R. P. Pielmeier, Antti J. Karttunen, Tom Nilges. Toward Atomic-Scale Inorganic Double Helices via Carbon Nanotube Matrices—Induction of Chirality to Carbon Nanotubes. The Journal of Physical Chemistry C 2020, 124 (24) , 13338-13347. https://doi.org/10.1021/acs.jpcc.0c02079
    57. Antonio Valverde-González, Carmen G. López Calixto, Mariam Barawi, Miguel Gomez-Mendoza, Víctor A. de la Peña O’Shea, Marta Liras, Berta Gómez-Lor, Marta Iglesias. Understanding Charge Transfer Mechanism on Effective Truxene-Based Porous Polymers–TiO2 Hybrid Photocatalysts for Hydrogen Evolution. ACS Applied Energy Materials 2020, 3 (5) , 4411-4420. https://doi.org/10.1021/acsaem.0c00118
    58. Abdullah M. Alotaibi, Benjamin A. D. Williamson, Sanjayan Sathasivam, Andreas Kafizas, Mahdi Alqahtani, Carlos Sotelo-Vazquez, John Buckeridge, Jiang Wu, Sean P. Nair, David O. Scanlon, Ivan P. Parkin. Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO2 Thin Films: Theory and Experiment. ACS Applied Materials & Interfaces 2020, 12 (13) , 15348-15361. https://doi.org/10.1021/acsami.9b22056
    59. Nuria Jiménez-Arévalo, Fabrice Leardini, Isabel J. Ferrer, José Ramón Ares, Carlos Sánchez, Mahmoud M. Saad Abdelnabi, Maria Grazia Betti, Carlo Mariani. Ultrathin Transparent B–C–N Layers Grown on Titanium Substrates with Excellent Electrocatalytic Activity for the Oxygen Evolution Reaction. ACS Applied Energy Materials 2020, 3 (2) , 1922-1932. https://doi.org/10.1021/acsaem.9b02339
    60. Qiushi Ruan, Tina Miao, Hui Wang, Junwang Tang. Insight on Shallow Trap States-Introduced Photocathodic Performance in n-Type Polymer Photocatalysts. Journal of the American Chemical Society 2020, 142 (6) , 2795-2802. https://doi.org/10.1021/jacs.9b10476
    61. Yang Liu, Ying Zhou, Shan Yu, Zhanghui Xie, Yi Chen, Kaiwen Zheng, Susanne Mossin, Weihua Lin, Jie Meng, Tonu Pullerits, Kaibo Zheng. Defect State Assisted Z-scheme Charge Recombination in Bi2O2CO3/Graphene Quantum Dot Composites For Photocatalytic Oxidation of NO. ACS Applied Nano Materials 2020, 3 (1) , 772-781. https://doi.org/10.1021/acsanm.9b02276
    62. Qian Wang, Kazunari Domen. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chemical Reviews 2020, 120 (2) , 919-985. https://doi.org/10.1021/acs.chemrev.9b00201
    63. Qi Wang, Didier Astruc. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews 2020, 120 (2) , 1438-1511. https://doi.org/10.1021/acs.chemrev.9b00223
    64. Abdullah Kahraman, Mahsa Barzgar Vishlaghi, Işınsu Baylam, Alphan Sennaroglu, Sarp Kaya. Roles of Charge Carriers in the Excited State Dynamics of BiVO4 Photoanodes. The Journal of Physical Chemistry C 2019, 123 (47) , 28576-28583. https://doi.org/10.1021/acs.jpcc.9b07391
    65. Luoyuan Ruan, Xinwei Wang, Tongyao Wang, Zhaohui Ren, Ying Chen, Ruoyu Zhao, Dikui Zhou, Gangjie Fu, Shi Li, Lina Gao, Yunhao Lu, Zhiyu Wang, He Tian, Xueqian Kong, Gaorong Han. Surface Defect-Controlled Growth and High Photocatalytic H2 Production Efficiency of Anatase TiO2 Nanosheets. ACS Applied Materials & Interfaces 2019, 11 (40) , 37256-37262. https://doi.org/10.1021/acsami.9b11233
    66. Amira Y. Ahmed, Tarek A. Kandiel, Torsten Oekermann, Carsten Günnemann, Detlef Bahnemann. Mechanistic Investigations of Photoelectrochemical Water and Methanol Oxidation on Well-Defined TiO2 Anatase (101) and Rutile (110) Surfaces. ACS Applied Energy Materials 2019, 2 (7) , 5308-5318. https://doi.org/10.1021/acsaem.9b01163
    67. Yifan Wang, Xiaohu Cao, Qiyu Hu, Xiangming Liang, Tian Tian, Junqi Lin, Meie Yue, Yong Ding. FeOx Derived from an Iron-Containing Polyoxometalate Boosting the Photocatalytic Water Oxidation Activity of Ti3+-Doped TiO2. ACS Applied Materials & Interfaces 2019, 11 (26) , 23135-23143. https://doi.org/10.1021/acsami.9b03714
    68. Priyadarshi Roy Chowdhury, Vivek Verma, Himani Medhi, Krishna G. Bhattacharyya. Empirical Modeling of Electron Transport in Fe/Ti Layered Double Hydroxide Using Exponential, Gaussian and Mixed Gauss–Exponential Distribution. ACS Omega 2019, 4 (6) , 10599-10609. https://doi.org/10.1021/acsomega.9b01345
    69. Kiran George, Matthijs van Berkel, Xueqing Zhang, Rochan Sinha, Anja Bieberle-Hütter. Impedance Spectra and Surface Coverages Simulated Directly from the Electrochemical Reaction Mechanism: A Nonlinear State-Space Approach. The Journal of Physical Chemistry C 2019, 123 (15) , 9981-9992. https://doi.org/10.1021/acs.jpcc.9b01836
    70. Wenrui Zhang, Mingzhao Liu. Modulating Carrier Transport via Defect Engineering in Solar Water Splitting Devices. ACS Energy Letters 2019, 4 (4) , 834-843. https://doi.org/10.1021/acsenergylett.9b00276
    71. Dipayan Sen, Piotr Błoński, Michal Otyepka. Band-Edge Engineering at the Carbon Dot–TiO2 Interface by Substitutional Boron Doping. The Journal of Physical Chemistry C 2019, 123 (10) , 5980-5988. https://doi.org/10.1021/acs.jpcc.8b11554
    72. Dong Wang Fei Li Jian-Fu Chen Hai-Feng Wang Xiao-Ming Cao Peijun Hu Xue-Qing Gong . Computational Simulation of Trapped Charge Carriers in TiO2 and Their Impacts on Photocatalytic Water Splitting. 2019, 67-100. https://doi.org/10.1021/bk-2019-1331.ch004
    73. Fernando Fresno, Ignacio J. Villar-García, Laura Collado, Elena Alfonso-González, Patricia Reñones, Mariam Barawi, Víctor A. de la Peña O’Shea. Mechanistic View of the Main Current Issues in Photocatalytic CO2 Reduction. The Journal of Physical Chemistry Letters 2018, 9 (24) , 7192-7204. https://doi.org/10.1021/acs.jpclett.8b02336
    74. Parvin Fatahi, Anand Roy, Mehrangiz Bahrami, S. Jafar Hoseini. Visible-Light-Driven Efficient Hydrogen Production from CdS NanoRods Anchored with Co-catalysts Based on Transition Metal Alloy Nanosheets of NiPd, NiZn, and NiPdZn. ACS Applied Energy Materials 2018, 1 (10) , 5318-5327. https://doi.org/10.1021/acsaem.8b00900
    75. Marcus Lau, Sven Reichenberger, Ina Haxhiaj, Stephan Barcikowski, Astrid M. Müller. Mechanism of Laser-Induced Bulk and Surface Defect Generation in ZnO and TiO2 Nanoparticles: Effect on Photoelectrochemical Performance. ACS Applied Energy Materials 2018, 1 (10) , 5366-5385. https://doi.org/10.1021/acsaem.8b00977
    76. Fan Jin, Min Wei, Tingwei Chen, Huizhong Ma, Guokui Liu, Yuchen Ma. Behavior of Photogenerated Electron–Hole Pair for Water Splitting on TiO2(110). The Journal of Physical Chemistry C 2018, 122 (40) , 22930-22938. https://doi.org/10.1021/acs.jpcc.8b05648
    77. Ibrahim Khan, Ahsanulhaq Qurashi. Sonochemical-Assisted In Situ Electrochemical Synthesis of Ag/α-Fe2O3/TiO2 Nanoarrays to Harness Energy from Photoelectrochemical Water Splitting. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 11235-11245. https://doi.org/10.1021/acssuschemeng.7b02848
    78. José Julio Gutiérrez Moreno, Marco Fronzi, Pierre Lovera, Alan O’Riordan, Michael Nolan. Stability of Adsorbed Water on TiO2–TiN Interfaces. A First-Principles and Ab Initio Thermodynamics Investigation. The Journal of Physical Chemistry C 2018, 122 (27) , 15395-15408. https://doi.org/10.1021/acs.jpcc.8b03520
    79. Firdoz Shaik, Imanuel Peer, Prashant K. Jain, Lilac Amirav. Plasmon-Enhanced Multicarrier Photocatalysis. Nano Letters 2018, 18 (7) , 4370-4376. https://doi.org/10.1021/acs.nanolett.8b01392
    80. Somphonh P. Phivilay, Charles A. Roberts, Andrew D. Gamalski, Eric A. Stach, Shiran Zhang, Luan Nguyen, Yu Tang, Anke Xiong, Alexander A. Puretzky, Franklin Feng Tao, Kazunari Domen, Israel E. Wachs. Anatomy of a Visible Light Activated Photocatalyst for Water Splitting. ACS Catalysis 2018, 8 (7) , 6650-6658. https://doi.org/10.1021/acscatal.8b01388
    81. Yurong Yang, Ke Ye, Dianxue Cao, Peng Gao, Min Qiu, Li Liu, Piaoping Yang. Efficient Charge Separation from F– Selective Etching and Doping of Anatase-TiO2{001} for Enhanced Photocatalytic Hydrogen Production. ACS Applied Materials & Interfaces 2018, 10 (23) , 19633-19638. https://doi.org/10.1021/acsami.8b02804
    82. Ting Yu, Zhaoqian Li, Shuanghong Chen, Youcai Ding, Wangchao Chen, Xuepeng Liu, Yin Huang, Fantai Kong. Facile Synthesis of Flowerlike Bi2MoO6 Hollow Microspheres for High-Performance Supercapacitors. ACS Sustainable Chemistry & Engineering 2018, 6 (6) , 7355-7361. https://doi.org/10.1021/acssuschemeng.7b04673
    83. Yiou Wang, Hajime Suzuki, Jijia Xie, Osamu Tomita, David James Martin, Masanobu Higashi, Dan Kong, Ryu Abe, Junwang Tang. Mimicking Natural Photosynthesis: Solar to Renewable H2 Fuel Synthesis by Z-Scheme Water Splitting Systems. Chemical Reviews 2018, 118 (10) , 5201-5241. https://doi.org/10.1021/acs.chemrev.7b00286
    84. Tetsuya Yamada, Yukinori Murata, Sayaka Suzuki, Hajime Wagata, Shuji Oishi, Katsuya Teshima. Template-Assisted Size Control of Polycrystalline BaNbO2N Particles and Effects of Their Characteristics on Photocatalytic Water Oxidation Performances. The Journal of Physical Chemistry C 2018, 122 (15) , 8037-8044. https://doi.org/10.1021/acs.jpcc.7b12159
    85. Jacek K. Stolarczyk, Santanu Bhattacharyya, Lakshminarayana Polavarapu, Jochen Feldmann. Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures. ACS Catalysis 2018, 8 (4) , 3602-3635. https://doi.org/10.1021/acscatal.8b00791
    86. Yuchao Zhang, Shuai He, Wenxiao Guo, Yue Hu, Jiawei Huang, Justin R. Mulcahy, Wei David Wei. Surface-Plasmon-Driven Hot Electron Photochemistry. Chemical Reviews 2018, 118 (6) , 2927-2954. https://doi.org/10.1021/acs.chemrev.7b00430
    87. Xuelian Wu, Judy N. Hart, Xiaoming Wen, Liang Wang, Yi Du, Shi Xue Dou, Yun Hau Ng, Rose Amal, Jason Scott. Improving the Photo-Oxidative Performance of Bi2MoO6 by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition. ACS Applied Materials & Interfaces 2018, 10 (11) , 9342-9352. https://doi.org/10.1021/acsami.7b17856
    88. Andrew S. Hainer, Justin S. Hodgins, Victoria Sandre, Morgan Vallieres, Anabel E. Lanterna, Juan C. Scaiano. Photocatalytic Hydrogen Generation Using Metal-Decorated TiO2: Sacrificial Donors vs True Water Splitting. ACS Energy Letters 2018, 3 (3) , 542-545. https://doi.org/10.1021/acsenergylett.8b00152
    89. Ángel Morales-García, Oriol Lamiel-García, Rosendo Valero, and Francesc Illas . Properties of Single Oxygen Vacancies on a Realistic (TiO2)84 Nanoparticle: A Challenge for Density Functionals. The Journal of Physical Chemistry C 2018, 122 (4) , 2413-2421. https://doi.org/10.1021/acs.jpcc.7b11269
    90. Anand Roy, Manjeet Chhetri, Suchitra Prasad, Umesh V. Waghmare, and C. N. R. Rao . Unique Features of the Photocatalytic Reduction of H2O and CO2 by New Catalysts Based on the Analogues of CdS, Cd4P2X3 (X = Cl, Br, I). ACS Applied Materials & Interfaces 2018, 10 (3) , 2526-2536. https://doi.org/10.1021/acsami.7b15992
    91. Mang Niu, Jun Zhang, and Dapeng Cao . I, N-Codoping Modification of TiO2 for Enhanced Photoelectrochemical H2O Splitting in Visible-Light Region. The Journal of Physical Chemistry C 2017, 121 (47) , 26202-26208. https://doi.org/10.1021/acs.jpcc.7b08782
    92. Jian Zhu, Shan Pang, Thomas Dittrich, Yuying Gao, Wei Nie, Junyan Cui, Ruotian Chen, Hongyu An, Fengtao Fan, and Can Li . Visualizing the Nano Cocatalyst Aligned Electric Fields on Single Photocatalyst Particles. Nano Letters 2017, 17 (11) , 6735-6741. https://doi.org/10.1021/acs.nanolett.7b02799
    93. Fabian Sieland, Jenny Schneider, and Detlef W. Bahnemann . Fractal Charge Carrier Kinetics in TiO2. The Journal of Physical Chemistry C 2017, 121 (43) , 24282-24291. https://doi.org/10.1021/acs.jpcc.7b07087
    94. Xianqiang Xiong, Mark Forster, Jonathan D. Major, Yiming Xu, and Alexander J. Cowan . Time-Resolved Spectroscopy of ZnTe Photocathodes for Solar Fuel Production. The Journal of Physical Chemistry C 2017, 121 (40) , 22073-22080. https://doi.org/10.1021/acs.jpcc.7b06304
    95. Enrico Berardo, Ferdinand Kaplan, Kiran Bhaskaran-Nair, William A. Shelton, Michiel J. van Setten, Karol Kowalski, and Martijn A. Zwijnenburg . Benchmarking the Fundamental Electronic Properties of small TiO2 Nanoclusters by GW and Coupled Cluster Theory Calculations. Journal of Chemical Theory and Computation 2017, 13 (8) , 3814-3828. https://doi.org/10.1021/acs.jctc.7b00538
    96. Chengzhi Luo, Xiaohui Ren, Zhigao Dai, Yupeng Zhang, Xiang Qi, and Chunxu Pan . Present Perspectives of Advanced Characterization Techniques in TiO2-Based Photocatalysts. ACS Applied Materials & Interfaces 2017, 9 (28) , 23265-23286. https://doi.org/10.1021/acsami.7b00496
    97. Zhaohui Zhou, Jin Liu, Run Long, Linqiu Li, Liejin Guo, and Oleg V. Prezhdo . Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics. Journal of the American Chemical Society 2017, 139 (19) , 6707-6717. https://doi.org/10.1021/jacs.7b02121
    98. Ying Du, Xudong He, Yulu Zhan, Shuping Li, Yangbin Shen, Fandi Ning, Liuming Yan, and Xiaochun Zhou . Imaging the Site-Specific Activity and Kinetics on a Single Nanomaterial by Microchamber Array. ACS Catalysis 2017, 7 (5) , 3607-3614. https://doi.org/10.1021/acscatal.6b03518
    99. Fengshou Yu, Fei Li, Tingting Yao, Jian Du, Yongqi Liang, Yong Wang, Hongxian Han, and Licheng Sun . Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO4 Photoanode. ACS Catalysis 2017, 7 (3) , 1868-1874. https://doi.org/10.1021/acscatal.6b03483
    100. Jingwei Huang, Yan Zhang, and Yong Ding . Rationally Designed/Constructed CoOx/WO3 Anode for Efficient Photoelectrochemical Water Oxidation. ACS Catalysis 2017, 7 (3) , 1841-1845. https://doi.org/10.1021/acscatal.7b00022
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 42, 13885–13891
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja8034637
    Published September 26, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    20k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.