ACS Publications. Most Trusted. Most Cited. Most Read
Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability
My Activity

Figure 1Loading Img
    Article

    Role of Solvent, pH, and Molecular Size in Excited-State Deactivation of Key Eumelanin Building Blocks: Implications for Melanin Pigment Photostability
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical Physics, Lund University, Box 124, S 22100 Lund, Sweden, Department of Organic Chemistry and Biochemistry, University of Naples Federico II, Naples, Italy, Department of Physics and Nanotechnology, Aalborg University, Denmark, and Biophysics Group, Department of Physics and Astronomy, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam
    †Lund University.
    ‡University of Naples Federico II.
    §Aalborg University.
    ∥Vrije Universiteit.
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 50, 17038–17043
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja806345q
    Published November 13, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Ultrafast time-resolved fluorescence spectroscopy has been used to investigate the excited-state dynamics of the basic eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid (DHICA), its acetylated, methylated, and carboxylic ester derivatives, and two oligomers, a dimer and a trimer in the O-acetylated forms. The results show that (1) excited-state decays are faster for the trimer relative to the monomer; (2) for parent DHICA, excited-state lifetimes are much shorter in aqueous acidic medium (380 ps) as compared to organic solvent (acetonitrile, 2.6 ns); and (3) variation of fluorescence spectra and excited-state dynamics can be understood as a result of excited-state intramolecular proton transfer (ESIPT). The dependence on the DHICA oligomer size of the excited-state deactivation and its ESIPT mechanism provides important insight into the photostability and the photoprotective function of eumelanin. Mechanistic analogies with the corresponding processes in DNA and other biomolecules are recognized.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 77 publications.

    1. Xianheng Wang, Jianhua Zhang, Lei Yang, Tianyou Wang, Gaigai Duan, Zhipeng Gu, Yiwen Li. Eumelanin-like Poly(levodopa) Nanoscavengers for Inflammation Disease Therapy. Biomacromolecules 2024, 25 (4) , 2563-2573. https://doi.org/10.1021/acs.biomac.4c00092
    2. Roberto Cardia, Nicolas Dardenne, Guido Mula, Elisa Pinna, Gian-Marco Rignanese, Jean-Christophe Charlier, Giancarlo Cappellini. First-Principles Investigation of the Optical Properties of Eumelanin Protomolecules. The Journal of Physical Chemistry A 2023, 127 (51) , 10797-10806. https://doi.org/10.1021/acs.jpca.3c04898
    3. Quinton J. Meisner, Joseph J. M. Hurley, Peijun Guo, Anna R. Blood, Richard D. Schaller, David J. Gosztola, Gary P. Wiederrecht, Lei Zhu. Triple Emission of 5′-(para-R-Phenylene)vinylene-2-(2′-hydroxyphenyl)benzoxazole (PVHBO). Part I: Dual Emission from the Neutral Species. The Journal of Physical Chemistry A 2022, 126 (7) , 1033-1061. https://doi.org/10.1021/acs.jpca.1c10165
    4. Chunhua Cao, Eunkyoung Kim, Yi Liu, Mijeong Kang, Jinyang Li, Jun-Jie Yin, Huan Liu, Xue Qu, Changsheng Liu, William E. Bentley, Gregory F. Payne. Radical Scavenging Activities of Biomimetic Catechol-Chitosan Films. Biomacromolecules 2018, 19 (8) , 3502-3514. https://doi.org/10.1021/acs.biomac.8b00809
    5. Aleandro Antidormi, Claudio Melis, Enric Canadell, and Luciano Colombo . Assessing the Performance of Eumelanin/Si Interface for Photovoltaic Applications. The Journal of Physical Chemistry C 2017, 121 (21) , 11576-11584. https://doi.org/10.1021/acs.jpcc.7b02970
    6. Ayaka Kawamura, Michinari Kohri, Shinya Yoshioka, Tatsuo Taniguchi, and Keiki Kishikawa . Structural Color Tuning: Mixing Melanin-Like Particles with Different Diameters to Create Neutral Colors. Langmuir 2017, 33 (15) , 3824-3830. https://doi.org/10.1021/acs.langmuir.7b00707
    7. Lewis A. Baker, Simon E. Greenough, and Vasilios G. Stavros . A Perspective on the Ultrafast Photochemistry of Solution-Phase Sunscreen Molecules. The Journal of Physical Chemistry Letters 2016, 7 (22) , 4655-4665. https://doi.org/10.1021/acs.jpclett.6b02104
    8. N. D. Bernardino, S. Brown-Xu, T. L. Gustafson, and D. L. A. de Faria . Time-Resolved Spectroscopy of Indigo and of a Maya Blue Simulant. The Journal of Physical Chemistry C 2016, 120 (38) , 21905-21914. https://doi.org/10.1021/acs.jpcc.6b04681
    9. Kuk-Youn Ju, Jeeun Kang, Jin Ho Chang, and Jin-Kyu Lee . Clue to Understanding the Janus Behavior of Eumelanin: Investigating the Relationship between Hierarchical Assembly Structure of Eumelanin and Its Photophysical Properties. Biomacromolecules 2016, 17 (9) , 2860-2872. https://doi.org/10.1021/acs.biomac.6b00686
    10. Deniz Tuna, Anikó Udvarhelyi, Andrzej L. Sobolewski, Wolfgang Domcke, and Tatiana Domratcheva . Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin. The Journal of Physical Chemistry B 2016, 120 (14) , 3493-3502. https://doi.org/10.1021/acs.jpcb.6b01793
    11. Michael D. Horbury, Lewis A. Baker, Wen-Dong Quan, Jamie D. Young, Michael Staniforth, Simon E. Greenough, and Vasilios G. Stavros . Bridging the Gap between the Gas Phase and Solution Phase: Solvent Specific Photochemistry in 4-tert-Butylcatechol. The Journal of Physical Chemistry A 2015, 119 (50) , 11989-11996. https://doi.org/10.1021/acs.jpca.5b03621
    12. Mukunda Mandal, Tamal Das, Baljinder K. Grewal, and Debashree Ghosh . Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage. The Journal of Physical Chemistry B 2015, 119 (42) , 13288-13293. https://doi.org/10.1021/acs.jpcb.5b08750
    13. Fritz J. Knorr, Jeanne L. McHale, Aurora E. Clark, Arianna Marchioro, and Jacques-E. Moser . Dynamics of Interfacial Electron Transfer from Betanin to Nanocrystalline TiO2: The Pursuit of Two-Electron Injection. The Journal of Physical Chemistry C 2015, 119 (33) , 19030-19041. https://doi.org/10.1021/acs.jpcc.5b05896
    14. Ymène Houari, Siwar Chibani, Denis Jacquemin, and Adèle D. Laurent . TD-DFT Assessment of the Excited State Intramolecular Proton Transfer in Hydroxyphenylbenzimidazole (HBI) Dyes. The Journal of Physical Chemistry B 2015, 119 (6) , 2180-2192. https://doi.org/10.1021/jp505036d
    15. Marco d’Ischia, Alessandra Napolitano, Vincent Ball, Chun-Teh Chen, and Markus J. Buehler . Polydopamine and Eumelanin: From Structure–Property Relationships to a Unified Tailoring Strategy. Accounts of Chemical Research 2014, 47 (12) , 3541-3550. https://doi.org/10.1021/ar500273y
    16. Alice Corani, Annemarie Huijser, Thomas Gustavsson, Dimitra Markovitsi, Per-Åke Malmqvist, Alessandro Pezzella, Marco d’Ischia, and Villy Sundström . Superior Photoprotective Motifs and Mechanisms in Eumelanins Uncovered. Journal of the American Chemical Society 2014, 136 (33) , 11626-11635. https://doi.org/10.1021/ja501499q
    17. Amal El Nahhas, Torbjörn Pascher, Loredana Leone, Lucia Panzella, Alessandra Napolitano, and Villy Sundström . Photochemistry of Pheomelanin Building Blocks and Model Chromophores: Excited-State Intra- and Intermolecular Proton Transfer. The Journal of Physical Chemistry Letters 2014, 5 (12) , 2094-2100. https://doi.org/10.1021/jz500720g
    18. Alice Corani, Alessandro Pezzella, Torbjörn Pascher, Thomas Gustavsson, Dimitra Markovitsi, Annemarie Huijser, Marco d’Ischia, and Villy Sundström . Excited-State Proton-Transfer Processes of DHICA Resolved: From Sub-Picoseconds to Nanoseconds. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1383-1388. https://doi.org/10.1021/jz400437q
    19. Aleeta M. Powe, Susmita Das, Mark Lowry, Bilal El-Zahab, Sayo O. Fakayode, Maxwell L. Geng, Gary A. Baker, Lin Wang, Matthew E. McCarroll, Gabor Patonay, Min Li, Mohannad Aljarrah, Sharon Neal and Isiah M. Warner . Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry. Analytical Chemistry 2010, 82 (12) , 4865-4894. https://doi.org/10.1021/ac101131p
    20. Hui-Hsu Gavin Tsai, Hui-Lun Sara Sun and Chun-Jui Tan. TD-DFT Study of the Excited-State Potential Energy Surfaces of 2-(2′-Hydroxyphenyl)benzimidazole and its Amino Derivatives. The Journal of Physical Chemistry A 2010, 114 (12) , 4065-4079. https://doi.org/10.1021/jp100022y
    21. Magdalena Gauden, Alessandro Pezzella, Lucia Panzella, Alessandra Napolitano, Marco d’Ischia and Villy Sundström . Ultrafast Excited State Dynamics of 5,6-Dihydroxyindole, A Key Eumelanin Building Block: Nonradiative Decay Mechanism. The Journal of Physical Chemistry B 2009, 113 (37) , 12575-12580. https://doi.org/10.1021/jp903190k
    22. Amirhamzeh Farajollahi. Nanotechnology in solar energy: From active systems to Advanced Solar cells. Frontiers in Energy Research 2025, 13 https://doi.org/10.3389/fenrg.2025.1560718
    23. Xiaotong Zhu, Rongyue Zhang, Yucong Wang, Hongxia Jia, Juan Qiao. Fluorescence-enhanced MOF-encapsulated AuNCs for highly sensitive detection of melanin. Inorganic Chemistry Communications 2024, 170 , 113226. https://doi.org/10.1016/j.inoche.2024.113226
    24. Kavya Vinod, Renny Mathew, Christian Jandl, Brijith Thomas, Mahesh Hariharan. Electron diffraction and solid-state NMR reveal the structure and exciton coupling in a eumelanin precursor. Chemical Science 2024, 15 (39) , 16015-16024. https://doi.org/10.1039/D4SC05453A
    25. Kavya Vinod, Sohan D. Jadhav, Mahesh Hariharan. Room Temperature Phosphorescence in Crystalline Iodinated Eumelanin Monomer. Chemistry – A European Journal 2024, 30 (29) https://doi.org/10.1002/chem.202400499
    26. Christopher Grieco, Forrest R. Kohl, Bern Kohler. Ultrafast Radical Photogeneration Pathways in Eumelanin †. Photochemistry and Photobiology 2023, 99 (2) , 680-692. https://doi.org/10.1111/php.13731
    27. Aleksandra Ilina, Karen E. Thorn, Paul A. Hume, Isabella Wagner, Ronnie R. Tamming, Joshua J. Sutton, Keith C. Gordon, Sarah K. Andreassend, Kai Chen, Justin M. Hodgkiss. The photoprotection mechanism in the black–brown pigment eumelanin. Proceedings of the National Academy of Sciences 2022, 119 (43) https://doi.org/10.1073/pnas.2212343119
    28. Hanaa A. Galeb, Angelo Lamantia, Alexander Robson, Katja König, Jonas Eichhorn, Sara J. Baldock, Mark D. Ashton, John V. Baum, Richard L. Mort, Benjamin J. Robinson, Felix H. Schacher, Victor Chechik, Adam M. Taylor, John G. Hardy. The Polymerization of Homogentisic Acid In Vitro as a Model for Pyomelanin Formation. Macromolecular Chemistry and Physics 2022, 223 (6) https://doi.org/10.1002/macp.202100489
    29. Devika Sasikumar, Kavya Vinod, Jeswin Sunny, Mahesh Hariharan. Exciton interactions in helical crystals of a hydrogen-bonded eumelanin monomer. Chemical Science 2022, 13 (8) , 2331-2338. https://doi.org/10.1039/D1SC06755A
    30. Maria Letizia Terranova, Emanuela Tamburri. Understanding the way eumelanin works: A unique example of properties and skills driven by molecular heterogeneity. Polymer 2021, 229 , 123952. https://doi.org/10.1016/j.polymer.2021.123952
    31. Debashree Ghosh. Computational aspects towards understanding the photoprocesses in eumelanin. WIREs Computational Molecular Science 2021, 11 (3) https://doi.org/10.1002/wcms.1505
    32. A. Bernardus Mostert. Melanin, the What, the Why and the How: An Introductory Review for Materials Scientists Interested in Flexible and Versatile Polymers. Polymers 2021, 13 (10) , 1670. https://doi.org/10.3390/polym13101670
    33. Mohd Farhan Siddiqui, Sojeong Jeon, Moon-Moo Kim. Rapid and sensitive detection of melanin using glutathione conjugated gold nanocluster based fluorescence quenching assay. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2021, 247 , 119086. https://doi.org/10.1016/j.saa.2020.119086
    34. Xiaojian Li, Yu Du, Peng Xu, Yueyun Li, Xiang Ren, Hongmin Ma, Huan Wang, Qin Wei, Huangxian Ju. Signal-off electrochemiluminescence immunosensor based on Mn-Eumelanin coordination nanoparticles quenching PtCo-CuFe2O4-reduced graphene oxide enhanced luminol. Sensors and Actuators B: Chemical 2020, 323 , 128702. https://doi.org/10.1016/j.snb.2020.128702
    35. Maria Laura Alfieri, Giovanni Pilotta, Lucia Panzella, Laura Cipolla, Alessandra Napolitano. Gelatin-Based Hydrogels for the Controlled Release of 5,6-Dihydroxyindole-2-Carboxylic Acid, a Melanin-Related Metabolite with Potent Antioxidant Activity. Antioxidants 2020, 9 (3) , 245. https://doi.org/10.3390/antiox9030245
    36. Forrest R. Kohl, Christopher Grieco, Bern Kohler. Ultrafast spectral hole burning reveals the distinct chromophores in eumelanin and their common photoresponse. Chemical Science 2020, 11 (5) , 1248-1259. https://doi.org/10.1039/C9SC04527A
    37. Paulami Ghosh, Debashree Ghosh. Non-radiative decay of an eumelanin monomer: to be or not to be planar. Physical Chemistry Chemical Physics 2019, 21 (12) , 6635-6642. https://doi.org/10.1039/C9CP00246D
    38. Christopher Grieco, Forrest R. Kohl, Yuyuan Zhang, Sangeetha Natarajan, Lluís Blancafort, Bern Kohler. Intermolecular Hydrogen Bonding Modulates O‐H Photodissociation in Molecular Aggregates of a Catechol Derivative. Photochemistry and Photobiology 2019, 95 (1) , 163-175. https://doi.org/10.1111/php.13035
    39. Liliana D’Alba, Matthew D. Shawkey. Melanosomes: Biogenesis, Properties, and Evolution of an Ancient Organelle. Physiological Reviews 2019, 99 (1) , 1-19. https://doi.org/10.1152/physrev.00059.2017
    40. S. K. Shanuja, S. Iswarya, J. Sridevi, A. Gnanamani. Exploring the UVB-protective efficacy of melanin precursor extracted from marine imperfect fungus: Featuring characterization and application studies under in vitro conditions. International Microbiology 2018, 21 (1-2) , 59-71. https://doi.org/10.1007/s10123-018-0005-2
    41. Ming Xiao, Wei Chen, Weiyao Li, Jiuzhou Zhao, You-lee Hong, Yusuke Nishiyama, Toshikazu Miyoshi, Matthew D. Shawkey, Ali Dhinojwala. Elucidation of the hierarchical structure of natural eumelanins. Journal of The Royal Society Interface 2018, 15 (140) , 20180045. https://doi.org/10.1098/rsif.2018.0045
    42. Mariagrazia Iacomino, Juan Mancebo-Aracil, Mireia Guardingo, Raquel Martín, Gerardino D’Errico, Marco Perfetti, Paola Manini, Orlando Crescenzi, Félix Busqué, Alessandra Napolitano, Marco D’Ischia, Josep Sedó, Daniel Ruiz-Molina. Replacing Nitrogen by Sulfur: From Structurally Disordered Eumelanins to Regioregular Thiomelanin Polymers. International Journal of Molecular Sciences 2017, 18 (10) , 2169. https://doi.org/10.3390/ijms18102169
    43. Raffaella Micillo, Lucia Panzella, Mariagrazia Iacomino, Giacomo Prampolini, Ivo Cacelli, Alessandro Ferretti, Orlando Crescenzi, Kenzo Koike, Alessandra Napolitano, Marco d’Ischia. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep41532
    44. Lewis A. Baker, Barbara Marchetti, Tolga N. V. Karsili, Vasilios G. Stavros, Michael N. R. Ashfold. Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents. Chemical Society Reviews 2017, 46 (12) , 3770-3791. https://doi.org/10.1039/C7CS00102A
    45. F Solano. Photoprotection versus photodamage: updating an old but still unsolved controversy about melanin. Polymer International 2016, 65 (11) , 1276-1287. https://doi.org/10.1002/pi.5117
    46. Jing Li, Dongxue Ding, Ying Wei, Jing Zhang, Hui Xu. A “Si‐Locked” Phosphine Oxide Host with Suppressed Structural Relaxation for Highly Efficient Deep‐Blue TADF Diodes. Advanced Optical Materials 2016, 4 (4) , 522-528. https://doi.org/10.1002/adom.201500673
    47. Barbara Marchetti, Tolga N. V. Karsili. Theoretical insights into the photo-protective mechanisms of natural biological sunscreens: building blocks of eumelanin and pheomelanin. Physical Chemistry Chemical Physics 2016, 18 (5) , 3644-3658. https://doi.org/10.1039/C5CP06767G
    48. Hossein Roohi, Nasrin Abdollahinezhad. Photo-induced proton transfer in fluorene- and carbazole-based compounds as red- and orange-light-emitting molecules: A TD-DFT study. Organic Electronics 2015, 25 , 121-130. https://doi.org/10.1016/j.orgel.2015.06.027
    49. Marco d'Ischia, Kazumasa Wakamatsu, Fabio Cicoira, Eduardo Di Mauro, Josè Carlos Garcia‐Borron, Stephane Commo, Ismael Galván, Ghanem Ghanem, Koike Kenzo, Paul Meredith, Alessandro Pezzella, Clara Santato, Tadeusz Sarna, John D. Simon, Luigi Zecca, Fabio A. Zucca, Alessandra Napolitano, Shosuke Ito. Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell & Melanoma Research 2015, 28 (5) , 520-544. https://doi.org/10.1111/pcmr.12393
    50. Vittoria Maresca, Enrica Flori, Mauro Picardo. Skin phototype: a new perspective. Pigment Cell & Melanoma Research 2015, 28 (4) , 378-389. https://doi.org/10.1111/pcmr.12365
    51. Alessandro Pezzella, Mario Barra, Anna Musto, Angelica Navarra, Michela Alfè, Paola Manini, Silvia Parisi, Antonio Cassinese, Valeria Criscuolo, Marco d'Ischia. Stem cell-compatible eumelanin biointerface fabricated by chemically controlled solid state polymerization. Materials Horizons 2015, 2 (2) , 212-220. https://doi.org/10.1039/C4MH00097H
    52. Hossein Roohi, Nafiseh Mohtamedifar, Fahemeh Hejazi. Intramolecular photoinduced proton transfer in 2-(2′-hydroxyphenyl)benzazole family: A TD-DFT quantum chemical study. Chemical Physics 2014, 444 , 66-76. https://doi.org/10.1016/j.chemphys.2014.10.006
    53. Adèle D. Laurent, Denis Jacquemin. Analyzing excited-state processes and optical signatures of a ratiomeric fluorine anion sensor: a quantum look. Science China Chemistry 2014, 57 (10) , 1363-1368. https://doi.org/10.1007/s11426-014-5156-1
    54. Sandrine Quignard, Marco d'Ischia, Yong Chen, Jacques Fattaccioli. Ultraviolet‐Induced Fluorescence of Polydopamine‐Coated Emulsion Droplets. ChemPlusChem 2014, 79 (9) , 1254-1257. https://doi.org/10.1002/cplu.201402157
    55. Maria Carolina Pellosi, Andréia Akemi Suzukawa, Alexsandra Cristina Scalfo, Paolo Di Mascio, Carolina Parga Martins Pereira, Nadja Cristhina de Souza Pinto, Daniela de Luna Martins, Glaucia Regina Martinez. Effects of the melanin precursor 5,6-dihydroxy-indole-2-carboxylic acid (DHICA) on DNA damage and repair in the presence of reactive oxygen species. Archives of Biochemistry and Biophysics 2014, 557 , 55-64. https://doi.org/10.1016/j.abb.2014.05.024
    56. Tiia‐Riikka Tero, Kirsi Salorinne, Heli Lehtivuori, Janne A. Ihalainen, Maija Nissinen. The Structural Diversity of Benzofuran Resorcinarene Leads to Enhanced Fluorescence. Chemistry – An Asian Journal 2014, 9 (7) , 1860-1867. https://doi.org/10.1002/asia.201402016
    57. Jens-Uwe Sutter, David J S Birch. Metal ion influence on eumelanin fluorescence and structure. Methods and Applications in Fluorescence 2014, 2 (2) , 024005. https://doi.org/10.1088/2050-6120/2/2/024005
    58. Gareth M. Roberts, Vasilios G. Stavros. Biomolecules, Photostability and 1 πσ ∗ States: Linking These with Femtochemistry. 2014, 119-143. https://doi.org/10.1007/978-3-319-02051-8_6
    59. Hossein Roohi, Fahimeh Hejazi, Nafiseh Mohtamedifar, Mahjobeh Jahantab. Excited state intramolecular proton transfer (ESIPT) in 2-(2′-hydroxyphenyl)benzoxazole and its naphthalene-fused analogs: A TD-DFT quantum chemical study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 118 , 228-238. https://doi.org/10.1016/j.saa.2013.08.068
    60. Adèle D. Laurent, Ymène Houari, Pedro H. P. R. Carvalho, Brenno A. D. Neto, Denis Jacquemin. ESIPT or not ESIPT? Revisiting recent results on 2,1,3-benzothiadiazole under the TD-DFT light. RSC Adv. 2014, 4 (27) , 14189-14192. https://doi.org/10.1039/C4RA00991F
    61. Eduardo H. G. da Cruz, Pedro H. P. R. Carvalho, José R. Corrêa, Diego A. C. Silva, Emilay B. T. Diogo, José D. de Souza Filho, Bruno C. Cavalcanti, Claudia Pessoa, Heibbe C. B. de Oliveira, Bruna C. Guido, Demétrio A. da Silva Filho, Brenno A. D. Neto, Eufrânio N. da Silva Júnior. Design, synthesis and application of fluorescent 2,1,3-benzothiadiazole-triazole-linked biologically active lapachone derivatives. New Journal of Chemistry 2014, 38 (6) , 2569. https://doi.org/10.1039/c3nj01499a
    62. Gareth M. Roberts, Vasilios G. Stavros. The role of πσ* states in the photochemistry of heteroaromatic biomolecules and their subunits: insights from gas-phase femtosecond spectroscopy. Chemical Science 2014, 5 (5) , 1698. https://doi.org/10.1039/c3sc53175a
    63. Lucia Panzella, Gennaro Gentile, Gerardino D'Errico, Nicola F. Della Vecchia, Maria E. Errico, Alessandra Napolitano, Cosimo Carfagna, Marco d'Ischia. Atypical Structural and π‐Electron Features of a Melanin Polymer That Lead to Superior Free‐Radical‐Scavenging Properties. Angewandte Chemie 2013, 125 (48) , 12916-12919. https://doi.org/10.1002/ange.201305747
    64. Lucia Panzella, Gennaro Gentile, Gerardino D'Errico, Nicola F. Della Vecchia, Maria E. Errico, Alessandra Napolitano, Cosimo Carfagna, Marco d'Ischia. Atypical Structural and π‐Electron Features of a Melanin Polymer That Lead to Superior Free‐Radical‐Scavenging Properties. Angewandte Chemie International Edition 2013, 52 (48) , 12684-12687. https://doi.org/10.1002/anie.201305747
    65. Z. Abdin, M.A. Alim, R. Saidur, M.R. Islam, W. Rashmi, S. Mekhilef, A. Wadi. Solar energy harvesting with the application of nanotechnology. Renewable and Sustainable Energy Reviews 2013, 26 , 837-852. https://doi.org/10.1016/j.rser.2013.06.023
    66. Alessandro Pezzella, Luigia Capelli, Aniello Costantini, Giuseppina Luciani, Fabiana Tescione, Brigida Silvestri, Giuseppe Vitiello, Francesco Branda. Towards the development of a novel bioinspired functional material: Synthesis and characterization of hybrid TiO2/DHICA-melanin nanoparticles. Materials Science and Engineering: C 2013, 33 (1) , 347-355. https://doi.org/10.1016/j.msec.2012.08.049
    67. Albertus B. Mostert, Benjamin J. Powell, Francis L. Pratt, Graeme R. Hanson, Tadeusz Sarna, Ian R. Gentle, Paul Meredith. Role of semiconductivity and ion transport in the electrical conduction of melanin. Proceedings of the National Academy of Sciences 2012, 109 (23) , 8943-8947. https://doi.org/10.1073/pnas.1119948109
    68. Daniela Kovacs, Enrica Flori, Vittoria Maresca, Monica Ottaviani, Nicaela Aspite, Maria Lucia Dell'Anna, Lucia Panzella, Alessandra Napolitano, Mauro Picardo, Marco d'Ischia. The Eumelanin Intermediate 5,6-Dihydroxyindole-2-Carboxylic Acid Is a Messenger in the Cross-Talk among Epidermal Cells. Journal of Investigative Dermatology 2012, 132 (4) , 1196-1205. https://doi.org/10.1038/jid.2011.457
    69. Brenno A. D. Neto, Pedro H. P. R. Carvalho, Diego C. B. D. Santos, Claudia C. Gatto, Luciana M. Ramos, Nathalia M. de Vasconcelos, José R. Corrêa, Maísa B. Costa, Heibbe C. B. de Oliveira, Rafael G. Silva. Synthesis, properties and highly selective mitochondria staining with novel, stable and superior benzothiadiazole fluorescent probes. RSC Adv. 2012, 2 (4) , 1524-1532. https://doi.org/10.1039/C1RA00701G
    70. Marco d'Ischia, Alessandra Napolitano, Alessandro Pezzella. 5,6‐Dihydroxyindole Chemistry: Unexplored Opportunities Beyond Eumelanin. European Journal of Organic Chemistry 2011, 2011 (28) , 5501-5516. https://doi.org/10.1002/ejoc.201100796
    71. Ming‐De Li, Chi Shun Yeung, Xiangguo Guan, Jiani Ma, Wen Li, Chensheng Ma, David Lee Phillips. Water‐ and Acid‐Mediated Excited‐State Intramolecular Proton Transfer and Decarboxylation Reactions of Ketoprofen in Water‐Rich and Acidic Aqueous Solutions. Chemistry – A European Journal 2011, 17 (39) , 10935-10950. https://doi.org/10.1002/chem.201003297
    72. Annemarie Huijser, Alessandro Pezzella, Villy Sundström. Functionality of epidermal melanin pigments: current knowledge on UV-dissipative mechanisms and research perspectives. Physical Chemistry Chemical Physics 2011, 13 (20) , 9119. https://doi.org/10.1039/c1cp20131j
    73. Felipe F.D. Oliveira, Diego C.B.D. Santos, Alexandre A.M. Lapis, José R. Corrêa, Alexandre F. Gomes, Fabio C. Gozzo, Paulo F. Moreira, Virgínia C. de Oliveira, Frank H. Quina, Brenno A.D. Neto. On the use of 2,1,3-benzothiadiazole derivatives as selective live cell fluorescence imaging probes. Bioorganic & Medicinal Chemistry Letters 2010, 20 (20) , 6001-6007. https://doi.org/10.1016/j.bmcl.2010.08.073
    74. Marli L. Moraes, Paulo J. Gomes, Paulo A. Ribeiro, Pedro Vieira, Adilson A. Freitas, Ralf Köhler, Osvaldo N. Oliveira, Maria Raposo. Polymeric scaffolds for enhanced stability of melanin incorporated in liposomes. Journal of Colloid and Interface Science 2010, 350 (1) , 268-274. https://doi.org/10.1016/j.jcis.2010.06.043
    75. Annemarie Huijser, Alessandro Pezzella, Jonas K. Hannestad, Lucia Panzella, Alessandra Napolitano, Marco d'Ischia, Villy Sundström. UV‐Dissipation Mechanisms in the Eumelanin Building Block DHICA. ChemPhysChem 2010, 11 (11) , 2424-2431. https://doi.org/10.1002/cphc.201000257
    76. Marco d'Ischia, Alessandra Napolitano, Alessandro Pezzella, Paul Meredith, Tadeusz Sarna. Chemische und strukturelle Vielfalt der Eumelanine – ein kaum erforschtes optoelektronisches Biopolymer. Angewandte Chemie 2009, 121 (22) , 3972-3979. https://doi.org/10.1002/ange.200803786
    77. Marco d'Ischia, Alessandra Napolitano, Alessandro Pezzella, Paul Meredith, Tadeusz Sarna. Chemical and Structural Diversity in Eumelanins: Unexplored Bio‐Optoelectronic Materials. Angewandte Chemie International Edition 2009, 48 (22) , 3914-3921. https://doi.org/10.1002/anie.200803786

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2008, 130, 50, 17038–17043
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja806345q
    Published November 13, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    2130

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.