ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Visible−Near Infrared Absorbing Dithienylcyclopentadienone−Thiophene Copolymers for Organic Thin-Film Transistors

View Author Information
Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, Center for Polymers and Organic Solids, University of California, Santa Barbara, California 93106, and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
∥Current address: Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford St., Cambridge, MA 02138.
†Department of Chemistry and Biochemistry, University of California, Santa Barbara.
‡Center for Polymers and Organic Solids, University of California, Santa Barbara.
§Department of Chemistry and Biochemistry, University of California, Los Angeles.
Cite this: J. Am. Chem. Soc. 2008, 130, 49, 16524–16526
Publication Date (Web):November 17, 2008
https://doi.org/10.1021/ja806784e
Copyright © 2008 American Chemical Society

    Article Views

    3834

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (646 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Structural design, synthesis, and characterization of a series of organic semiconductors consisting exclusively of dithienylcyclopentadienone subunits within a polythiophene backbone are described as the first example for organic electronic devices. The donor (thiophene)-alt-acceptor (cyclopentadienone) copolymers exhibit a substantial p-carrier mobility in OFET but an unexpected noncorrelation between absorption and photoconductivity.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Text giving full experimental details for the synthesis of all new materials as well as the measurements, differential scanning calorimetry (DSC), cyclic voltammograms, XRD patterns, UV−vis absorption spectra, the in situ conductivity measurement, and crystal data tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 61 publications.

    1. Marc Comí, Michael U. Ocheje, Salahuddin Attar, Anthony U. Mu, Bailey K. Philips, Alexander J. Kalin, Konstantinos E. Kakosimos, Lei Fang, Simon Rondeau-Gagné, Mohammed Al-Hashimi. Synthesis and Photocyclization of Conjugated Diselenophene Pyrrole-2,5-dione Based Monomers for Optoelectronics. Macromolecules 2021, 54 (2) , 665-672. https://doi.org/10.1021/acs.macromol.0c02021
    2. Ulrike Salzner . Effect of Donor–Acceptor Substitution on Optoelectronic Properties of Conducting Organic Polymers. Journal of Chemical Theory and Computation 2014, 10 (11) , 4921-4937. https://doi.org/10.1021/ct500816c
    3. Monalisa Bai, Sajesh P. Thomas, Ranjith Kottokkaran, Susanta K. Nayak, Praveen C. Ramamurthy, and T. N. Guru Row . A Donor–Acceptor–Donor Structured Organic Conductor with S···S Chalcogen Bonding. Crystal Growth & Design 2014, 14 (2) , 459-466. https://doi.org/10.1021/cg401069y
    4. Young Il Park, Cheng-Yu Kuo, Jennifer S. Martinez, Young-Shin Park, Olena Postupna, Andriy Zhugayevych, Seungho Kim, Jongwook Park, Sergei Tretiak, and Hsing-Lin Wang . Tailored Electronic Structure and Optical Properties of Conjugated Systems through Aggregates and Dipole–Dipole Interactions. ACS Applied Materials & Interfaces 2013, 5 (11) , 4685-4695. https://doi.org/10.1021/am400766w
    5. Ye-Jin Hwang, Felix Sunjoo Kim, Hao Xin, and Samson A. Jenekhe . New Thienothiadiazole-Based Conjugated Copolymers for Electronics and Optoelectronics. Macromolecules 2012, 45 (9) , 3732-3739. https://doi.org/10.1021/ma3000797
    6. Chengliang Wang, Huanli Dong, Wenping Hu, Yunqi Liu, and Daoben Zhu . Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chemical Reviews 2012, 112 (4) , 2208-2267. https://doi.org/10.1021/cr100380z
    7. Eilaf Ahmed, Selvam Subramaniyan, Felix S. Kim, Hao Xin, and Samson A. Jenekhe . Benzobisthiazole-Based Donor–Acceptor Copolymer Semiconductors for Photovoltaic Cells and Highly Stable Field-Effect Transistors. Macromolecules 2011, 44 (18) , 7207-7219. https://doi.org/10.1021/ma201128x
    8. Yagang Chen, Hongkun Tian, Donghang Yan, Yanhou Geng, and Fosong Wang . Conjugated Polymers Based on a S- and N-Containing Heteroarene: Synthesis, Characterization, and Semiconducting Properties. Macromolecules 2011, 44 (13) , 5178-5185. https://doi.org/10.1021/ma2007249
    9. Antonio Facchetti. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications. Chemistry of Materials 2011, 23 (3) , 733-758. https://doi.org/10.1021/cm102419z
    10. Graham de Ruiter, Yair H. Wijsboom, Noa Oded, and Milko E. van der Boom . Polymeric Memory Elements and Logic Circuits that Store Multiple Bit States. ACS Applied Materials & Interfaces 2010, 2 (12) , 3578-3585. https://doi.org/10.1021/am1007497
    11. Manohar Rao, Rocio Ponce Ortiz, Antonio Facchetti, Tobin J. Marks, and K. S. Narayan . Studies of Photogenerated Charge Carriers from Donor−Acceptor Interfaces in Organic Field Effect Transistors. Implications for Organic Solar Cells. The Journal of Physical Chemistry C 2010, 114 (48) , 20609-20613. https://doi.org/10.1021/jp1051062
    12. Trisha L. Andrew, Jason R. Cox, and Timothy M. Swager. Synthesis, Reactivity, and Electronic Properties of 6,6-Dicyanofulvenes. Organic Letters 2010, 12 (22) , 5302-5305. https://doi.org/10.1021/ol102384k
    13. J. Arias-Pardilla, W. Walker, F. Wudl, and T. F. Otero . Reduction and Oxidation Doping Kinetics of an Electropolymerized Donor−Acceptor Low-Bandgap Conjugated Copolymer. The Journal of Physical Chemistry B 2010, 114 (40) , 12777-12784. https://doi.org/10.1021/jp1038865
    14. Patricia A. Peart and John D. Tovar . Poly(cyclopropenone)s: Formal Inclusion of the Smallest Hückel Aromatic into π-Conjugated Polymers. The Journal of Organic Chemistry 2010, 75 (16) , 5689-5696. https://doi.org/10.1021/jo101108f
    15. Atsushi Nagai and Yoshiki Chujo. Aromatic Ring-Fused BODIPY-Based Conjugated Polymers Exhibiting Narrow Near-Infrared Emission Bands. Macromolecules 2010, 43 (1) , 193-200. https://doi.org/10.1021/ma901449c
    16. Eilaf Ahmed, Felix S. Kim, Hao Xin and Samson A. Jenekhe. Benzobisthiazole−Thiophene Copolymer Semiconductors: Synthesis, Enhanced Stability, Field-Effect Transistors, and Efficient Solar Cells. Macromolecules 2009, 42 (22) , 8615-8618. https://doi.org/10.1021/ma9015278
    17. Ying-Hsuan Liu, Dmitrii F. Perepichka. Acenaphthylene as a building block for π-electron functional materials. Journal of Materials Chemistry C 2021, 4 https://doi.org/10.1039/D1TC02826J
    18. Kwang-Won Park, David Bilger, Trisha L. Andrew. 1D nanowires of non-centrosymmetric molecular semiconductors grown by physical vapor deposition. Molecular Systems Design & Engineering 2020, 5 (1) , 110-116. https://doi.org/10.1039/C9ME00100J
    19. Xiaolin Li, Jing Guo, Longfei Yang, Minghao Chao, Liping Zheng, Zhongyun Ma, Yuanyuan Hu, Yan Zhao, Huajie Chen, Yunqi Liu. Low Bandgap Donor-Acceptor π-Conjugated Polymers From Diarylcyclopentadienone-Fused Naphthalimides. Frontiers in Chemistry 2019, 7 https://doi.org/10.3389/fchem.2019.00362
    20. Jiawei Shao, Xing Guo, Nannan Shi, Xinglin Zhang, Shuli Liu, Zhenhua Lin, Baomin Zhao, Jingjing Chang, Jinjun Shao, Xiaochen Dong. Acenaphthylene-imide based small molecules/TiO2 bilayer as electron-transporting layer for solution-processing efficient perovskite solar cells. Science China Materials 2019, 62 (4) , 497-507. https://doi.org/10.1007/s40843-018-9337-3
    21. David Bilger, Kwang-Won Park, Trisha L. Andrew. A vapor printed electron-accepting conjugated polymer for textile optoelectronics. Synthetic Metals 2019, 250 , 1-6. https://doi.org/10.1016/j.synthmet.2019.02.005
    22. R. Venkatesan, L. Cindrella. Methyl substituted, azine bridged poly thiophenes and their structure related surface characteristics. Synthetic Metals 2018, 246 , 150-163. https://doi.org/10.1016/j.synthmet.2018.10.011
    23. Benedetta M. Squeo, Vasilis G. Gregoriou, Yang Han, Alex Palma-Cando, Sybille Allard, Efthymis Serpetzoglou, Ioannis Konidakis, Emmanuel Stratakis, Apostolos Avgeropoulos, Thomas D. Anthopoulos, Martin Heeney, Ullrich Scherf, Christos L. Chochos. α,β-Unsubstituted meso -positioning thienyl BODIPY: a promising electron deficient building block for the development of near infrared (NIR) p-type donor–acceptor (D–A) conjugated polymers. Journal of Materials Chemistry C 2018, 6 (15) , 4030-4040. https://doi.org/10.1039/C7TC05900K
    24. Shin-ichiro Kato, Tomokazu Kijima, Yoshihito Shiota, Toshitada Yoshihara, Seiji Tobita, Kazunari Yoshizawa, Yosuke Nakamura. Push–pull fluorenones and benzazulenequinones: regioselective [4+2] and [2+2] cycloadditions of benzopentalenequinone derivative and alkynes bearing an aniline moiety. Tetrahedron Letters 2016, 57 (41) , 4604-4607. https://doi.org/10.1016/j.tetlet.2016.09.002
    25. Koji Morimoto, Akira Nakamura, Toshifumi Dohi, Yasuyuki Kita. Metal‐Free Oxidative Cross‐Coupling Reaction of Thiophene Iodonium Salts with Pyrroles. European Journal of Organic Chemistry 2016, 2016 (25) , 4294-4297. https://doi.org/10.1002/ejoc.201600791
    26. Takeshi Kawase, Hiroyuki Kurata. Recent Developments in Fulvene and Heterofulvene Chemistry. 2016, 145-248. https://doi.org/10.1002/9783527671182.ch6
    27. . Conducting Polymers. 2015, 148-170. https://doi.org/10.1039/9781782623182-00148
    28. Hakan Usta, Antonio Facchetti. Polymeric and Small‐Molecule Semiconductors for Organic Field‐Effect Transistors. 2015, 1-100. https://doi.org/10.1002/9783527679973.ch1
    29. Benedetta M. Squeo, Nicola Gasparini, Tayebeh Ameri, Alex Palma-Cando, Sybille Allard, Vasilis G. Gregoriou, Christoph J. Brabec, Ullrich Scherf, Christos L. Chochos. Ultra low band gap α,β-unsubstituted BODIPY-based copolymer synthesized by palladium catalyzed cross-coupling polymerization for near infrared organic photovoltaics. Journal of Materials Chemistry A 2015, 3 (31) , 16279-16286. https://doi.org/10.1039/C5TA04229A
    30. Atsushi Kimoto, Yusuke Tajima. Donor‐Acceptor Type π‐Conjugated Copolymers Based on Soluble Benzodifuranone. Macromolecular Symposia 2014, 346 (1) , 36-42. https://doi.org/10.1002/masy.201400058
    31. Chin-Yang Yu, Wei-Lun Lin. Preparation and characterization of alternating copolymers containing fluorene and thiophene derivatives. European Polymer Journal 2014, 53 , 246-252. https://doi.org/10.1016/j.eurpolymj.2014.02.002
    32. Xin Guo, Martin Baumgarten, Klaus Müllen. Designing π-conjugated polymers for organic electronics. Progress in Polymer Science 2013, 38 (12) , 1832-1908. https://doi.org/10.1016/j.progpolymsci.2013.09.005
    33. Yoonkyoo Lee, Jae Woong Jung, Won Ho Jo. Synthesis and Characterization of Low-bandgap Poly(oligothiophene-alt-benzothiadiazole)s for Photovoltaic Application. Textile Science and Engineering 2013, 50 (1) , 16-24. https://doi.org/10.12772/TSE.2013.50.016
    34. Yunzhang Lu, Zhengguo Xiao, Yongbo Yuan, Haimei Wu, Zhongwei An, Yanbing Hou, Chao Gao, Jinsong Huang. Fluorine substituted thiophene–quinoxalinecopolymer to reduce the HOMO level and increase the dielectric constant for high open-circuit voltage organic solar cells. J. Mater. Chem. C 2013, 1 (4) , 630-637. https://doi.org/10.1039/C2TC00327A
    35. Piotr Bujak, Irena Kulszewicz-Bajer, Malgorzata Zagorska, Vincent Maurel, Ireneusz Wielgus, Adam Pron. Polymers for electronics and spintronics. Chemical Society Reviews 2013, 42 (23) , 8895. https://doi.org/10.1039/c3cs60257e
    36. Jianguo Wang, Xin Chen, Zhengxu Cai, Hewei Luo, Yonghai Li, Zitong Liu, Guanxin Zhang, Deqing Zhang. New alternating electron donor–acceptor conjugated polymers entailing (E)-[4,4′-biimidazolylidene]-5,5′(1H,1′H)-dione moieties. Polymer Chemistry 2013, 4 (20) , 5283. https://doi.org/10.1039/c3py00129f
    37. K. Ranjith, S.K. Swathi, A. Malavika, Praveen C. Ramamurthy. Random copolymers consisting of dithienylcyclopentadienone, thiophene and benzothiadiazole for bulk heterojunction solar cells. Solar Energy Materials and Solar Cells 2012, 105 , 263-271. https://doi.org/10.1016/j.solmat.2012.06.022
    38. DuGang Chen, Yan Zhao, Cheng Zhong, Gui Yu, YunQi Liu, JinGui Qin. A structurally ordered thiophene-thiazole copolymer for organic thin-film transistors. Science China Chemistry 2012, 55 (5) , 760-765. https://doi.org/10.1007/s11426-011-4460-2
    39. K. Ranjith, S.K. Swathi, Prajwal Kumar, Praveen C. Ramamurthy. Dithienylcyclopentadienone derivative-co-benzothiadiazole: An alternating copolymer for organic photovoltaics. Solar Energy Materials and Solar Cells 2012, 98 , 448-454. https://doi.org/10.1016/j.solmat.2011.11.034
    40. Masaki Horie, Jeff Kettle, Chin-Yang Yu, Leszek A. Majewski, Shu-Wei Chang, James Kirkpatrick, Sachetan M. Tuladhar, Jenny Nelson, Brian R. Saunders, Michael L. Turner. Cyclopentadithiophene-benzothiadiazole oligomers and polymers; synthesis, characterisation, field-effect transistor and photovoltaic characteristics. J. Mater. Chem. 2012, 22 (2) , 381-389. https://doi.org/10.1039/C1JM12449H
    41. Rintaro Higuchi, Ryota Tanoue, Nobuo Enoki, Yuya Miyasato, Kazuki Sakaguchi, Shinobu Uemura, Nobuo Kimizuka, Masashi Kunitake. Chemical liquid deposition of aromatic poly(azomethine)s by spontaneous on-site polycondensation in aqueous solution. Chemical Communications 2012, 48 (25) , 3103. https://doi.org/10.1039/c2cc16975d
    42. Shinuk Cho, Jung Hwa Seo, Gi-Hwan Kim, Jin Young Kim, Han Young Woo. Observation of ambipolar field-effect behavior in donor–acceptor conjugated copolymers. Journal of Materials Chemistry 2012, 22 (39) , 21238. https://doi.org/10.1039/c2jm34872a
    43. Shinuk Cho, Junghoon Lee, Minghong Tong, Jung Hwa Seo, Changduk Yang. Poly(diketopyrrolopyrrole‐benzothiadiazole) with Ambipolarity Approaching 100% Equivalency. Advanced Functional Materials 2011, 21 (10) , 1910-1916. https://doi.org/10.1002/adfm.201002651
    44. Seong Ho Choi, C. Daniel Frisbie. Hopping Transport in Long Conjugated Molecular Wires Connected to Metals. 2011, 61-91. https://doi.org/10.1002/9783527633074.ch3
    45. Ravi Kumar Cheedarala, Gi-Hwan Kim, Shinuk Cho, Junghoon Lee, Jonggi Kim, Hyun-Kon Song, Jin Young Kim, Changduk Yang. Ladder-type heteroacenepolymers bearing carbazole and thiophene ring units and their use in field-effect transistors and photovoltaic cells. J. Mater. Chem. 2011, 21 (3) , 843-850. https://doi.org/10.1039/C0JM01897J
    46. Yanhui Hou, Guankui Long, Dong Sui, Yu Cai, Xiangjian Wan, Ao Yu, Yongsheng Chen. Different donor–acceptor structures of dithiafulvalene-fused semiconducting polymers with different band gaps. Chemical Communications 2011, 47 (37) , 10401. https://doi.org/10.1039/c1cc13511b
    47. Junghoon Lee, Shinuk Cho, Changduk Yang. Highly reproducible organic field-effect transistor from pseudo 3-dimensional triphenylamine-based amorphous conjugated copolymer. Journal of Materials Chemistry 2011, 21 (24) , 8528. https://doi.org/10.1039/c1jm11515d
    48. Jun’ya Tsutsumi, Toshikazu Yamada, Hiroyuki Matsui, Simon Haas, Tatsuo Hasegawa. Competition between Charge-Transfer Exciton Dissociation and Direct Photocarrier Generation in Molecular Donor-Acceptor Compounds. Physical Review Letters 2010, 105 (22) https://doi.org/10.1103/PhysRevLett.105.226601
    49. Junghoon Lee, Jonggi Kim, Gyoungsik Kim, Changduk Yang. Synthesis and photophysical properties of five-membered ring π-conjugated materials based on bisthiazol-2-yl-amine and their metal complexation studies. Tetrahedron 2010, 66 (48) , 9440-9444. https://doi.org/10.1016/j.tet.2010.09.087
    50. Min‐Jung Lee, Moon Seong Kang, Min‐Ki Shin, Jong‐Won Park, Dae Sung Chung, Chan Eun Park, Soon‐Ki Kwon, Yun‐Hi Kim. Synthesis and characterization of poly(1,4‐bis(( E )‐2‐(3‐dodecylthiophen‐2‐yl)vinyl)benzene) derivatives. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (18) , 3942-3949. https://doi.org/10.1002/pola.24174
    51. Fan Shi, Gang Fang, Fushun Liang, Lifen Wang, Zhongcheng Mu, Xintong Zhang, Zhiyuan Xie, Zhongmin Su. Broad absorbing low-bandgap polythiophene derivatives incorporating separate and content-tunable benzothiadiazole and carbazole moieties for polymer solar cells. European Polymer Journal 2010, 46 (8) , 1770-1777. https://doi.org/10.1016/j.eurpolymj.2010.05.001
    52. Jian-Lan Liu, Qi Liu, Yun-Xia Sui, Bing-Qian Yao, Xiao-Ming Ren, Hui Zhang, Hai-Bao Duan, Qing-Jin Meng. A radical ion-pair complex exhibiting strong C–H…O H-bonding interaction, moderately broaden near-IR absorbance and complicated EPR spectrum. Inorganic Chemistry Communications 2010, 13 (6) , 786-788. https://doi.org/10.1016/j.inoche.2010.03.047
    53. Mark Dante, Changduk Yang, Bright Walker, Fred Wudl, Thuc‐Quyen Nguyen. Self‐Assembly and Charge‐Transport Properties of a Polythiophene–Fullerene Triblock Copolymer. Advanced Materials 2010, 22 (16) , 1835-1839. https://doi.org/10.1002/adma.200902696
    54. Wen-Bo Pei, Jian-Sheng Wu, Jian-Lan Liu, Xiao-Ming Ren, Lin-Jiang Shen. Ion-pair complexes with strong near infrared absorbance: Syntheses, crystal structures and spectroscopic properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2010, 75 (1) , 191-197. https://doi.org/10.1016/j.saa.2009.10.011
    55. Adam Pron, Pawel Gawrys, Malgorzata Zagorska, David Djurado, Renaud Demadrille. Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques. Chemical Society Reviews 2010, 39 (7) , 2577. https://doi.org/10.1039/b907999h
    56. Masaki Horie, Leszek A. Majewski, Michael J. Fearn, Chin-Yang Yu, Yi Luo, Aimin Song, Brian R. Saunders, Michael L. Turner. Cyclopentadithiophene based polymers—a comparison of optical, electrochemical and organic field-effect transistor characteristics. Journal of Materials Chemistry 2010, 20 (21) , 4347. https://doi.org/10.1039/b924126d
    57. Evan S. H. Kang, Jonathan D. Yuen, Wesley Walker, Nelson E. Coates, Shinuk Cho, Eunseong Kim, Fred Wudl. Amorphous dithenylcyclopentadienone-carbazole copolymer for organic thin-film transistors. Journal of Materials Chemistry 2010, 20 (14) , 2759. https://doi.org/10.1039/b926066h
    58. Xue-Yi Chen, Charles Barnes, Xinyan Bai, T. C. Sandreczki, Zhonghua Peng, Ekaterina N. Kadnikova, J. R. Dias. Synthesis and structural analysis of a novel iodinated cyclopentadienone via ring-contraction iodination and its application in synthesis of alkyne-functionalized cyclopentadienones. Chemical Communications 2010, 46 (43) , 8171. https://doi.org/10.1039/c0cc02543g
    59. Raphael P. Jimenez, Masood Parvez, Todd C. Sutherland, Joel Viccars. Synthesis and Optical and Electronic Properties of Thiophene Derivatives. European Journal of Organic Chemistry 2009, 2009 (32) , 5635-5646. https://doi.org/10.1002/ejoc.200900850
    60. Shiming Zhang, Yunlong Guo, Haijun Fan, Yao Liu, Hsiang‐Yu Chen, Guanwen Yang, Xiaowei Zhan, Yunqi Liu, Yongfang Li, Yang Yang. Low bandgap π‐conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structure‐property relationship study. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47 (20) , 5498-5508. https://doi.org/10.1002/pola.23601
    61. Yanying Zhang, Musubu Ichikawa, Jinya Hattori, Tatsuya Kato, Ayumi Sazaki, Shusuke Kanazawa, Shimpei Kato, ChunHan Zhang, Yoshio Taniguchi. Fused thiophene-split oligothiophenes with high ionization potentials for OTFTs. Synthetic Metals 2009, 159 (17-18) , 1890-1895. https://doi.org/10.1016/j.synthmet.2009.06.016

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect