ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Real-Time NMR Investigations of Structural Changes in Silicon Electrodes for Lithium-Ion Batteries

View Author Information
Department of Chemistry, SUNY at Stony Brook, Stony Brook, New York 11794-3400, and LRCS, CNRS-UMR6007 Université de Picardie Jules Verne, 33 Rue Saint Leu 80039, Amiens, France
†SUNY at Stony Brook.
‡LRCS, CNRS-UMR6007 Université de Picardie Jules Verne.
Cite this: J. Am. Chem. Soc. 2009, 131, 26, 9239–9249
Publication Date (Web):March 19, 2009
https://doi.org/10.1021/ja8086278
Copyright © 2009 American Chemical Society

    Article Views

    16285

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (5 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Lithium-ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation because of the extremely large gravimetric and volumetric capacity of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link structure in these systems with electrochemical performance. We apply a combination of static, in situ and magic angle sample spinning, ex situ 7Li nuclear magnetic resonance (NMR) studies to investigate the changes in local structure that occur in an actual working LIB. The first discharge occurs via the formation of isolated Si atoms and smaller Si−Si clusters embedded in a Li matrix; the latter are broken apart at the end of the discharge, forming isolated Si atoms. A spontaneous reaction of the lithium silicide with the electrolyte is directly observed in the in situ NMR experiments; this mechanism results in self-discharge and potential capacity loss. The rate of this self-discharge process is much slower when CMC (carboxymethylcellulose) is used as the binder.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    In situ X-ray diffraction of the first discharge of crystalline silicon vs Li/Li+ and ex situ X-ray diffraction of selected battery samples at different states of discharge and following relaxation, discussion of shifts and peak assignments for the 7Li NMR of the thermodynamic phases, plots of intensities and peak shifts of deconvoluted peaks observed in in situ NMR experiments and a movie of the in situ NMR data synchronized with the electrochemical plot. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 601 publications.

    1. Kyoung-Jin Jeong, Tae Jun Wang, Hayk Hakob Nersisyan, Jun Hyun Han, Jong Hyeon Lee. Tailored Silver Nanowires for Amplified Lithium-Ion Battery Performance and Inhibition of Lithium Dendrites in Silicon–Graphite–Silver Nanowire Composite Electrodes. ACS Applied Energy Materials 2023, 6 (22) , 11626-11641. https://doi.org/10.1021/acsaem.3c02064
    2. Kevin J. Sanders, Amanda A. Ciezki, Alexander Berno, Ion C. Halalay, Gillian R. Goward. Quantitative Operando 7Li NMR Investigations of Silicon Anode Evolution during Fast Charging and Extended Cycling. Journal of the American Chemical Society 2023, 145 (39) , 21502-21513. https://doi.org/10.1021/jacs.3c07339
    3. Shogo Yamazaki, Ryoichi Tatara, Hironori Mizuta, Kei Kawano, Satoshi Yasuno, Shinichi Komaba. Consumption of Fluoroethylene Carbonate Electrolyte-Additive at the Si–Graphite Negative Electrode in Li and Li-Ion Cells. The Journal of Physical Chemistry C 2023, 127 (29) , 14030-14040. https://doi.org/10.1021/acs.jpcc.3c00843
    4. Stylianos Daskalakis, Athanasia Kostopoulou, Konstantinos Brintakis, Emmanuel Stratakis, Vasu Prasad Prasadam, Kevin Menguelti, Naoufal Bahlawane, Dimitra Vernardou. Investigation of Si-Coated Multiwalled Carbon Nanotubes as Potential Electrodes for Multivalent Metal-Ion Electrochemical Energy Storage Systems. The Journal of Physical Chemistry C 2023, 127 (27) , 13364-13379. https://doi.org/10.1021/acs.jpcc.3c02871
    5. Jennifer P. Allen, Christopher A. O’Keefe, Clare P. Grey. Quantifying Dissolved Transition Metals in Battery Electrolyte Solutions with NMR Paramagnetic Relaxation Enhancement. The Journal of Physical Chemistry C 2023, 127 (20) , 9509-9521. https://doi.org/10.1021/acs.jpcc.3c01396
    6. Kang Yao, Na Li, Ning Li, Eric Sivonxay, Yaping Du, Kristin A. Persson, Dong Su, Wei Tong. Tin Metal Improves the Lithiation Kinetics of High-Capacity Silicon Anodes. Chemistry of Materials 2023, 35 (6) , 2281-2288. https://doi.org/10.1021/acs.chemmater.2c01867
    7. Raimu Endo, Tsuyoshi Ohnishi, Kazunori Takada, Takuya Masuda. Electrochemical Lithiation and Delithiation in Amorphous Si Thin Film Electrodes Studied by Operando X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry Letters 2022, 13 (31) , 7363-7370. https://doi.org/10.1021/acs.jpclett.2c01312
    8. Laihao Liu, Xiuxia Zuo, Yajun Cheng, Yonggao Xia. In Situ Synthesis and Dual Functionalization of Nano Silicon Enabled by a Semisolid Lithium Rechargeable Flow Battery. ACS Applied Materials & Interfaces 2022, 14 (25) , 28748-28759. https://doi.org/10.1021/acsami.2c03145
    9. Diana Zapata Dominguez, Christopher L. Berhaut, Anton Buzlukov, Michel Bardet, Praveen Kumar, Pierre-Henri Jouneau, Antoine Desrues, Adrien Soloy, Cédric Haon, Nathalie Herlin-Boime, Samuel Tardif, Sandrine Lyonnard, Stéphanie Pouget. (De)Lithiation and Strain Mechanism in Crystalline Ge Nanoparticles. ACS Nano 2022, 16 (6) , 9819-9829. https://doi.org/10.1021/acsnano.2c03839
    10. Zhuo Wang, Junjun Tan, Zhe Yang, Yi Luo, Shuji Ye. Observing Two-Dimensional Spontaneous Reaction between a Silicon Electrode and a LiPF6-Based Electrolyte In Situ and in Real Time. The Journal of Physical Chemistry Letters 2022, 13 (14) , 3224-3229. https://doi.org/10.1021/acs.jpclett.2c00516
    11. Noah M. Johnson, Zhenzhen Yang, Minkyu Kim, Dong-Joo Yoo, Qian Liu, Zhengcheng Zhang. Enabling Silicon Anodes with Novel Isosorbide-Based Electrolytes. ACS Energy Letters 2022, 7 (2) , 897-905. https://doi.org/10.1021/acsenergylett.2c00099
    12. Su Jeong Yeom, Tae-Ung Wi, Sangho Ko, Changhyun Park, Khayala Bayramova, Sunghwan Jin, Seok Woo Lee, Hyun-Wook Lee. Nitrogen Plasma-Assisted Functionalization of Silicon/Graphite Anodes to Enable Fast Kinetics. ACS Applied Materials & Interfaces 2022, 14 (4) , 5237-5246. https://doi.org/10.1021/acsami.1c19879
    13. Andrew Dopilka, Amanda Childs, Svilen Bobev, Candace K. Chan. Electrochemical Lithium Alloying Behavior of Guest-Free Type II Silicon Clathrates. The Journal of Physical Chemistry C 2021, 125 (35) , 19110-19118. https://doi.org/10.1021/acs.jpcc.1c04020
    14. Jasper C. Woodard, W. Peter Kalisvaart, Sayed Youssef Sayed, Brian C. Olsen, Jillian M. Buriak. Beyond Thin Films: Clarifying the Impact of c-Li15Si4 Formation in Thin Film, Nanoparticle, and Porous Si Electrodes. ACS Applied Materials & Interfaces 2021, 13 (32) , 38147-38160. https://doi.org/10.1021/acsami.1c04293
    15. Ken Sakaushi, Hiroshi Nishihara. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism. Accounts of Chemical Research 2021, 54 (15) , 3003-3015. https://doi.org/10.1021/acs.accounts.1c00172
    16. Joop E. Frerichs, Mirco Ruttert, Steffen Böckmann, Martin Winter, Tobias Placke, Michael Ryan Hansen. Identification of LixSn Phase Transitions During Lithiation of Tin Nanoparticle-Based Negative Electrodes from Ex Situ 119Sn MAS NMR and Operando 7Li NMR and XRD. ACS Applied Energy Materials 2021, 4 (7) , 7278-7287. https://doi.org/10.1021/acsaem.1c01405
    17. Xiang Li, James A. Gilbert, Stephen E. Trask, Ritesh Uppuluri, Saul H. Lapidus, Saida Cora, Niya Sa, Zhenzhen Yang, Ira D. Bloom, Fulya Dogan, John T. Vaughey, Baris Key. Investigating Ternary Li–Mg–Si Zintl Phase Formation and Evolution for Si Anodes in Li-Ion Batteries with Mg(TFSI)2 Electrolyte Additive. Chemistry of Materials 2021, 33 (13) , 4960-4970. https://doi.org/10.1021/acs.chemmater.1c00616
    18. Sarah Jessl, Simon Engelke, Davor Copic, Jeremy J. Baumberg, Michael De Volder. Anisotropic Carbon Nanotube Structures with High Aspect Ratio Nanopores for Li-Ion Battery Anodes. ACS Applied Nano Materials 2021, 4 (6) , 6299-6305. https://doi.org/10.1021/acsanm.1c01157
    19. Zhen Liu, Andriy Borodin, Xiaoxu Liu, Yao Li, Frank Endres. Lithiation of Single-Crystalline Ge(111) and Si(111) Investigated by X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2021, 125 (24) , 13501-13507. https://doi.org/10.1021/acs.jpcc.0c11427
    20. Binghong Han, Yunya Zhang, Chen Liao, Stephen E. Trask, Xiang Li, Ritesh Uppuluri, John T. Vaughey, Baris Key, Fulya Dogan. Probing the Reactivity of the Active Material of a Li-Ion Silicon Anode with Common Battery Solvents. ACS Applied Materials & Interfaces 2021, 13 (24) , 28017-28026. https://doi.org/10.1021/acsami.1c01151
    21. Khryslyn Arano, Srdan Begic, Fangfang Chen, Dmitrii Rakov, Driss Mazouzi, Nicolas Gautier, Robert Kerr, Bernard Lestriez, Jean Le Bideau, Patrick C. Howlett, Dominique Guyomard, Maria Forsyth, Nicolas Dupre. Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids. ACS Applied Materials & Interfaces 2021, 13 (24) , 28281-28294. https://doi.org/10.1021/acsami.1c06465
    22. Jianhan Xiong, Nicolas Dupré, Driss Mazouzi, Dominique Guyomard, Lionel Roué, Bernard Lestriez. Influence of the Polyacrylic Acid Binder Neutralization Degree on the Initial Electrochemical Behavior of a Silicon/Graphite Electrode. ACS Applied Materials & Interfaces 2021, 13 (24) , 28304-28323. https://doi.org/10.1021/acsami.1c06683
    23. Mariam Ezzedine, Mihai-Robert Zamfir, Fatme Jardali, Lucie Leveau, Eleonor Caristan, Ovidiu Ersen, Costel-Sorin Cojocaru, Ileana Florea. Insight into the Formation and Stability of Solid Electrolyte Interphase for Nanostructured Silicon-Based Anode Electrodes Used in Li-Ion Batteries. ACS Applied Materials & Interfaces 2021, 13 (21) , 24734-24746. https://doi.org/10.1021/acsami.1c03302
    24. Joop E. Frerichs, Jonas Koppe, Simon Engelbert, Lukas Heletta, Gunther Brunklaus, Martin Winter, Georg K. H. Madsen, Michael Ryan Hansen. 119Sn and 7Li Solid-State NMR of the Binary Li–Sn Intermetallics: Structural Fingerprinting and Impact on the Isotropic 119Sn Shift via DFT Calculations. Chemistry of Materials 2021, 33 (10) , 3499-3514. https://doi.org/10.1021/acs.chemmater.0c04392
    25. Xiang Liu, Biwei Xiao, Amine Daali, Xinwei Zhou, Zhou Yu, Xiang Li, Yuzi Liu, Liang Yin, Zhenzhen Yang, Chen Zhao, Likun Zhu, Yang Ren, Lei Cheng, Shabbir Ahmed, Zonghai Chen, Xiaolin Li, Gui-Liang Xu, Khalil Amine. Stress- and Interface-Compatible Red Phosphorus Anode for High-Energy and Durable Sodium-Ion Batteries. ACS Energy Letters 2021, 6 (2) , 547-556. https://doi.org/10.1021/acsenergylett.0c02650
    26. Yi-Chen Hsieh, Johannes Helmut Thienenkamp, Chen-Jui Huang, Hsien-Chu Tao, Uta Rodehorst, Bing Joe Hwang, Martin Winter, Gunther Brunklaus. Revealing the Impact of Film-Forming Electrolyte Additives on Lithium Metal Batteries via Solid-State NMR/MRI Analysis. The Journal of Physical Chemistry C 2021, 125 (1) , 252-265. https://doi.org/10.1021/acs.jpcc.0c09771
    27. Peer Bärmann, Bastian Krueger, Simone Casino, Martin Winter, Tobias Placke, Gunther Wittstock. Impact of the Crystalline Li15Si4 Phase on the Self-Discharge Mechanism of Silicon Negative Electrodes in Organic Electrolytes. ACS Applied Materials & Interfaces 2020, 12 (50) , 55903-55912. https://doi.org/10.1021/acsami.0c16742
    28. Gerard Michael Carroll, Maxwell C. Schulze, Trevor R. Martin, Gregory F. Pach, Jaclyn E. Coyle, Glenn Teeter, Nathan R. Neale. SiO2 Is Wasted Space in Single-Nanometer-Scale Silicon Nanoparticle-Based Composite Anodes for Li-Ion Electrochemical Energy Storage. ACS Applied Energy Materials 2020, 3 (11) , 10993-11001. https://doi.org/10.1021/acsaem.0c01934
    29. Yang-kyu Park, Yoon Myung, Jae-won Lee. Facile and Scalable Synthesis of Porous Si/SiOx Nanoplates from Talc for Lithium-Ion Battery Anodes. ACS Applied Energy Materials 2020, 3 (9) , 8803-8811. https://doi.org/10.1021/acsaem.0c01324
    30. Yasuhiro Domi, Hiroyuki Usui, Kai Sugimoto, Kazuma Gotoh, Kei Nishikawa, Hiroki Sakaguchi. Reaction Behavior of a Silicide Electrode with Lithium in an Ionic-Liquid Electrolyte. ACS Omega 2020, 5 (35) , 22631-22636. https://doi.org/10.1021/acsomega.0c03357
    31. Anton Van der Ven, Zhi Deng, Swastika Banerjee, Shyue Ping Ong. Rechargeable Alkali-Ion Battery Materials: Theory and Computation. Chemical Reviews 2020, 120 (14) , 6977-7019. https://doi.org/10.1021/acs.chemrev.9b00601
    32. Sven Barth, Michael S. Seifner, Stephen Maldonado. Metastable Group IV Allotropes and Solid Solutions: Nanoparticles and Nanowires. Chemistry of Materials 2020, 32 (7) , 2703-2741. https://doi.org/10.1021/acs.chemmater.9b04471
    33. Matthew G. Boebinger, John A. Lewis, Stephanie E. Sandoval, Matthew T. McDowell. Understanding Transformations in Battery Materials Using in Situ and Operando Experiments: Progress and Outlook. ACS Energy Letters 2020, 5 (1) , 335-345. https://doi.org/10.1021/acsenergylett.9b02514
    34. Yongjie Cai, Yuanyuan Li, Biyu Jin, Abid Ali, Min Ling, Dangguo Cheng, Jianguo Lu, Yang Hou, Qinggang He, Xiaoli Zhan, Fengqiu Chen, Qinghua Zhang. Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (50) , 46800-46807. https://doi.org/10.1021/acsami.9b16387
    35. Yannic Heider, Philipp Willmes, Volker Huch, Michael Zimmer, David Scheschkewitz. Boron and Phosphorus Containing Heterosiliconoids: Stable p- and n-Doped Unsaturated Silicon Clusters. Journal of the American Chemical Society 2019, 141 (49) , 19498-19504. https://doi.org/10.1021/jacs.9b11181
    36. Yuxuan Liu, Wei Sun, Xuexia Lan, Renzong Hu, Jie Cui, Jun Liu, Jiangwen Liu, Yao Zhang, Min Zhu. Adding Metal Carbides to Suppress the Crystalline Li15Si4 Formation: A Route toward Cycling Durable Si-Based Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (42) , 38727-38736. https://doi.org/10.1021/acsami.9b13024
    37. Lilach Stram, Yana Miroshnikov, David Zitoun. Lithiation Kinetics in Silicon/Mn3O4 Core–Shell Nanoparticles Anodes for Li-Ion Battery. Chemistry of Materials 2019, 31 (20) , 8320-8327. https://doi.org/10.1021/acs.chemmater.9b01470
    38. Svenja Benning, Chunguang Chen, Rüdiger-A. Eichel, Peter H. L. Notten, Florian Hausen. Direct Observation of SEI Formation and Lithiation in Thin-Film Silicon Electrodes via in Situ Electrochemical Atomic Force Microscopy. ACS Applied Energy Materials 2019, 2 (9) , 6761-6767. https://doi.org/10.1021/acsaem.9b01222
    39. Annica I. Freytag, Allen D. Pauric, Sergey A. Krachkovskiy, Gillian R. Goward. In Situ Magic-Angle Spinning 7Li NMR Analysis of a Full Electrochemical Lithium-Ion Battery Using a Jelly Roll Cell Design. Journal of the American Chemical Society 2019, 141 (35) , 13758-13761. https://doi.org/10.1021/jacs.9b06885
    40. Binghong Han, Chen Liao, Fulya Dogan, Stephen E. Trask, Saul H. Lapidus, John T. Vaughey, Baris Key. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li–M–Si Ternaries (M = Mg, Zn, Al, Ca). ACS Applied Materials & Interfaces 2019, 11 (33) , 29780-29790. https://doi.org/10.1021/acsami.9b07270
    41. Ya-Hui Fang, Si-Cong Ma, Zhi-Pan Liu. 3-D Tunnel TiO2 Crystal Phase as a Fast Charging Lithium Battery Anode from Stochastic Surface Walking-Based Material Screening. The Journal of Physical Chemistry C 2019, 123 (32) , 19347-19353. https://doi.org/10.1021/acs.jpcc.9b04604
    42. Donal P. Finegan, Antonis Vamvakeros, Lei Cao, Chun Tan, Thomas M. M. Heenan, Sohrab R. Daemi, Simon D. M. Jacques, Andrew M. Beale, Marco Di Michiel, Kandler Smith, Dan J. L. Brett, Paul R. Shearing, Chunmei Ban. Spatially Resolving Lithiation in Silicon–Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography. Nano Letters 2019, 19 (6) , 3811-3820. https://doi.org/10.1021/acs.nanolett.9b00955
    43. Annica I. Freytag, Allen D. Pauric, Meng Jiang, Gillian R. Goward. 7Li and 29Si NMR Enabled by High-Density Cellulose-Based Electrodes in the Lithiation Process in Silicon and Silicon Monoxide Anodes. The Journal of Physical Chemistry C 2019, 123 (18) , 11362-11368. https://doi.org/10.1021/acs.jpcc.8b11963
    44. Keitaro Kitada, Oliver Pecher, Pieter C. M. M. Magusin, Matthias F. Groh, Robert S. Weatherup, Clare P. Grey. Unraveling the Reaction Mechanisms of SiO Anodes for Li-Ion Batteries by Combining in Situ 7Li and ex Situ 7Li/29Si Solid-State NMR Spectroscopy. Journal of the American Chemical Society 2019, 141 (17) , 7014-7027. https://doi.org/10.1021/jacs.9b01589
    45. Yasuhiro Domi, Hiroyuki Usui, Kazuki Yamaguchi, Shuhei Yodoya, Hiroki Sakaguchi. Silicon-Based Anodes with Long Cycle Life for Lithium-Ion Batteries Achieved by Significant Suppression of Their Volume Expansion in Ionic-Liquid Electrolyte. ACS Applied Materials & Interfaces 2019, 11 (3) , 2950-2960. https://doi.org/10.1021/acsami.8b17123
    46. Mingchao Wang, Jodie A. Yuwono, Vallabh Vasudevan, Nick Birbilis, Nikhil V. Medhekar. Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteries. ACS Applied Materials & Interfaces 2019, 11 (1) , 774-783. https://doi.org/10.1021/acsami.8b17273
    47. Yuki Kanzaki, Satoshi Mitani, Daisuke Shiomi, Yasushi Morita, Takeji Takui, Kazunobu Sato. Microscopic Behavior of Active Materials Inside a TCNQ-Based Lithium-Ion Rechargeable Battery by in Situ 2D ESR Measurements. ACS Applied Materials & Interfaces 2018, 10 (50) , 43631-43640. https://doi.org/10.1021/acsami.8b14967
    48. Chao Li, Ming Shen, Xiaobing Lou, Bingwen Hu. Unraveling the Redox Couples of VIII/VIV Mixed-Valent Na3V2(PO4)2O1.6F1.4 Cathode by Parallel-Mode EPR and In Situ/Ex Situ NMR. The Journal of Physical Chemistry C 2018, 122 (48) , 27224-27232. https://doi.org/10.1021/acs.jpcc.8b09151
    49. F. Jeschull, J. Maibach, R. Félix, M. Wohlfahrt-Mehrens, K. Edström, M. Memm, D. Brandell. Solid Electrolyte Interphase (SEI) of Water-Processed Graphite Electrodes Examined in a 65 mAh Full Cell Configuration. ACS Applied Energy Materials 2018, 1 (10) , 5176-5188. https://doi.org/10.1021/acsaem.8b00608
    50. Wei Xu, Yige Zhou, Xiaobo Ji. Lithium-Ion-Transfer Kinetics of Single LiFePO4 Particles. The Journal of Physical Chemistry Letters 2018, 9 (17) , 4976-4980. https://doi.org/10.1021/acs.jpclett.8b02315
    51. Gaël Coquil, Bernard Fraisse, Nicolas Dupré, Laure Monconduit. Versatile Si/P System as Efficient Anode for Lithium and Sodium Batteries: Understanding of an Original Electrochemical Mechanism by a Full XRD-NMR Study. ACS Applied Energy Materials 2018, 1 (8) , 3778-3789. https://doi.org/10.1021/acsaem.8b00567
    52. Volker L. Deringer, Noam Bernstein, Albert P. Bartók, Matthew J. Cliffe, Rachel N. Kerber, Lauren E. Marbella, Clare P. Grey, Stephen R. Elliott, Gábor Csányi. Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics. The Journal of Physical Chemistry Letters 2018, 9 (11) , 2879-2885. https://doi.org/10.1021/acs.jpclett.8b00902
    53. Rose E. Ruther, Kevin A. Hays, Seong Jin An, Jianlin Li, David L. Wood, Jagjit Nanda. Chemical Evolution in Silicon–Graphite Composite Anodes Investigated by Vibrational Spectroscopy. ACS Applied Materials & Interfaces 2018, 10 (22) , 18641-18649. https://doi.org/10.1021/acsami.8b02197
    54. Andrey Lyalin, Vladimir G. Kuznetsov, Akira Nakayama, Igor V. Abarenkov, Ilya I. Tupitsyn, Igor E. Gabis, Kohei Uosaki, Tetsuya Taketsugu. Lithiation Products of a Silicon Anode Based on Soft X-ray Emission Spectroscopy: A Theoretical Study. The Journal of Physical Chemistry C 2018, 122 (20) , 11096-11108. https://doi.org/10.1021/acs.jpcc.8b00489
    55. Alexander Hoefling, Dan Thien Nguyen, Pouya Partovi-Azar, Daniel Sebastiani, Patrick Theato, Seung-Wan Song, Young Joo Lee. Mechanism for the Stable Performance of Sulfur-Copolymer Cathode in Lithium–Sulfur Battery Studied by Solid-State NMR Spectroscopy. Chemistry of Materials 2018, 30 (9) , 2915-2923. https://doi.org/10.1021/acs.chemmater.7b05105
    56. Yana Miroshnikov, Junfeng Yang, Victor Shokhen, Maria Alesker, Gregory Gershinsky, Alexander Kraytsberg, Yair Ein-Eli, David Zitoun. Operando Micro-Raman Study Revealing Enhanced Connectivity of Plasmonic Metals Decorated Silicon Anodes for Lithium-Ion Batteries. ACS Applied Energy Materials 2018, 1 (3) , 1096-1105. https://doi.org/10.1021/acsaem.7b00220
    57. Ruirui Fu, Ping Nie, Minyuan Shi, Jiang Wang, Jiangmin Jiang, Yadi Zhang, Yuting Wu, Shan Fang, Hui Dou, Xiaogang Zhang. Rigid Polyimide Buffering Layer Enabling Silicon Nanoparticles Prolonged Cycling Life for Lithium Storage. ACS Applied Energy Materials 2018, 1 (3) , 948-955. https://doi.org/10.1021/acsaem.7b00344
    58. Romy Reinhold, Ulrich Stoeck, Hans-Joachim Grafe, Daria Mikhailova, Tony Jaumann, Steffen Oswald, Stefan Kaskel, and Lars Giebeler . Surface and Electrochemical Studies on Silicon Diphosphide as Easy-to-Handle Anode Material for Lithium-Based Batteries—the Phosphorus Path. ACS Applied Materials & Interfaces 2018, 10 (8) , 7096-7106. https://doi.org/10.1021/acsami.7b18697
    59. Fredrik Lindgren, David Rehnlund, Ida Källquist, Leif Nyholm, Kristina Edström, Maria Hahlin, and Julia Maibach . Breaking Down a Complex System: Interpreting PES Peak Positions for Cycled Li-Ion Battery Electrodes. The Journal of Physical Chemistry C 2017, 121 (49) , 27303-27312. https://doi.org/10.1021/acs.jpcc.7b08923
    60. Cyril Marino, Athmane Boulaoued, Julien Fullenwarth, David Maurin, Nicolas Louvain, Jean-Louis Bantignies, Lorenzo Stievano, and Laure Monconduit . Solvation and Dynamics of Lithium Ions in Carbonate-Based Electrolytes during Cycling Followed by Operando Infrared Spectroscopy: The Example of NiSb2, a Typical Negative Conversion-Type Electrode Material for Lithium Batteries. The Journal of Physical Chemistry C 2017, 121 (48) , 26598-26606. https://doi.org/10.1021/acs.jpcc.7b06685
    61. Gal Grinbom, Merav Muallem, Anat Itzhak, David Zitoun, and Gilbert D. Nessim . Synthesis of Carbon Nanotubes Networks Grown on Silicon Nanoparticles as Li-Ion Anodes. The Journal of Physical Chemistry C 2017, 121 (46) , 25632-25640. https://doi.org/10.1021/acs.jpcc.7b05709
    62. Feng Lin, Yijin Liu, Xiqian Yu, Lei Cheng, Andrej Singer, Oleg G. Shpyrko, Huolin L. Xin, Nobumichi Tamura, Chixia Tian, Tsu-Chien Weng, Xiao-Qing Yang, Ying Shirley Meng, Dennis Nordlund, Wanli Yang, and Marca M. Doeff . Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Chemical Reviews 2017, 117 (21) , 13123-13186. https://doi.org/10.1021/acs.chemrev.7b00007
    63. Yanting Jin, Nis-Julian H. Kneusels, Pieter C. M. M. Magusin, Gunwoo Kim, Elizabeth Castillo-Martínez, Lauren E. Marbella, Rachel N. Kerber, Duncan J. Howe, Subhradip Paul, Tao Liu, and Clare P. Grey . Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate. Journal of the American Chemical Society 2017, 139 (42) , 14992-15004. https://doi.org/10.1021/jacs.7b06834
    64. Xiang Li, Mingxue Tang, Xuyong Feng, Ivan Hung, Alyssa Rose, Po-Hsiu Chien, Zhehong Gan, and Yan-Yan Hu . Lithiation and Delithiation Dynamics of Different Li Sites in Li-Rich Battery Cathodes Studied by Operando Nuclear Magnetic Resonance. Chemistry of Materials 2017, 29 (19) , 8282-8291. https://doi.org/10.1021/acs.chemmater.7b02589
    65. Kwang Jin Kim, James Wortman, Sung-Yup Kim, and Yue Qi . Atomistic Simulation Derived Insight on the Irreversible Structural Changes of Si Electrode during Fast and Slow Delithiation. Nano Letters 2017, 17 (7) , 4330-4338. https://doi.org/10.1021/acs.nanolett.7b01389
    66. Takahiro Mochizuki, Shoko Aoki, Tatsuo Horiba, Martin Schulz-Dobrick, Zhen-Ji Han, Sayuri Fukuyama, Hiroshi Oji, Satoshi Yasuno, and Shinichi Komaba . “Natto” Binder of Poly-γ-glutamate Enabling to Enhance Silicon/Graphite Composite Electrode Performance for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2017, 5 (7) , 6343-6355. https://doi.org/10.1021/acssuschemeng.7b01798
    67. Sarah Frisco, Danny X. Liu, Arjun Kumar, Jay F. Whitacre, Corey T. Love, Karen E. Swider-Lyons, and Shawn Litster . Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography. ACS Applied Materials & Interfaces 2017, 9 (22) , 18748-18757. https://doi.org/10.1021/acsami.7b03003
    68. ByungDae Son, IlWon Seong, JunKyu Lee, JooHyun Shin, Heon Lee, and WooYoung Yoon . Electrochemically Induced Shape-Memory Behavior of Si Nanopillar-Patterned Electrode for Li Ion Batteries. The Journal of Physical Chemistry Letters 2017, 8 (9) , 2100-2106. https://doi.org/10.1021/acs.jpclett.7b00590
    69. Chuan Wan, Suochang Xu, Mary Y. Hu, Ruiguo Cao, Jiangfeng Qian, Zhaohai Qin, Jun Liu, Karl T. Mueller, Ji-Guang Zhang, and Jian Zhi Hu . Multinuclear NMR Study of the Solid Electrolyte Interface Formed in Lithium Metal Batteries. ACS Applied Materials & Interfaces 2017, 9 (17) , 14741-14748. https://doi.org/10.1021/acsami.6b15383
    70. Hans Wolfgang Spiess . 50th Anniversary Perspective: The Importance of NMR Spectroscopy to Macromolecular Science. Macromolecules 2017, 50 (5) , 1761-1777. https://doi.org/10.1021/acs.macromol.6b02736
    71. Han Gao, Lisong Xiao, Ingo Plümel, Gui-Liang Xu, Yang Ren, Xiaobing Zuo, Yuzi Liu, Christof Schulz, Hartmut Wiggers, Khalil Amine, and Zonghai Chen . Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries. Nano Letters 2017, 17 (3) , 1512-1519. https://doi.org/10.1021/acs.nanolett.6b04551
    72. Seung Jong Lee, Hye Jin Kim, Tae Hoon Hwang, Sunghun Choi, Sung Hyeon Park, Erhan Deniz, Dae Soo Jung, and Jang Wook Choi . Delicate Structural Control of Si–SiOx–C Composite via High-Speed Spray Pyrolysis for Li-Ion Battery Anodes. Nano Letters 2017, 17 (3) , 1870-1876. https://doi.org/10.1021/acs.nanolett.6b05191
    73. Hanlei Zhang, Khim Karki, Yiqing Huang, M. Stanley Whittingham, Eric A. Stach, and Guangwen Zhou . Atomic Insight into the Layered/Spinel Phase Transformation in Charged LiNi0.80Co0.15Al0.05O2 Cathode Particles. The Journal of Physical Chemistry C 2017, 121 (3) , 1421-1430. https://doi.org/10.1021/acs.jpcc.6b10220
    74. Oliver Pecher, Javier Carretero-González, Kent J. Griffith, and Clare P. Grey . Materials’ Methods: NMR in Battery Research. Chemistry of Materials 2017, 29 (1) , 213-242. https://doi.org/10.1021/acs.chemmater.6b03183
    75. Chuntian Cao, Hans-Georg Steinrück, Badri Shyam, Kevin H. Stone, and Michael F. Toney . In Situ Study of Silicon Electrode Lithiation with X-ray Reflectivity. Nano Letters 2016, 16 (12) , 7394-7401. https://doi.org/10.1021/acs.nanolett.6b02926
    76. Tao Chen, Qinglin Zhang, Jie Pan, Jiagang Xu, Yiyang Liu, Mohanad Al-Shroofy, and Yang-Tse Cheng . Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (47) , 32341-32348. https://doi.org/10.1021/acsami.6b11500
    77. Hui Zhou, Ke An, Srikanth Allu, Sreekanth Pannala, Jianlin Li, Hassina Z. Bilheux, Surendra K. Martha, and Jagjit Nanda . Probing Multiscale Transport and Inhomogeneity in a Lithium-Ion Pouch Cell Using In Situ Neutron Methods. ACS Energy Letters 2016, 1 (5) , 981-986. https://doi.org/10.1021/acsenergylett.6b00353
    78. Alison L. Michan, Giorgio Divitini, Andrew J. Pell, Michal Leskes, Caterina Ducati, and Clare P. Grey . Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes. Journal of the American Chemical Society 2016, 138 (25) , 7918-7931. https://doi.org/10.1021/jacs.6b02882
    79. Hyuk-Tae Kwon, Churl Kyoung Lee, Ki-Joon Jeon, and Cheol-Min Park . Silicon Diphosphide: A Si-Based Three-Dimensional Crystalline Framework as a High-Performance Li-Ion Battery Anode. ACS Nano 2016, 10 (6) , 5701-5709. https://doi.org/10.1021/acsnano.6b02727
    80. N. Dupré, P. Moreau, E. De Vito, L. Quazuguel, M. Boniface, A. Bordes, C. Rudisch, P. Bayle-Guillemaud, and D. Guyomard . Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration. Chemistry of Materials 2016, 28 (8) , 2557-2572. https://doi.org/10.1021/acs.chemmater.5b04461
    81. Arnaud Bordes, Eric De Vito, Cédric Haon, Adrien Boulineau, Alexandre Montani, and Philippe Marcus . Multiscale Investigation of Silicon Anode Li Insertion Mechanisms by Time-of-Flight Secondary Ion Mass Spectrometer Imaging Performed on an In Situ Focused Ion Beam Cross Section. Chemistry of Materials 2016, 28 (5) , 1566-1573. https://doi.org/10.1021/acs.chemmater.6b00155
    82. Phoebe K. Allan, John M. Griffin, Ali Darwiche, Olaf J. Borkiewicz, Kamila M. Wiaderek, Karena W. Chapman, Andrew J. Morris, Peter J. Chupas, Laure Monconduit, and Clare P. Grey . Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy. Journal of the American Chemical Society 2016, 138 (7) , 2352-2365. https://doi.org/10.1021/jacs.5b13273
    83. Alison L. Michan, Michal Leskes, and Clare P. Grey . Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products. Chemistry of Materials 2016, 28 (1) , 385-398. https://doi.org/10.1021/acs.chemmater.5b04408
    84. Arnaud Bordes, Eric De Vito, Cédric Haon, Christophe Secouard, Alexandre Montani, and Philippe Marcus . Investigation of Lithium Insertion Mechanisms of a Thin-Film Si Electrode by Coupling Time-of-Flight Secondary-Ion Mass Spectrometry, X-ray Photoelectron Spectroscopy, and Focused-Ion-Beam/SEM. ACS Applied Materials & Interfaces 2015, 7 (50) , 27853-27862. https://doi.org/10.1021/acsami.5b09261
    85. Kwang Jin Kim and Yue Qi . Vacancies in Si Can Improve the Concentration-Dependent Lithiation Rate: Molecular Dynamics Studies of Lithiation Dynamics of Si Electrodes. The Journal of Physical Chemistry C 2015, 119 (43) , 24265-24275. https://doi.org/10.1021/acs.jpcc.5b06953
    86. Yanjing Chen, Mengqing Xu, Yuzi Zhang, Yue Pan, Brett L. Lucht, and Arijit Bose . All-Aqueous Directed Assembly Strategy for Forming High-Capacity, Stable Silicon/Carbon Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (38) , 21391-21397. https://doi.org/10.1021/acsami.5b06144
    87. Hee Jung Chang, Nicole M. Trease, Andrew J. Ilott, Dongli Zeng, Lin-Shu Du, Alexej Jerschow, and Clare P. Grey . Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6Li/7Li NMR and SEM. The Journal of Physical Chemistry C 2015, 119 (29) , 16443-16451. https://doi.org/10.1021/acs.jpcc.5b03396
    88. Ilya A. Shkrob, James F. Wishart, and Daniel P. Abraham . What Makes Fluoroethylene Carbonate Different?. The Journal of Physical Chemistry C 2015, 119 (27) , 14954-14964. https://doi.org/10.1021/acs.jpcc.5b03591
    89. Keiji Shimoda, Miwa Murakami, Hideyuki Komatsu, Hajime Arai, Yoshiharu Uchimoto, and Zempachi Ogumi . Delithiation/Lithiation Behavior of LiNi0.5Mn1.5O4 Studied by In Situ and Ex Situ 6,7Li NMR Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (24) , 13472-13480. https://doi.org/10.1021/acs.jpcc.5b03273
    90. Sung Chul Jung and Young-Kyu Han . Thermodynamic and Kinetic Origins of Lithiation-Induced Amorphous-to-Crystalline Phase Transition of Phosphorus. The Journal of Physical Chemistry C 2015, 119 (22) , 12130-12137. https://doi.org/10.1021/acs.jpcc.5b02095
    91. Andreas Dunst, Michael Sternad, Viktor Epp, and Martin Wilkening . Fast Li+ Self-Diffusion in Amorphous Li–Si Electrochemically Prepared from Semiconductor Grade, Monocrystalline Silicon: Insights from Spin-Locking Nuclear Magnetic Relaxometry. The Journal of Physical Chemistry C 2015, 119 (22) , 12183-12192. https://doi.org/10.1021/acs.jpcc.5b02490
    92. Tatyana Polenova, Rupal Gupta, and Amir Goldbourt . Magic Angle Spinning NMR Spectroscopy: A Versatile Technique for Structural and Dynamic Analysis of Solid-Phase Systems. Analytical Chemistry 2015, 87 (11) , 5458-5469. https://doi.org/10.1021/ac504288u
    93. Wei Tang, Yanpeng Liu, Chengxin Peng, Mary Y. Hu, Xuchu Deng, Ming Lin, Jian Zhi Hu, and Kian Ping Loh . Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System. Journal of the American Chemical Society 2015, 137 (7) , 2600-2607. https://doi.org/10.1021/ja5116259
    94. Hyun Jung, Minho Lee, Byung Chul Yeo, Kwang-Ryeol Lee, and Sang Soo Han . Atomistic Observation of the Lithiation and Delithiation Behaviors of Silicon Nanowires Using Reactive Molecular Dynamics Simulations. The Journal of Physical Chemistry C 2015, 119 (7) , 3447-3455. https://doi.org/10.1021/jp5094756
    95. Hyeyoung Jung, Phoebe K. Allan, Yan-Yan Hu, Olaf J. Borkiewicz, Xiao-Liang Wang, Wei-Qiang Han, Lin-Shu Du, Chris J. Pickard, Peter J. Chupas, Karena W. Chapman, Andrew J. Morris, and Clare P. Grey . Elucidation of the Local and Long-Range Structural Changes that Occur in Germanium Anodes in Lithium-Ion Batteries. Chemistry of Materials 2015, 27 (3) , 1031-1041. https://doi.org/10.1021/cm504312x
    96. Elodie Salager, Vincent Sarou-Kanian, M. Sathiya, Mingxue Tang, Jean-Bernard Leriche, Philippe Melin, Zhongli Wang, Hervé Vezin, Catherine Bessada, Michael Deschamps, and Jean-Marie Tarascon . Solid-State NMR of the Family of Positive Electrode Materials Li2Ru1–ySnyO3 for Lithium-Ion Batteries. Chemistry of Materials 2014, 26 (24) , 7009-7019. https://doi.org/10.1021/cm503280s
    97. Alexander Kuhn, Sven Dupke, Miriam Kunze, Sreeraj Puravankara, Thorsten Langer, Rainer Pöttgen, Martin Winter, Hans-Dieter Wiemhöfer, Hellmut Eckert, and Paul Heitjans . Insight into the Li Ion Dynamics in Li12Si7: Combining Field Gradient Nuclear Magnetic Resonance, One- and Two-Dimensional Magic-Angle Spinning Nuclear Magnetic Resonance, and Nuclear Magnetic Resonance Relaxometry. The Journal of Physical Chemistry C 2014, 118 (49) , 28350-28360. https://doi.org/10.1021/jp505386u
    98. Kjell W. Schroder, Anthony G. Dylla, Stephen J. Harris, Lauren J. Webb, and Keith J. Stevenson . Role of Surface Oxides in the Formation of Solid–Electrolyte Interphases at Silicon Electrodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2014, 6 (23) , 21510-21524. https://doi.org/10.1021/am506517j
    99. M. N. Obrovac and V. L. Chevrier . Alloy Negative Electrodes for Li-Ion Batteries. Chemical Reviews 2014, 114 (23) , 11444-11502. https://doi.org/10.1021/cr500207g
    100. Michael Zeilinger, Laura-Alice Jantke, Lavinia M. Scherf, Florian J. Kiefer, Gero Neubüser, Lorenz Kienle, Antti J. Karttunen, Sumit Konar, Ulrich Häussermann, and Thomas F. Fässler . Alkali Metals Extraction Reactions with the Silicides Li15Si4 and Li3NaSi6: Amorphous Si versus allo-Si. Chemistry of Materials 2014, 26 (22) , 6603-6612. https://doi.org/10.1021/cm503371e
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect