ACS Publications. Most Trusted. Most Cited. Most Read
Use of a Renewable and Degradable Monomer to Study the Temperature-Dependent Olefin Isomerization during ADMET Polymerizations
My Activity

Figure 1Loading Img
    Communication

    Use of a Renewable and Degradable Monomer to Study the Temperature-Dependent Olefin Isomerization during ADMET Polymerizations
    Click to copy article linkArticle link copied!

    View Author Information
    University of Applied Sciences Oldenburg/Ostfriesland/Wilhelmshaven, Constantiaplatz 4, 26723 Emden, Germany
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 5, 1664–1665
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja808679w
    Published January 21, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A detailed study of temperature, catalyst, and polymerization condition dependent isomerization side reactions occurring during ADMET polymerizations revealed important parameters for the design of defined polymers via this technique.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures, analytic data, GPC traces, double bond isomerization mechanism. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 119 publications.

    1. Gavin J. Giardino, Jia Niu. Metathesis Depolymerization of a Fluorogenic Self-Immolative Polymer. ACS Macro Letters 2025, 14 (5) , 558-563. https://doi.org/10.1021/acsmacrolett.5c00192
    2. Muhammad Kamran, Andrew Kay, Matthew G. Davidson. Facile Synthesis of a Novel Furanic Monomer and Its ADMET Polymerization toward Fully Renewable Functional Polymers. ACS Sustainable Chemistry & Engineering 2024, 12 (37) , 13798-13809. https://doi.org/10.1021/acssuschemeng.4c03498
    3. Daniel Döpping, Johann Kern, Nicole Rotter, Audrey Llevot, Hatice Mutlu. Biogenic Polymeric Materials from Lignocellulosic Biomass-Derivable 4-Pentenoic Acid and Isosorbide for Potential Biomedical Applications. ACS Sustainable Chemistry & Engineering 2024, 12 (36) , 13401-13408. https://doi.org/10.1021/acssuschemeng.4c03690
    4. Mohamed Mehawed Abdellatif, Kotohiro Nomura. Synthesis of Polyesters Containing Long Aliphatic Methylene Units by ADMET Polymerization and Synthesis of ABA-Triblock Copolymers by One-Pot End Modification and Subsequent Living Ring-Opening Polymerization. ACS Omega 2024, 9 (8) , 9109-9122. https://doi.org/10.1021/acsomega.3c07858
    5. Mika Kojima, Xiuxiu Wang, Lance O’Hari P. Go, Ryoji Makino, Yuichi Matsumoto, Daisuke Shimoyama, Mohamed Mehawed Abdellatif, Joji Kadota, Seiji Higashi, Hiroshi Hirano, Kotohiro Nomura. Synthesis of High Molecular Weight Biobased Aliphatic Polyesters Exhibiting Tensile Properties Beyond Polyethylene. ACS Macro Letters 2023, 12 (10) , 1403-1408. https://doi.org/10.1021/acsmacrolett.3c00481
    6. Xiuxiu Wang, Weizhen Zhao, Kotohiro Nomura. Synthesis of High-Molecular-Weight Biobased Aliphatic Polyesters by Acyclic Diene Metathesis Polymerization in Ionic Liquids. ACS Omega 2023, 8 (7) , 7222-7233. https://doi.org/10.1021/acsomega.3c00390
    7. Qin Wu, Kai-Xuan Qin, Mei-Xin Gan, Jing Xu, Zi-Long Li, Zi-Chen Li. Recyclable Biomass-Derived Polyethylene-Like Materials as Functional Coatings for Commercial Fabrics: Toward Upcycling of Waste Textiles. ACS Sustainable Chemistry & Engineering 2022, 10 (51) , 17187-17197. https://doi.org/10.1021/acssuschemeng.2c05080
    8. Zhiyuan Ma, Yuwen Chen, Weiwei Zuo, Meifang Zhu. Synthesis and Fabrication of a Betulin-Containing Polyolefin Electrospun Fibrous Mat for Antibacterial Applications. ACS Biomaterials Science & Engineering 2022, 8 (12) , 5110-5118. https://doi.org/10.1021/acsbiomaterials.2c01092
    9. Swetha Sudhakaran, S. M. A. Hakim Siddiki, Boonyarach Kitiyanan, Kotohiro Nomura. CaO Catalyzed Transesterification of Ethyl 10-Undecenoate as a Model Reaction for Efficient Conversion of Plant Oils and Their Application to Depolymerization of Aliphatic Polyesters. ACS Sustainable Chemistry & Engineering 2022, 10 (38) , 12864-12872. https://doi.org/10.1021/acssuschemeng.2c04287
    10. Kotohiro Nomura, Tomoyuki Aoki, Yuriko Ohki, Soichi Kikkawa, Seiji Yamazoe. Transesterification of Methyl-10-undecenoate and Poly(ethylene adipate) Catalyzed by (Cyclopentadienyl)titanium Trichlorides as Model Chemical Conversions of Plant Oils and Acid-, Base-Free Chemical Recycling of Aliphatic Polyesters. ACS Sustainable Chemistry & Engineering 2022, 10 (38) , 12504-12509. https://doi.org/10.1021/acssuschemeng.2c04877
    11. Swetha Sudhakaran, Ayako Taketoshi, S. M. A. Hakim Siddiki, Toru Murayama, Kotohiro Nomura. Transesterification of Ethyl-10-undecenoate Using a Cu-Deposited V2O5 Catalyst as a Model Reaction for Efficient Conversion of Plant Oils to Monomers and Fine Chemicals. ACS Omega 2022, 7 (5) , 4372-4380. https://doi.org/10.1021/acsomega.1c06157
    12. Marco Piccini, Jasmine Lightfoot, Bernardo Castro Dominguez, Antoine Buchard. Xylose-Based Polyethers and Polyesters Via ADMET Polymerization toward Polyethylene-Like Materials. ACS Applied Polymer Materials 2021, 3 (11) , 5870-5881. https://doi.org/10.1021/acsapm.1c01095
    13. Kotohiro Nomura, Nor Wahida Binti Awang. Synthesis of Bio-Based Aliphatic Polyesters from Plant Oils by Efficient Molecular Catalysis: A Selected Survey from Recent Reports. ACS Sustainable Chemistry & Engineering 2021, 9 (16) , 5486-5505. https://doi.org/10.1021/acssuschemeng.1c00493
    14. Kotohiro Nomura, Permpoon Chaijaroen, Mohamed Mehawed Abdellatif. Synthesis of Biobased Long-Chain Polyesters by Acyclic Diene Metathesis Polymerization and Tandem Hydrogenation and Depolymerization with Ethylene. ACS Omega 2020, 5 (29) , 18301-18312. https://doi.org/10.1021/acsomega.0c01965
    15. Florian Stempfle, Patrick Ortmann, and Stefan Mecking . Long-Chain Aliphatic Polymers To Bridge the Gap between Semicrystalline Polyolefins and Traditional Polycondensates. Chemical Reviews 2016, 116 (7) , 4597-4641. https://doi.org/10.1021/acs.chemrev.5b00705
    16. William C. Shearouse, Leon M. Lillie, Theresa M. Reineke, and William B. Tolman . Sustainable Polyesters Derived from Glucose and Castor Oil: Building Block Structure Impacts Properties. ACS Macro Letters 2015, 4 (3) , 284-288. https://doi.org/10.1021/acsmacrolett.5b00099
    17. Patrick Ortmann, Tobias A. Lemke, and Stefan Mecking . Long-Spaced Polyamides: Elucidating the Gap between Polyethylene Crystallinity and Hydrogen Bonding. Macromolecules 2015, 48 (5) , 1463-1472. https://doi.org/10.1021/acs.macromol.5b00060
    18. An Lv, Zi-Long Li, Fu-Sheng Du, and Zi-Chen Li . Synthesis, Functionalization, and Controlled Degradation of High Molecular Weight Polyester from Itaconic Acid via ADMET Polymerization. Macromolecules 2014, 47 (22) , 7707-7716. https://doi.org/10.1021/ma5020066
    19. Zi-Long Li, An Lv, Fu-Sheng Du, and Zi-Chen Li . Intrachain Cyclization via Postmodification of the Internal Alkenes of Periodic ADMET Copolymers: The Sequence Matters. Macromolecules 2014, 47 (17) , 5942-5951. https://doi.org/10.1021/ma5013732
    20. Jian Hong . Lightweight Materials Prepared from Vegetable Oils and Their Derivatives. 2014, 53-67. https://doi.org/10.1021/bk-2014-1175.ch004
    21. Kejian Yao and Chuanbing Tang . Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules 2013, 46 (5) , 1689-1712. https://doi.org/10.1021/ma3019574
    22. Shaojun Li, Laziz Bouzidi, and Suresh S. Narine . Synthesis and Physical Properties of Triacylglycerol Oligomers: Examining the Physical Functionality Potential of Self-Metathesized Highly Unsaturated Vegetable Oils. Industrial & Engineering Chemistry Research 2013, 52 (6) , 2209-2219. https://doi.org/10.1021/ie302921h
    23. Zi-Long Li, Lei Li, Xin-Xing Deng, Li-Jing Zhang, Bo-Tao Dong, Fu-Sheng Du, and Zi-Chen Li . Periodic Vinyl Copolymers Containing γ-Butyrolactone via ADMET Polymerization of Designed Diene Monomers with Built-in Sequence. Macromolecules 2012, 45 (11) , 4590-4598. https://doi.org/10.1021/ma3003483
    24. Bora Inci, Ingo Lieberwirth, Werner Steffen, Markus Mezger, Robert Graf, Katharina Landfester, and Kenneth B. Wagener . Decreasing the Alkyl Branch Frequency in Precision Polyethylene: Effect of Alkyl Branch Size on Nanoscale Morphology. Macromolecules 2012, 45 (8) , 3367-3376. https://doi.org/10.1021/ma3002577
    25. Hatice Mutlu, Andrei N. Parvulescu, Pieter C. A. Bruijnincx, Bert M. Weckhuysen, and Michael A. R. Meier . On the Polymerization Behavior of Telomers: Metathesis versus Thiol–Ene Chemistry. Macromolecules 2012, 45 (4) , 1866-1878. https://doi.org/10.1021/ma2026572
    26. Inish O’Doherty, Joshua J. Yim, Eric A. Schmelz, and Frank C. Schroeder . Synthesis of Caeliferins, Elicitors of Plant Immune Responses: Accessing Lipophilic Natural Products via Cross Metathesis. Organic Letters 2011, 13 (21) , 5900-5903. https://doi.org/10.1021/ol202541b
    27. Bora Inci and Kenneth B. Wagener . Decreasing the Alkyl Branch Frequency in Precision Polyethylene: Pushing the Limits toward Longer Run Lengths. Journal of the American Chemical Society 2011, 133 (31) , 11872-11875. https://doi.org/10.1021/ja2040046
    28. Liang Ding, Meiran Xie, Dan Yang, and Chunmei Song . Efficient Synthesis of Long-Chain Highly Branched Polymers via One-Pot Tandem Ring-Opening Metathesis Polymerization and Acyclic Diene Metathesis Polymerization. Macromolecules 2010, 43 (24) , 10336-10342. https://doi.org/10.1021/ma1020903
    29. Cristina Lluch, Joan C Ronda, Marina Galià, Gerard Lligadas and Virginia Cádiz. Rapid Approach to Biobased Telechelics through Two One-Pot Thiol−Ene Click Reactions. Biomacromolecules 2010, 11 (6) , 1646-1653. https://doi.org/10.1021/bm100290n
    30. Ryan West, Candace Panagabko and Jeffrey Atkinson. Synthesis and Characterization of BODIPY-α-Tocopherol: A Fluorescent Form of Vitamin E. The Journal of Organic Chemistry 2010, 75 (9) , 2883-2892. https://doi.org/10.1021/jo100095n
    31. Yuanting Dai, Qiang Xia, Zijun Mao, Junjie Mu, Feng Peng, Xiang Hao. Sustainable bioplastics build on d -xylose cores: from backup to the center stage. Green Chemistry 2025, 27 (17) , 4464-4488. https://doi.org/10.1039/D4GC06578F
    32. Mohamed Mehawed Abdellatif, Kotohiro Nomura. Acyclic Diene Metathesis Polymerization Approach for Synthesis of Biobased Polyesters: Summary of Recent Reports. European Journal of Lipid Science and Technology 2025, 41 https://doi.org/10.1002/ejlt.70009
    33. Raouhi Sanaa, Daniel Portinha, Raouf Medimagh, Etienne Fleury. Synthesis of linear and crosslinked isosorbide-containing poly(β-thioether ester) via amine-catalyzed thiol-Michael addition. European Polymer Journal 2024, 220 , 113498. https://doi.org/10.1016/j.eurpolymj.2024.113498
    34. A. S. Antonova, F. I. Zubkov. Hoveyda-Grubbs type complexes with ruthenium-pnictogen/halcogen/halogen coordination bond. Synthesis, catalytic activity, applications.. Russian Chemical Reviews 2024, 93 (8) , RCR5132. https://doi.org/10.59761/RCR5132
    35. Chutikan Nakornkhet, Sirawan Kamavichanurat, Wasan Joopor, Pimpa Hormnirun. Controlled ring-opening (co)polymerization of macrolactones: a pursuit for efficient aluminum-based catalysts. Polymer Chemistry 2024, 15 (16) , 1660-1679. https://doi.org/10.1039/D4PY00003J
    36. Yuichi Matsumoto, Mohamed Mehawed Abdellatif, Kotohiro Nomura. Polymer composites of biobased aliphatic polyesters with natural abundant fibers that improve the mechanical properties. Journal of Material Cycles and Waste Management 2024, 26 (2) , 679-691. https://doi.org/10.1007/s10163-023-01756-y
    37. Jimmy Mehta, Kashish Gupta, Shilpi Lavania, Prabhanshu Kumar, Vijay Chaudhary, Pallav Gupta. Inherent roadmap in synthesis and applications of sustainable materials using oil based and microbial polymers. Materials Today Sustainability 2024, 25 , 100615. https://doi.org/10.1016/j.mtsust.2023.100615
    38. Kotohiro Nomura, Nor Wahida Binti Awang. Synthesis of Bio‐based Aliphatic Polyesters from Plant Oils by Efficient Molecular Catalysis. 2024, 659-686. https://doi.org/10.1002/9781119870647.ch30
    39. Kotohiro Nomura, Xiuxiu Wang. Acyclic Diene Metathesis (ADMET) Polymerization for the Synthesis of Chemically Recyclable Bio-Based Aliphatic Polyesters. Catalysts 2024, 14 (2) , 97. https://doi.org/10.3390/catal14020097
    40. Lance O’Hari P. Go, Mohamed Mehawed Abdellatif, Ryoji Makino, Daisuke Shimoyama, Seiji Higashi, Hiroshi Hirano, Kotohiro Nomura. Synthesis of Network Biobased Aliphatic Polyesters Exhibiting Better Tensile Properties than the Linear Polymers by ADMET Polymerization in the Presence of Glycerol Tris(undec-10-enoate). Polymers 2024, 16 (4) , 468. https://doi.org/10.3390/polym16040468
    41. Taylor F. Nelson, Dario Rothauer, Michael Sander, Stefan Mecking. Degradable and Recyclable Polyesters from Multiple Chain Length Bio‐ and Waste‐Sourceable Monomers. Angewandte Chemie 2023, 135 (43) https://doi.org/10.1002/ange.202310729
    42. Taylor F. Nelson, Dario Rothauer, Michael Sander, Stefan Mecking. Degradable and Recyclable Polyesters from Multiple Chain Length Bio‐ and Waste‐Sourceable Monomers. Angewandte Chemie International Edition 2023, 62 (43) https://doi.org/10.1002/anie.202310729
    43. Xiang‐Yue Cheng, Fu‐Sheng Du, Zi‐Chen Li. Synthesis of precision poly(1,3‐bicyclo[1.1.1]pentane alkylene)s via acyclic diene metathesis polymerization. Journal of Polymer Science 2023, 61 (6) , 472-481. https://doi.org/10.1002/pol.20220635
    44. Daniel Döpping, Johann Kern, Nicole Rotter, Audrey Llevot, Patrick Theato, Hatice Mutlu. Synthesis and Characterization of Novel Isosorbide‐Based Polyester Derivatives Decorated with α ‐Acyloxy Amides. Macromolecular Chemistry and Physics 2022, 223 (13) https://doi.org/10.1002/macp.202100497
    45. Thiago O. Machado, Sebastian J. Beckers, Jochen Fischer, Claudia Sayer, Pedro H.H. de Araújo, Katharina Landfester, Frederik R. Wurm. Cellulose nanocarriers via miniemulsion allow Pathogen-Specific agrochemical delivery. Journal of Colloid and Interface Science 2021, 601 , 678-688. https://doi.org/10.1016/j.jcis.2021.05.030
    46. Mika Kojima, Mohamed Mehawed Abdellatif, Kotohiro Nomura. Synthesis of Semicrystalline Long Chain Aliphatic Polyesters by ADMET Copolymerization of Dianhydro-D-glucityl bis(undec-10-enoate) with 1,9-Decadiene and Tandem Hydrogenation. Catalysts 2021, 11 (9) , 1098. https://doi.org/10.3390/catal11091098
    47. Antonio Rizzo, Gregory I. Peterson, Atanu Bhaumik, Cheol Kang, Tae‐Lim Choi. Sugar‐Based Polymers from d ‐Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angewandte Chemie 2021, 133 (2) , 862-868. https://doi.org/10.1002/ange.202012544
    48. Antonio Rizzo, Gregory I. Peterson, Atanu Bhaumik, Cheol Kang, Tae‐Lim Choi. Sugar‐Based Polymers from d ‐Xylose: Living Cascade Polymerization, Tunable Degradation, and Small Molecule Release. Angewandte Chemie International Edition 2021, 60 (2) , 849-855. https://doi.org/10.1002/anie.202012544
    49. José Manuel Sandoval-Díaz, Francisco Javier Rivera-Gálvez, Marta Fernández-García, Carlos Federico Jasso-Gastinel. Redox initiation in semicontinuous polymerization to search for specific mechanical properties of copolymers. e-Polymers 2020, 20 (1) , 613-623. https://doi.org/10.1515/epoly-2020-0065
    50. Tobias Haider, Oksana Suraeva, Miriam L. O'Duill, Julian Mars, Markus Mezger, Ingo Lieberwirth, Frederik R. Wurm. Controlling the crystal structure of precisely spaced polyethylene-like polyphosphoesters. Polymer Chemistry 2020, 11 (20) , 3404-3415. https://doi.org/10.1039/D0PY00272K
    51. Bryan R. Moser, Karl E. Vermillion, Benetria N. Banks, Kenneth M. Doll. Renewable Aliphatic Polyesters from Fatty Dienes by Acyclic Diene Metathesis Polycondensation. Journal of the American Oil Chemists' Society 2020, 97 (5) , 517-530. https://doi.org/10.1002/aocs.12338
    52. Marco Piccini, David J. Leak, Christopher J. Chuck, Antoine Buchard. Polymers from sugars and unsaturated fatty acids: ADMET polymerisation of monomers derived from d -xylose, d -mannose and castor oil. Polymer Chemistry 2020, 11 (15) , 2681-2691. https://doi.org/10.1039/C9PY01809C
    53. Derek J. Saxon, Anna M. Luke, Hussnain Sajjad, William B. Tolman, Theresa M. Reineke. Next-generation polymers: Isosorbide as a renewable alternative. Progress in Polymer Science 2020, 101 , 101196. https://doi.org/10.1016/j.progpolymsci.2019.101196
    54. Ning Ren, Xinyuan Zhu. Synthesis of hyperbranched polyolefins and polyethylenes via ADMET of monomers bearing non-selective olefins. Polymer Chemistry 2019, 10 (45) , 6174-6182. https://doi.org/10.1039/C9PY01499C
    55. Liangbing Fu, Xuelin Sui, Alex E. Crolais, Will R. Gutekunst. Modular Approach to Degradable Acetal Polymers Using Cascade Enyne Metathesis Polymerization. Angewandte Chemie 2019, 131 (44) , 15873-15877. https://doi.org/10.1002/ange.201909172
    56. Liangbing Fu, Xuelin Sui, Alex E. Crolais, Will R. Gutekunst. Modular Approach to Degradable Acetal Polymers Using Cascade Enyne Metathesis Polymerization. Angewandte Chemie International Edition 2019, 58 (44) , 15726-15730. https://doi.org/10.1002/anie.201909172
    57. Katharina S. Wetzel, Michael A. R. Meier. Monodisperse, sequence-defined macromolecules as a tool to evaluate the limits of ring-closing metathesis. Polymer Chemistry 2019, 10 (21) , 2716-2722. https://doi.org/10.1039/C9PY00438F
    58. . Metathesis Reactions Applied to Plant Oils and Polymers Derived from the Ensuing Products. 2018, 83-108. https://doi.org/10.1002/9781119555834.ch5
    59. Yao-Feng Wang, Bao-Hua Xu, Yi-Ran Du, Suo-Jiang Zhang. Heterogeneous cyclization of sorbitol to isosorbide catalyzed by a novel basic porous polymer-supported ionic liquid. Molecular Catalysis 2018, 457 , 59-66. https://doi.org/10.1016/j.mcat.2018.07.019
    60. An Lv, Zi-Long Li, Yu-Huan Wu, Fu-Sheng Du, Zi-Chen Li. Synthesis of precision polymers with regularly placed perfluoroalkyl segments and sulfonic acid groups via ADMET polymerization and internal alkene modification. Polymer 2018, 153 , 123-130. https://doi.org/10.1016/j.polymer.2018.08.011
    61. Fu-Rong Zeng, Qi-Lin Zhu, Zi-Long Li. Sequential Modification of ADMET Polyketone via Oxime Chemistry and Electrophilic Alkoxyetherification. Australian Journal of Chemistry 2018, 71 (6) , 449. https://doi.org/10.1071/CH18120
    62. Thiago O. Machado, Priscilla B. Cardoso, Paulo Emilio Feuser, Claudia Sayer, Pedro H.H. Araújo. Thiol-ene miniemulsion polymerization of a biobased monomer for biomedical applications. Colloids and Surfaces B: Biointerfaces 2017, 159 , 509-517. https://doi.org/10.1016/j.colsurfb.2017.07.043
    63. Laetitia Vlaminck, Sophie Lingier, Andrea Hufendiek, Filip E. Du Prez. Lignin inspired phenolic polyethers synthesized via ADMET: Systematic structure-property investigation. European Polymer Journal 2017, 95 , 503-513. https://doi.org/10.1016/j.eurpolymj.2017.08.042
    64. Kazuki Fukushima, Tomoko Fujiwara. New Routes to Tailor‐Made Polyesters. 2017, 149-189. https://doi.org/10.1002/9781118967904.ch6
    65. Lucas Caire da Silva, Giovanni Rojas, Michael D. Schulz, Kenneth B. Wagener. Acyclic diene metathesis polymerization: History, methods and applications. Progress in Polymer Science 2017, 69 , 79-107. https://doi.org/10.1016/j.progpolymsci.2016.12.001
    66. Bhausaheb S Rajput, Kalpakasseril Girija Lekshmy, Shamal K Menon, Samir H Chikkali. Synthesis of isohexide-di(ether-ene)s and ADMET polymerization. Green Materials 2017, 5 (2) , 63-73. https://doi.org/10.1680/jgrma.16.00017
    67. Hong Li, Lucas Caire da Silva, Michael D Schulz, Giovanni Rojas, Kenneth B Wagener. A review of how to do an acyclic diene metathesis reaction. Polymer International 2017, 66 (1) , 7-12. https://doi.org/10.1002/pi.5188
    68. Jie Deng, Bao-Hua Xu, Yao-Feng Wang, Xian-En Mo, Rui Zhang, You Li, Suo-Jiang Zhang. Brønsted acidic ionic liquid-catalyzed dehydrative formation of isosorbide from sorbitol: introduction of a continuous process. Catalysis Science & Technology 2017, 7 (10) , 2065-2073. https://doi.org/10.1039/C7CY00512A
    69. Kazuki Fukushima. Biodegradable functional biomaterials exploiting substituted trimethylene carbonates and organocatalytic transesterification. Polymer Journal 2016, 48 (12) , 1103-1114. https://doi.org/10.1038/pj.2016.80
    70. Johan Bidange, Cédric Fischmeister, Christian Bruneau. Ethenolysis: A Green Catalytic Tool to Cleave Carbon–Carbon Double Bonds. Chemistry – A European Journal 2016, 22 (35) , 12226-12244. https://doi.org/10.1002/chem.201601052
    71. Shaofei Song, Feng He, Zhisheng Fu, Junting Xu, Zhiqiang Fan. Precision ADMET polyolefins containing dithiane: Synthesis, thermal properties, and macromolecular transformation. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54 (16) , 2468-2475. https://doi.org/10.1002/pola.28123
    72. Bhausaheb S. Rajput, Umesh Chander, Kailash Arole, Florian Stempfle, Shamal Menon, Stefan Mecking, Samir H. Chikkali. Synthesis of Renewable Copolyacetals with Tunable Degradation. Macromolecular Chemistry and Physics 2016, 217 (12) , 1396-1410. https://doi.org/10.1002/macp.201600071
    73. Renat Kadyrov. Olefin Metathesis: Catalyst Inhibition as a Result of Isomerization. ChemCatChem 2016, 8 (1) , 113-116. https://doi.org/10.1002/cctc.201501081
    74. Jiahao Chen, Stephanie Oyola-Reynoso, Martin Thuo. Introduction to Plant Oils. 2016, 1-18. https://doi.org/10.1016/B978-0-323-35833-0.00001-3
    75. Hatice Mutlu, Christopher Barner-Kowollik. Green chain-shattering polymers based on a self-immolative azobenzene motif. Polymer Chemistry 2016, 7 (12) , 2272-2279. https://doi.org/10.1039/C5PY01937K
    76. Patricia R. Bachler, Kenneth B. Wagener. Functional precision polymers via ADMET polymerization. Monatshefte für Chemie - Chemical Monthly 2015, 146 (7) , 1053-1061. https://doi.org/10.1007/s00706-015-1479-7
    77. John H. Phillips. Biorenewable Polymers. 2015, 357-374. https://doi.org/10.1002/9783527674107.ch40
    78. Oliver Kreye, Carsten Trefzger, Ansgar Sehlinger, Michael A. R. Meier. Multicomponent Reactions with a Convertible Isocyanide: Efficient and Versatile Grafting of ADMET‐Derived Polymers. Macromolecular Chemistry and Physics 2014, 215 (22) , 2207-2220. https://doi.org/10.1002/macp.201400187
    79. Liang Ding, Xue-Qin Zheng, Rong Lu, Jing An, Jun Qiu. Perfectly AB-alternating copolymers via alternating diene metathesis polymerization: one-step synthesis, characterization and properties. Polymer International 2014, 63 (6) , 997-1002. https://doi.org/10.1002/pi.4599
    80. Subha Kumaraswamy Pillai, Abdelnasser Abidli, Khaled Belkacemi. Triacylglycerol self-metathesis over highly chemoselective methyltrioxorhenium supported on ZnCl2-promoted mesoporous alumina. Applied Catalysis A: General 2014, 479 , 121-133. https://doi.org/10.1016/j.apcata.2014.04.016
    81. Astrid‐Caroline Knall, Christian Slugovc. Olefin Metathesis Polymerization. 2014, 269-284. https://doi.org/10.1002/9781118711613.ch7
    82. . Sustainable Practices in the Fine and Speciality Chemicals Industry. 2014, 199-244. https://doi.org/10.1002/9781118677919.ch6
    83. Liang Ding, Mengyu Xu, Jingjing Wang, Yang Liao, Jun Qiu. Controlled synthesis of azobenzene functionalized homo and copolymers via direct acyclic diene metathesis polymerization. Polymer 2014, 55 (7) , 1681-1687. https://doi.org/10.1016/j.polymer.2014.02.021
    84. Nicolai Kolb, Matthias Winkler, Christoph Syldatk, Michael A.R. Meier. Long-chain polyesters and polyamides from biochemically derived fatty acids. European Polymer Journal 2014, 51 , 159-166. https://doi.org/10.1016/j.eurpolymj.2013.11.007
    85. Rebecca R. Parkhurst, Sandor Balog, Christoph Weder, Yoan C. Simon. Synthesis of poly(sulfonate ester)s by ADMET polymerization. RSC Adv. 2014, 4 (96) , 53967-53974. https://doi.org/10.1039/C4RA08788G
    86. Liang Ding, Jun Qiu, Rong Lu, Xueqin Zheng, Jing An. Hyperbranched polyphosphoesters with reactive end groups synthesized via acyclic diene metathesis polymerization and their transformation to crosslinked nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (20) , 4331-4340. https://doi.org/10.1002/pola.26845
    87. Subha Kumaraswamy Pillai, Safia Hamoudi, Khaled Belkacemi. Functionalized value-added products via metathesis of methyloleate over methyltrioxorhenium supported on ZnCl2-promoted mesoporous alumina. Fuel 2013, 110 , 32-39. https://doi.org/10.1016/j.fuel.2012.10.040
    88. Zi‐Long Li, Lei Li, Xin‐Xing Deng, An Lv, Chun‐Hao Wang, Fu‐Sheng Du, Zi‐Chen Li. Ethylene–ethyl acrylate copolymers via ADMET polymerization: Effect of sequence distribution on thermal properties. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (13) , 2900-2909. https://doi.org/10.1002/pola.26682
    89. Zi-Long Li, An Lv, Lei Li, Xin-Xing Deng, Li-Jing Zhang, Fu-Sheng Du, Zi-Chen Li. Periodic ethylene-vinyl alcohol copolymers via ADMET polymerization: Synthesis, characterization, and thermal property. Polymer 2013, 54 (15) , 3841-3849. https://doi.org/10.1016/j.polymer.2013.05.037
    90. Subha Kumaraswamy Pillai, Safia Hamoudi, Khaled Belkacemi. Metathesis of methyloleate over methyltrioxorhenium supported on ZnCl2-promoted mesoporous alumina. Applied Catalysis A: General 2013, 455 , 155-163. https://doi.org/10.1016/j.apcata.2013.01.026
    91. Renat Kadyrov. Low Catalyst Loading in Ring‐Closing Metathesis Reactions. Chemistry – A European Journal 2013, 19 (3) , 1002-1012. https://doi.org/10.1002/chem.201202207
    92. K. Żukowska, A. Szadkowska, K. Grela. Olefin Metathesis. 2013, 105-126. https://doi.org/10.1016/B978-0-08-097774-4.00606-9
    93. Lise Maisonneuve, Thomas Lebarbé, Etienne Grau, Henri Cramail. Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polymer Chemistry 2013, 4 (22) , 5472. https://doi.org/10.1039/c3py00791j
    94. Oliver Kreye, Oğuz Türünç, Ansgar Sehlinger, Jenny Rackwitz, Michael A. R. Meier. Structurally Diverse Polyamides Obtained from Monomers Derived via the Ugi Multicomponent Reaction. Chemistry – A European Journal 2012, 18 (18) , 5767-5776. https://doi.org/10.1002/chem.201103341
    95. Oğuz Türünç, Michael A. R. Meier. Biopolymers. 2012, 267-292. https://doi.org/10.1002/9781119946083.ch11
    96. Ulrich Koert. Isomannide and Isosorbide. 2012https://doi.org/10.1002/047084289X.rn01380
    97. Marcus Rose, Regina Palkovits. Isosorbide as a Renewable Platform chemical for Versatile Applications—Quo Vadis?. ChemSusChem 2012, 5 (1) , 167-176. https://doi.org/10.1002/cssc.201100580
    98. Lucas Montero de Espinosa, Michael A. R. Meier. Olefin Metathesis of Renewable Platform Chemicals. 2012, 1-44. https://doi.org/10.1007/978-3-642-28288-1_1
    99. Kristian Kempe, Richard Hoogenboom, Ulrich S. Schubert. A Green Approach for the Synthesis and Thiol‐ene Modification of Alkene Functio1489lized Poly(2‐oxazoline)s. Macromolecular Rapid Communications 2011, 32 (18) , 1484-1489. https://doi.org/10.1002/marc.201100271
    100. Justyna Trzaskowski, Dorothee Quinzler, Christian Bährle, Stefan Mecking. Aliphatic Long‐Chain C 20 Polyesters from Olefin Metathesis. Macromolecular Rapid Communications 2011, 32 (17) , 1352-1356. https://doi.org/10.1002/marc.201100319
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 5, 1664–1665
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja808679w
    Published January 21, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    2463

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.