Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Reversible Switching of Magnetism in Thiolate-Protected Au25 Superatoms
My Activity

Figure 1Loading Img
    Communication

    Reversible Switching of Magnetism in Thiolate-Protected Au25 Superatoms
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208
    †Carnegie Mellon University.
    ‡Kansas State University.
    §Northwestern University.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 7, 2490–2492
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja809157f
    Published January 29, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report reversible switching of paramagnetism in a well-defined gold nanoparticle system consisting of atomically monodisperse nanoparticles containing 25 gold atoms protected by 18 thiolates [abbreviated as Au25(SR)18]. The magnetism in these nanoparticles can be switched on or off by precisely controlling the charge state of the nanoparticle, that is, the magnetic state of the Au25(SR)18 nanoparticles is charge-neutral while the nonmagnetic state is an anionic form of the particle. Electron paramagnetic resonance (EPR) spectroscopy measurements establish that the magnetic state of the Au25(SR)18 nanoparticles possess one unpaired spin per particle. EPR studies also imply an unusual electronic structure of the Au25(SR)18 nanoparticle. Density functional theory calculations coupled with the experiments successfully explain the origin of the observed magnetism in a Au25(SR)18 nanoparticle as arising from one unpaired spin having distinct P-like character and delocalized among the icosahedral Au13 core of the particle in the highest occupied molecular orbital. The results suggest that the Au25(SR)18 nanoparticles are best considered as ligand-protected superatoms.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 418 publications.

    1. Jing Qian, Zhucheng Yang, Jingkuan Lyu, Qiaofeng Yao, Jianping Xie. Molecular Interactions in Atomically Precise Metal Nanoclusters. Precision Chemistry 2024, Article ASAP.
    2. B. S. Sooraj, Jayoti Roy, Manish Mukherjee, Anagha Jose, Thalappil Pradeep. Extensive Polymerization of Atomically Precise Alloy Metal Clusters During Solid-State Reactions. Langmuir 2024, 40 (29) , 15244-15251. https://doi.org/10.1021/acs.langmuir.4c01737
    3. Si Li, Na-Na Li, Xi-Yan Dong, Shuang-Quan Zang, Thomas C. W. Mak. Chemical Flexibility of Atomically Precise Metal Clusters. Chemical Reviews 2024, 124 (11) , 7262-7378. https://doi.org/10.1021/acs.chemrev.3c00896
    4. Juniper Foxley, Thomas D. Green, Marcus A. Tofanelli, Christopher J. Ackerson, Kenneth L. Knappenberger, Jr.. The Evolution from Superatom- to Plasmon-Mediated Magnetic Circular Dichroism in Colloidal Metal Nanoparticles Spanning the Nonmetallic to Metallic Limits. The Journal of Physical Chemistry Letters 2023, 14 (22) , 5210-5215. https://doi.org/10.1021/acs.jpclett.3c01170
    5. Yingwei Li, Hong Ki Kim, Ryan D. McGillicuddy, Shao-Liang Zheng, Kevin J. Anderton, Grant J. Stec, Jaehyeong Lee, Dongtao Cui, Jarad A. Mason. A Double Open-Shelled Au43 Nanocluster with Increased Catalytic Activity and Stability. Journal of the American Chemical Society 2023, 145 (16) , 9304-9312. https://doi.org/10.1021/jacs.3c02458
    6. Anagha Jose, Arijit Jana, Tanvi Gupte, Akhil S. Nair, Keerthana Unni, Ankit Nagar, Amoghavarsha R. Kini, B. K. Spoorthi, Sourav Kanti Jana, Biswarup Pathak, Thalappil Pradeep. Vertically Aligned Nanoplates of Atomically Precise Co6S8 Cluster for Practical Arsenic Sensing. ACS Materials Letters 2023, 5 (3) , 893-899. https://doi.org/10.1021/acsmaterialslett.3c00085
    7. Shinjiro Takano, Emi Ito, Toshikazu Nakamura, Tatsuya Tsukuda. Effect of Group-10 Element M (Ni, Pd, Pt) on Electronic Structure of Icosahedral M@Au12 Cores of MAu24L18 (L = Alkynyl, Thiolate). The Journal of Physical Chemistry C 2023, 127 (8) , 4360-4366. https://doi.org/10.1021/acs.jpcc.2c09037
    8. Jianyu Wei, Desmond MacLeod Carey, Jean-François Halet, Samia Kahlal, Jean-Yves Saillard, Alvaro Muñoz-Castro. From 8- to 18-Cluster Electrons Superatoms: Evaluation via DFT Calculations of the Ligand-Protected W@Au12(dppm)6 Cluster Displaying Distinctive Electronic and Optical Properties. Inorganic Chemistry 2023, 62 (7) , 3047-3055. https://doi.org/10.1021/acs.inorgchem.2c03771
    9. Huixin Xiang, Hao Yan, Jiaohu Liu, Ranran Cheng, Cong-Qiao Xu, Jun Li, Chuanhao Yao. Identifying the Real Chemistry of the Synthesis and Reversible Transformation of AuCd Bimetallic Clusters. Journal of the American Chemical Society 2022, 144 (31) , 14248-14257. https://doi.org/10.1021/jacs.2c05053
    10. Shang-Fu Yuan, Zong-Jie Guan, Quan-Ming Wang. Identification of the Active Species in Bimetallic Cluster Catalyzed Hydrogenation. Journal of the American Chemical Society 2022, 144 (25) , 11405-11412. https://doi.org/10.1021/jacs.2c04156
    11. Manikandan Elumalai, Selvaraj Vimalraj, Shanmugam Chandirasekar, Nishanthi Ezhumalai, Jayapalan Kasthuri, Nagappan Rajendiran. N-Cholyl d-Penicilamine Micelles Templated Red Light-Emitting Silver Nanoclusters: Fluorometric Sensor for S2– Ions and Bioimaging Application Using Zebrafish Model. Langmuir 2022, 38 (24) , 7580-7592. https://doi.org/10.1021/acs.langmuir.2c00713
    12. José A. Ulloa, Giulia Lorusso, Marco Evangelisti, Agustín Camón, Joaquín Barberá, José L. Serrano. Magnetism of Dendrimer-Coated Gold Nanoparticles: A Size and Functionalization Study. The Journal of Physical Chemistry C 2021, 125 (37) , 20482-20487. https://doi.org/10.1021/acs.jpcc.1c04213
    13. Yingwei Li, Rongchao Jin. Magnetism of Atomically Precise Gold and Doped Nanoclusters: Delocalized Spin and Interparticle Coupling. The Journal of Physical Chemistry C 2021, 125 (29) , 15773-15784. https://doi.org/10.1021/acs.jpcc.1c04621
    14. Jianyu Wei, Peter L. Rodríguez-Kessler, Jean-François Halet, Samia Kahlal, Jean-Yves Saillard, Alvaro Muñoz-Castro. On Heteronuclear Isoelectronic Alternatives to [Au13(dppe)5Cl2]3+: Electronic and Optical Properties of the 18-Electron Os@[Au12(dppe)5Cl2] Cluster from Relativistic Density Functional Theory Computations. Inorganic Chemistry 2021, 60 (11) , 8173-8180. https://doi.org/10.1021/acs.inorgchem.1c00799
    15. Patrick J. Herbert, Marcus A. Tofanelli, Christopher J. Ackerson, Kenneth L. Knappenberger, Jr.. The Influence of Pd-Atom Substitution on Au25(SC8H9)18 Cluster Photoluminescence. The Journal of Physical Chemistry C 2021, 125 (13) , 7267-7275. https://doi.org/10.1021/acs.jpcc.1c00799
    16. Lijun Geng, Chaonan Cui, Yuhan Jia, Baoqi Yin, Hanyu Zhang, Zhen-Dong Sun, Zhixun Luo. Reactivity of Cobalt Clusters Con±/0 with Dinitrogen: Superatom Co6+ and Superatomic Complex Co5N6+. The Journal of Physical Chemistry A 2021, 125 (10) , 2130-2138. https://doi.org/10.1021/acs.jpca.1c00483
    17. Yuvasri Genji Srinivasulu, Nirmal Goswami, Qiaofeng Yao, Jianping Xie. High-Yield Synthesis of AIE-Type Au22(SG)18 Nanoclusters through Precursor Engineering and Its pH-Dependent Size Transformation. The Journal of Physical Chemistry C 2021, 125 (7) , 4066-4076. https://doi.org/10.1021/acs.jpcc.0c10030
    18. Tomoki Matsuyama, Jun Hirayama, Yu Fujiki, Soichi Kikkawa, Wataru Kurashige, Hiroyuki Asakura, Naomi Kawamura, Yuichi Negishi, Naoki Nakatani, Keisuke Hatada, Fukiko Ota, Seiji Yamazoe. Effect of Ligand on the Electronic State of Gold in Ligand-Protected Gold Clusters Elucidated by X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2021, 125 (5) , 3143-3149. https://doi.org/10.1021/acs.jpcc.0c09369
    19. Yingwei Li, Saborni Biswas, Tian-Yi Luo, Rosalba Juarez-Mosqueda, Michael G. Taylor, Giannis Mpourmpakis, Nathaniel L. Rosi, Michael P. Hendrich, Rongchao Jin. Doping Effect on the Magnetism of Thiolate-Capped 25-Atom Alloy Nanoclusters. Chemistry of Materials 2020, 32 (21) , 9238-9244. https://doi.org/10.1021/acs.chemmater.0c02984
    20. Rongfeng Zheng, Gianna M. Bevacqua, Nicholas R. Young, Thomas C. Allison, YuYe J. Tong. Site-Dependent Spin Delocalization and Evidence of Ferrimagnetism in Atomically Precise Au25(SR)180 Clusters as Seen by Solution 13C NMR Spectroscopy. The Journal of Physical Chemistry A 2020, 124 (37) , 7464-7469. https://doi.org/10.1021/acs.jpca.0c02915
    21. Clothilde Comby-Zerbino, Franck Bertorelle, Philippe Dugourd, Rodolphe Antoine, Fabien Chirot. Structure and Charge Heterogeneity in Isomeric Au25(MBA)18 Nanoclusters—Insights from Ion Mobility and Mass Spectrometry. The Journal of Physical Chemistry A 2020, 124 (28) , 5840-5848. https://doi.org/10.1021/acs.jpca.0c03131
    22. Sai Ge, Jianguo Zhao, Guibin Ma. Monochromatic Photolysis to Generate Silver Quantum Clusters in Polymer Matrices with Efficiently Antibio Property. Langmuir 2020, 36 (15) , 4088-4097. https://doi.org/10.1021/acs.langmuir.0c00527
    23. Xuejuan Zou, Yangfeng Li, Shan Jin, Xi Kang, Xiao Wei, Shuxin Wang, Xiangming Meng, Manzhou Zhu. Doping Copper Atoms into the Nanocluster Kernel: Total Structure Determination of [Cu30Ag61(SAdm)38S3](BPh4). The Journal of Physical Chemistry Letters 2020, 11 (6) , 2272-2276. https://doi.org/10.1021/acs.jpclett.0c00271
    24. Phillip S. Window, Christopher J. Ackerson. Superatom Paramagnetism in Au102(SR)441–/0/1+/2+ Oxidation States. Inorganic Chemistry 2020, 59 (6) , 3509-3512. https://doi.org/10.1021/acs.inorgchem.9b02787
    25. Beomil Kim, Hoeun Seong, Jun Tae Song, Kyuju Kwak, Hakhyeon Song, Ying Chuan Tan, Gibeom Park, Dongil Lee, Jihun Oh. Over a 15.9% Solar-to-CO Conversion from Dilute CO2 Streams Catalyzed by Gold Nanoclusters Exhibiting a High CO2 Binding Affinity. ACS Energy Letters 2020, 5 (3) , 749-757. https://doi.org/10.1021/acsenergylett.9b02511
    26. Anthony Cirri, Hanna Morales Hernández, Christopher J. Johnson. High Precision Electronic Spectroscopy of Ligand-Protected Gold Nanoclusters: Effects of Composition, Environment, and Ligand Chemistry. The Journal of Physical Chemistry A 2020, 124 (8) , 1467-1479. https://doi.org/10.1021/acs.jpca.9b09164
    27. Yuanxin Du, Hongting Sheng, Didier Astruc, Manzhou Zhu. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews 2020, 120 (2) , 526-622. https://doi.org/10.1021/acs.chemrev.8b00726
    28. Yongbo Song Chuanjun Zhou Rongchao Jin . Intraparticle Construction of Fundamental Building Blocks for Multilevel Metal Nanoclusters Protected by Ligands. 2020, 47-71. https://doi.org/10.1021/bk-2020-1358.ch003
    29. Nirmal Goswami, Bhabananda Biswas, Ravi Naidu, Krasimir Vasilev. Spatially Localized Synthesis of Metal Nanoclusters on Clay Nanotubes and Their Catalytic Performance. ACS Sustainable Chemistry & Engineering 2019, 7 (22) , 18350-18358. https://doi.org/10.1021/acssuschemeng.9b03887
    30. Wenwen Fei, Sabrina Antonello, Tiziano Dainese, Alessandro Dolmella, Manu Lahtinen, Kari Rissanen, Alfonso Venzo, Flavio Maran. Metal Doping of Au25(SR)18– Clusters: Insights and Hindsights. Journal of the American Chemical Society 2019, 141 (40) , 16033-16045. https://doi.org/10.1021/jacs.9b08228
    31. Megumi Suyama, Shinjiro Takano, Toshikazu Nakamura, Tatsuya Tsukuda. Stoichiometric Formation of Open-Shell [PtAu24(SC2H4Ph)18]− via Spontaneous Electron Proportionation between [PtAu24(SC2H4Ph)18]2– and [PtAu24(SC2H4Ph)18]0. Journal of the American Chemical Society 2019, 141 (36) , 14048-14051. https://doi.org/10.1021/jacs.9b06254
    32. Kumaranchira Ramankutty Krishnadas, Ganapati Natarajan, Ananya Baksi, Atanu Ghosh, Esma Khatun, Thalappil Pradeep. Metal–Ligand Interface in the Chemical Reactions of Ligand-Protected Noble Metal Clusters. Langmuir 2019, 35 (35) , 11243-11254. https://doi.org/10.1021/acs.langmuir.8b03493
    33. Sukanya Ghosh, Nisha Mammen, Shobhana Narasimhan. Descriptor for the Efficacy of Aliovalent Doping of Oxides and Its Application for the Charging of Supported Au Clusters. The Journal of Physical Chemistry C 2019, 123 (32) , 19794-19805. https://doi.org/10.1021/acs.jpcc.9b06119
    34. Gang Chen, Tianshan Zhao, Qian Wang, Puru Jena. Rational Design of Stable Dianions and the Concept of Super-Chalcogens. The Journal of Physical Chemistry A 2019, 123 (27) , 5753-5761. https://doi.org/10.1021/acs.jpca.9b01519
    35. Fahri Alkan, Pratima Pandeya, Christine M. Aikens. Understanding the Effect of Doping on Energetics and Electronic Structure for Au25, Ag25, and Au38 Clusters. The Journal of Physical Chemistry C 2019, 123 (14) , 9516-9527. https://doi.org/10.1021/acs.jpcc.9b00065
    36. Patrick J. Herbert, Phillip Window, Christopher J. Ackerson, Kenneth L. Knappenberger, Jr.. Low-Temperature Magnetism in Nanoscale Gold Revealed through Variable-Temperature Magnetic Circular Dichroism Spectroscopy. The Journal of Physical Chemistry Letters 2019, 10 (2) , 189-193. https://doi.org/10.1021/acs.jpclett.8b03473
    37. Mikhail Agrachev, Marco Ruzzi, Alfonso Venzo, Flavio Maran. Nuclear and Electron Magnetic Resonance Spectroscopies of Atomically Precise Gold Nanoclusters. Accounts of Chemical Research 2019, 52 (1) , 44-52. https://doi.org/10.1021/acs.accounts.8b00495
    38. Haifeng Su, Yu Wang, Liting Ren, Peng Yuan, Boon K. Teo, Shuichao Lin, Lansun Zheng, Nanfeng Zheng. Fractal Patterns in Nucleation and Growth of Icosahedral Core of [AunAg44–n(SC6H3F2)30]4– (n = 0–12) via ab Initio Synthesis: Continuously Tunable Composition Control. Inorganic Chemistry 2019, 58 (1) , 259-264. https://doi.org/10.1021/acs.inorgchem.8b02249
    39. Gihan Panapitiya, Guillermo Avendaño-Franco, Pengju Ren, Xiaodong Wen, Yongwang Li, James P. Lewis. Machine-Learning Prediction of CO Adsorption in Thiolated, Ag-Alloyed Au Nanoclusters. Journal of the American Chemical Society 2018, 140 (50) , 17508-17514. https://doi.org/10.1021/jacs.8b08800
    40. Shuxin Wang, Qi Li, Xi Kang, Manzhou Zhu. Customizing the Structure, Composition, and Properties of Alloy Nanoclusters by Metal Exchange. Accounts of Chemical Research 2018, 51 (11) , 2784-2792. https://doi.org/10.1021/acs.accounts.8b00327
    41. Mirko Vanzan, Stefano Corni. Role of Organic Ligands Orientation on the Geometrical and Optical Properties of Au25(SCH3)180. The Journal of Physical Chemistry A 2018, 122 (34) , 6864-6872. https://doi.org/10.1021/acs.jpca.8b01797
    42. Meng Zhou, Chuanhao Yao, Matthew Y. Sfeir, Tatsuya Higaki, Zhikun Wu, Rongchao Jin. Excited-State Behaviors of M1Au24(SR)18 Nanoclusters: The Number of Valence Electrons Matters. The Journal of Physical Chemistry C 2018, 122 (25) , 13435-13442. https://doi.org/10.1021/acs.jpcc.7b11057
    43. Tsubasa Omoda, Shinjiro Takano, Seiji Yamazoe, Kiichirou Koyasu, Yuichi Negishi, Tatsuya Tsukuda. An Au25(SR)18 Cluster with a Face-Centered Cubic Core. The Journal of Physical Chemistry C 2018, 122 (24) , 13199-13204. https://doi.org/10.1021/acs.jpcc.8b03841
    44. Puru Jena, Qiang Sun. Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials. Chemical Reviews 2018, 118 (11) , 5755-5870. https://doi.org/10.1021/acs.chemrev.7b00524
    45. Christian B. Collins, Marcus A. Tofanelli, Scott D. Noblitt, Christopher J. Ackerson. Electrophoretic Mechanism of Au25(SR)18 Heating in Radiofrequency Fields. The Journal of Physical Chemistry Letters 2018, 9 (7) , 1516-1521. https://doi.org/10.1021/acs.jpclett.8b00327
    46. Ying Duan, Ruiping Duan, Rui Liu, Man Guan, Wenjuan Chen, Jingjing Ma, Mingmao Chen, Bo Du, Qiqing Zhang. Chitosan-Stabilized Self-Assembled Fluorescent Gold Nanoclusters for Cell Imaging and Biodistribution in Vivo. ACS Biomaterials Science & Engineering 2018, 4 (3) , 1055-1063. https://doi.org/10.1021/acsbiomaterials.7b00975
    47. Masanori Ebina, Takeshi Iwasa, Yu Harabuchi, and Tetsuya Taketsugu . Time-Dependent Density Functional Theory Study on Higher Low-Lying Excited States of Au25(SR)18–. The Journal of Physical Chemistry C 2018, 122 (7) , 4097-4104. https://doi.org/10.1021/acs.jpcc.7b12723
    48. David M. Black, Geronimo Robles, Priscilla Lopez, Stephan B. H. Bach, Marcos Alvarez, and Robert L. Whetten . Liquid Chromatography Separation and Mass Spectrometry Detection of Silver-Lipoate Ag29(LA)12 Nanoclusters: Evidence of Isomerism in the Solution Phase. Analytical Chemistry 2018, 90 (3) , 2010-2017. https://doi.org/10.1021/acs.analchem.7b04104
    49. Si Li, Xiang-Sha Du, Bing Li, Jia-Yin Wang, Guo-Ping Li, Guang-Gang Gao, and Shuang-Quan Zang . Atom-Precise Modification of Silver(I) Thiolate Cluster by Shell Ligand Substitution: A New Approach to Generation of Cluster Functionality and Chirality. Journal of the American Chemical Society 2018, 140 (2) , 594-597. https://doi.org/10.1021/jacs.7b12136
    50. Anna Cifuentes-Rius, Angela Ivask, Shreya Das, Nuria Penya-Auladell, Laura Fabregas, Nicholas L. Fletcher, Zachary H. Houston, Kristofer J. Thurecht, and Nicolas H. Voelcker . Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation. ACS Applied Materials & Interfaces 2017, 9 (47) , 41159-41167. https://doi.org/10.1021/acsami.7b13100
    51. Mikhail Agrachev, Sabrina Antonello, Tiziano Dainese, Marco Ruzzi, Alfonso Zoleo, Edoardo Aprà, Niranjan Govind, Alessandro Fortunelli, Luca Sementa, and Flavio Maran . Magnetic Ordering in Gold Nanoclusters. ACS Omega 2017, 2 (6) , 2607-2617. https://doi.org/10.1021/acsomega.7b00472
    52. Indranath Chakraborty and Thalappil Pradeep . Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chemical Reviews 2017, 117 (12) , 8208-8271. https://doi.org/10.1021/acs.chemrev.6b00769
    53. Ravithree D. Senanayake, Alexey V. Akimov, and Christine M. Aikens . Theoretical Investigation of Electron and Nuclear Dynamics in the [Au25(SH)18]−1 Thiolate-Protected Gold Nanocluster. The Journal of Physical Chemistry C 2017, 121 (20) , 10653-10662. https://doi.org/10.1021/acs.jpcc.6b09731
    54. Sha Yang, Jinsong Chai, Yongbo Song, Jiqiang Fan, Tao Chen, Shuxin Wang, Haizhu Yu, Xiaowu Li, and Manzhou Zhu . In Situ Two-Phase Ligand Exchange: A New Method for the Synthesis of Alloy Nanoclusters with Precise Atomic Structures. Journal of the American Chemical Society 2017, 139 (16) , 5668-5671. https://doi.org/10.1021/jacs.7b00668
    55. Feiyun Long, Haitao Liu, Dafang Li, and Jun Yan . Spin–Orbit Coupling Effects on Ligand-Free Icosahedral Matryoshka Superatoms. The Journal of Physical Chemistry A 2017, 121 (12) , 2420-2428. https://doi.org/10.1021/acs.jpca.6b12186
    56. Tatsuya Higaki, Chong Liu, Yuxiang Chen, Shuo Zhao, Chenjie Zeng, Renxi Jin, Shuxin Wang, Nathaniel L. Rosi, and Rongchao Jin . Oxidation-Induced Transformation of Eight-Electron Gold Nanoclusters: [Au23(SR)16]− to [Au28(SR)20]0. The Journal of Physical Chemistry Letters 2017, 8 (4) , 866-870. https://doi.org/10.1021/acs.jpclett.6b03061
    57. Wenjun Du, Shan Jin, Lin Xiong, Man Chen, Jun Zhang, Xuejuan Zou, Yong Pei, Shuxin Wang, and Manzhou Zhu . Ag50(Dppm)6(SR)30 and Its Homologue AuxAg50–x(Dppm)6(SR)30 Alloy Nanocluster: Seeded Growth, Structure Determination, and Differences in Properties. Journal of the American Chemical Society 2017, 139 (4) , 1618-1624. https://doi.org/10.1021/jacs.6b11681
    58. Neranga Abeyasinghe, Santosh Kumar, Kai Sun, John F. Mansfield, Rongchao Jin, and Theodore Goodson III . Enhanced Emission from Single Isolated Gold Quantum Dots Investigated Using Two-Photon-Excited Fluorescence Near-Field Scanning Optical Microscopy. Journal of the American Chemical Society 2016, 138 (50) , 16299-16307. https://doi.org/10.1021/jacs.6b07737
    59. Birte Varnholt, Matthew J. Guberman-Pfeffer, Patric Oulevey, Sabrina Antonello, Tiziano Dainese, José A. Gascón, Thomas Bürgi, and Flavio Maran . Vibrational Coupling Modulation in n-Alkanethiolate Protected Au25(SR)180 Clusters. The Journal of Physical Chemistry C 2016, 120 (44) , 25378-25386. https://doi.org/10.1021/acs.jpcc.6b07592
    60. Rongchao Jin, Chenjie Zeng, Meng Zhou, and Yuxiang Chen . Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chemical Reviews 2016, 116 (18) , 10346-10413. https://doi.org/10.1021/acs.chemrev.5b00703
    61. Chong Liu, Chenjie Zeng, Tian-Yi Luo, Andrea D. Merg, Rongchao Jin, and Nathaniel L. Rosi . Establishing Porosity Gradients within Metal–Organic Frameworks Using Partial Postsynthetic Ligand Exchange. Journal of the American Chemical Society 2016, 138 (37) , 12045-12048. https://doi.org/10.1021/jacs.6b07445
    62. Shuang Chen, Lin Xiong, Shuxin Wang, Zhongyun Ma, Shan Jin, Hongting Sheng, Yong Pei, and Manzhou Zhu . Total Structure Determination of Au21(S-Adm)15 and Geometrical/Electronic Structure Evolution of Thiolated Gold Nanoclusters. Journal of the American Chemical Society 2016, 138 (34) , 10754-10757. https://doi.org/10.1021/jacs.6b06004
    63. Udumula Subbarao, Sumanta Sarkar, Rajkumar Jana, Sourav S. Bera, and Sebastian C. Peter . Enhanced Air Stability in REPb3 (RE = Rare Earths) by Dimensional Reduction Mediated Valence Transition. Inorganic Chemistry 2016, 55 (11) , 5603-5611. https://doi.org/10.1021/acs.inorgchem.6b00676
    64. Yongbo Song, Shan Jin, Xi Kang, Ji Xiang, Huijuan Deng, Haizhu Yu, and Manzhou Zhu . How a Single Electron Affects the Properties of the “Non-Superatom” Au25 Nanoclusters. Chemistry of Materials 2016, 28 (8) , 2609-2617. https://doi.org/10.1021/acs.chemmater.5b04655
    65. K. L. Dimuthu M. Weerawardene and Christine M. Aikens . Effect of Aliphatic versus Aromatic Ligands on the Structure and Optical Absorption of Au20(SR)16. The Journal of Physical Chemistry C 2016, 120 (15) , 8354-8363. https://doi.org/10.1021/acs.jpcc.6b01011
    66. Marcus A. Tofanelli, Thomas W. Ni, Billy D. Phillips, and Christopher J. Ackerson . Crystal Structure of the PdAu24(SR)180 Superatom. Inorganic Chemistry 2016, 55 (3) , 999-1001. https://doi.org/10.1021/acs.inorgchem.5b02106
    67. Ganapati Natarajan, Ammu Mathew, Yuichi Negishi, Robert L. Whetten, and Thalappil Pradeep . A Unified Framework for Understanding the Structure and Modifications of Atomically Precise Monolayer Protected Gold Clusters. The Journal of Physical Chemistry C 2015, 119 (49) , 27768-27785. https://doi.org/10.1021/acs.jpcc.5b08193
    68. Runhai Ouyang and De-en Jiang . Understanding Selective Hydrogenation of α,β-Unsaturated Ketones to Unsaturated Alcohols on the Au25(SR)18 Cluster. ACS Catalysis 2015, 5 (11) , 6624-6629. https://doi.org/10.1021/acscatal.5b01521
    69. Dengchao Wang, Jonathan W. Padelford, Tarushee Ahuja, and Gangli Wang . Transitions in Discrete Absorption Bands of Au130 Clusters upon Stepwise Charging by Spectroelectrochemistry. ACS Nano 2015, 9 (8) , 8344-8351. https://doi.org/10.1021/acsnano.5b03007
    70. Lingwen Liao, Shiming Zhou, Yafei Dai, Liren Liu, Chuanhao Yao, Cenfeng Fu, Jinlong Yang, and Zhikun Wu . Mono-Mercury Doping of Au25 and the HOMO/LUMO Energies Evaluation Employing Differential Pulse Voltammetry. Journal of the American Chemical Society 2015, 137 (30) , 9511-9514. https://doi.org/10.1021/jacs.5b03483
    71. Amendra Fernando, K. L. Dimuthu M. Weerawardene, Natalia V. Karimova, and Christine M. Aikens . Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chemical Reviews 2015, 115 (12) , 6112-6216. https://doi.org/10.1021/cr500506r
    72. Qing Tang and De-en Jiang . Insights into the PhC≡C/Au Interface. The Journal of Physical Chemistry C 2015, 119 (20) , 10804-10810. https://doi.org/10.1021/jp508883v
    73. Sergey N. Britvin and Andriy Lotnyk . Water-Soluble Phosphine Capable of Dissolving Elemental Gold: The Missing Link between 1,3,5-Triaza-7-phosphaadamantane (PTA) and Verkade’s Ephemeral Ligand. Journal of the American Chemical Society 2015, 137 (16) , 5526-5535. https://doi.org/10.1021/jacs.5b01851
    74. Atanu Ghosh, Jukka Hassinen, Petri Pulkkinen, Heikki Tenhu, Robin H. A. Ras, and Thalappil Pradeep . Simple and Efficient Separation of Atomically Precise Noble Metal Clusters. Analytical Chemistry 2014, 86 (24) , 12185-12190. https://doi.org/10.1021/ac503165t
    75. Christopher E. Angevine, Amy E. Chavis, Nuwan Kothalawala, Amala Dass, and Joseph E. Reiner . Enhanced Single Molecule Mass Spectrometry via Charged Metallic Clusters. Analytical Chemistry 2014, 86 (22) , 11077-11085. https://doi.org/10.1021/ac503425g
    76. Shan Jin, Shuxin Wang, Yongbo Song, Meng Zhou, Juan Zhong, Jun Zhang, Andong Xia, Yong Pei, Man Chen, Peng Li, and Manzhou Zhu . Crystal Structure and Optical Properties of the [Ag62S12(SBut)32]2+ Nanocluster with a Complete Face-Centered Cubic Kernel. Journal of the American Chemical Society 2014, 136 (44) , 15559-15565. https://doi.org/10.1021/ja506773d
    77. Anindita Das, Chong Liu, Chenjie Zeng, Gao Li, Tao Li, Nathaniel L. Rosi, and Rongchao Jin . Cyclopentanethiolato-Protected Au36(SC5H9)24 Nanocluster: Crystal Structure and Implications for the Steric and Electronic Effects of Ligand. The Journal of Physical Chemistry A 2014, 118 (37) , 8264-8269. https://doi.org/10.1021/jp501073a
    78. Chenjie Zeng, Chong Liu, Yuxiang Chen, Nathaniel L. Rosi, and Rongchao Jin . Gold–Thiolate Ring as a Protecting Motif in the Au20(SR)16 Nanocluster and Implications. Journal of the American Chemical Society 2014, 136 (34) , 11922-11925. https://doi.org/10.1021/ja506802n
    79. Marco De Nardi, Sabrina Antonello, De-en Jiang, Fangfang Pan, Kari Rissanen, Marco Ruzzi, Alfonso Venzo, Alfonso Zoleo, and Flavio Maran . Gold Nanowired: A Linear (Au25)n Polymer from Au25 Molecular Clusters. ACS Nano 2014, 8 (8) , 8505-8512. https://doi.org/10.1021/nn5031143
    80. Atanu Ghosh, Thalappil Pradeep, and Jaydeb Chakrabarti . Coalescence of Atomically Precise Clusters on Graphenic Surfaces. The Journal of Physical Chemistry C 2014, 118 (25) , 13959-13964. https://doi.org/10.1021/jp503001s
    81. Hideya Kawasaki, Santosh Kumar, Gao Li, Chenjie Zeng, Douglas R. Kauffman, Junya Yoshimoto, Yasuhiko Iwasaki, and Rongchao Jin . Generation of Singlet Oxygen by Photoexcited Au25(SR)18 Clusters. Chemistry of Materials 2014, 26 (9) , 2777-2788. https://doi.org/10.1021/cm500260z
    82. Tiziano Dainese, Sabrina Antonello, José A. Gascón, Fangfang Pan, Neranjan V. Perera, Marco Ruzzi, Alfonso Venzo, Alfonso Zoleo, Kari Rissanen, and Flavio Maran . Au25(SEt)18, a Nearly Naked Thiolate-Protected Au25 Cluster: Structural Analysis by Single Crystal X-ray Crystallography and Electron Nuclear Double Resonance. ACS Nano 2014, 8 (4) , 3904-3912. https://doi.org/10.1021/nn500805n
    83. Sabrina Antonello, Giorgio Arrigoni, Tiziano Dainese, Marco De Nardi, Giulia Parisio, Lorena Perotti, Alice René, Alfonso Venzo, and Flavio Maran . Electron Transfer through 3D Monolayers on Au25 Clusters. ACS Nano 2014, 8 (3) , 2788-2795. https://doi.org/10.1021/nn406504k
    84. Byung Hyo Kim, Michael J. Hackett, Jongnam Park, and Taeghwan Hyeon . Synthesis, Characterization, and Application of Ultrasmall Nanoparticles. Chemistry of Materials 2014, 26 (1) , 59-71. https://doi.org/10.1021/cm402225z
    85. Yang Yang, Xiao-Li Pei, and Quan-Ming Wang . Postclustering Dynamic Covalent Modification for Chirality Control and Chiral Sensing. Journal of the American Chemical Society 2013, 135 (43) , 16184-16191. https://doi.org/10.1021/ja4075419
    86. Sabrina Antonello, Neranjan V. Perera, Marco Ruzzi, José A. Gascón, and Flavio Maran . Interplay of Charge State, Lability, and Magnetism in the Molecule-like Au25(SR)18 Cluster. Journal of the American Chemical Society 2013, 135 (41) , 15585-15594. https://doi.org/10.1021/ja407887d
    87. Ryan Guterman, Mahdi Hesari, Paul J. Ragogna, and Mark S. Workentin . Anion-Exchange Reactions on a Robust Phosphonium Photopolymer for the Controlled Deposition of Ionic Gold Nanoclusters. Langmuir 2013, 29 (21) , 6460-6466. https://doi.org/10.1021/la400516v
    88. Puru Jena . Beyond the Periodic Table of Elements: The Role of Superatoms. The Journal of Physical Chemistry Letters 2013, 4 (9) , 1432-1442. https://doi.org/10.1021/jz400156t
    89. Ruthanne S. McCoy, Sam Choi, George Collins, Bruce J. Ackerson, and Christopher J. Ackerson . Superatom Paramagnetism Enables Gold Nanocluster Heating in Applied Radiofrequency Fields. ACS Nano 2013, 7 (3) , 2610-2616. https://doi.org/10.1021/nn306015c
    90. Stephen L. Christensen, Mark A. MacDonald, Amares Chatt, and Peng Zhang , Huifeng Qian and Rongchao Jin . Dopant Location, Local Structure, and Electronic Properties of Au24Pt(SR)18 Nanoclusters. The Journal of Physical Chemistry C 2012, 116 (51) , 26932-26937. https://doi.org/10.1021/jp310183x
    91. Marcus A. Tofanelli and Christopher J. Ackerson . Superatom Electron Configuration Predicts Thermal Stability of Au25(SR)18 Nanoclusters. Journal of the American Chemical Society 2012, 134 (41) , 16937-16940. https://doi.org/10.1021/ja3072644
    92. Huifeng Qian, De-en Jiang, Gao Li, Chakicherla Gayathri, Anindita Das, Roberto R. Gil, and Rongchao Jin . Monoplatinum Doping of Gold Nanoclusters and Catalytic Application. Journal of the American Chemical Society 2012, 134 (39) , 16159-16162. https://doi.org/10.1021/ja307657a
    93. Wataru Kurashige, Masaki Yamaguchi, Katsuyuki Nobusada, and Yuichi Negishi . Ligand-Induced Stability of Gold Nanoclusters: Thiolate versus Selenolate. The Journal of Physical Chemistry Letters 2012, 3 (18) , 2649-2652. https://doi.org/10.1021/jz301191t
    94. Kalen N. Swanick, Mahdi Hesari, Mark S. Workentin, and Zhifeng Ding . Interrogating Near-Infrared Electrogenerated Chemiluminescence of Au25(SC2H4Ph)18+ Clusters. Journal of the American Chemical Society 2012, 134 (37) , 15205-15208. https://doi.org/10.1021/ja306047u
    95. Huifeng Qian, Manzhou Zhu, Zhikun Wu, and Rongchao Jin . Quantum Sized Gold Nanoclusters with Atomic Precision. Accounts of Chemical Research 2012, 45 (9) , 1470-1479. https://doi.org/10.1021/ar200331z
    96. Matúš Dubecký and Haibin Su . Magnetism in Thiolated Gold Model Junctions. The Journal of Physical Chemistry C 2012, 116 (33) , 17714-17720. https://doi.org/10.1021/jp305716m
    97. Xiaotao Nie, Huifeng Qian, Qingjie Ge, Hengyong Xu, and Rongchao Jin . CO Oxidation Catalyzed by Oxide-Supported Au25(SR)18 Nanoclusters and Identification of Perimeter Sites as Active Centers. ACS Nano 2012, 6 (7) , 6014-6022. https://doi.org/10.1021/nn301019f
    98. Hiroshi Yao . On the Electronic Structures of Au25(SR)18 Clusters Studied by Magnetic Circular Dichroism Spectroscopy. The Journal of Physical Chemistry Letters 2012, 3 (12) , 1701-1706. https://doi.org/10.1021/jz300396u
    99. Hiroshi Yao, Masanori Saeki, and Akito Sasaki . Boronic Acid-Protected Gold Clusters Capable of Asymmetric Induction: Spectral Deconvolution Analysis of Their Electronic Absorption and Magnetic Circular Dichroism. Langmuir 2012, 28 (8) , 3995-4002. https://doi.org/10.1021/la204731a
    100. Anupam Samanta, Basab B. Dhar, and R. Nandini Devi . Ultrasmall Gold Cluster Arrays Encapsulated in Silica Nanospheres: Applications in Fluorescence Imaging and Catalysis. The Journal of Physical Chemistry C 2012, 116 (2) , 1748-1754. https://doi.org/10.1021/jp2093737
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 7, 2490–2492
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja809157f
    Published January 29, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    7860

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.