ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Synthesis of Copolymers by Alternating ROMP (AROMP)

View Author Information
Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
Cite this: J. Am. Chem. Soc. 2009, 131, 10, 3444–3445
Publication Date (Web):February 18, 2009
https://doi.org/10.1021/ja809661k
Copyright © 2009 American Chemical Society

Article Views

4792

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (166 KB)
Supporting Info (1)»

Abstract

Abstract Image

The alternating polymerization of cyclobutene 1-carboxylic esters and cyclohexene derivatives with the precatalyst [(H2IMes)(3-Br-pyr)2Cl2Ru═CHPh] is described. This reaction is synthetically accessible and provides (AB)n heteropolymers with an alternating backbone and alternating functionality. The regiocontrol of heteropolymer formation derives from the inability of the cyclobutene ester and cyclohexene monomers to undergo homopolymerization in combination with the favorable kinetics of cross polymerization.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental procedures and characterization data. This information is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 102 publications.

  1. Francis O. Boadi, Nicole S. Sampson. Long-Range Kinetic Effects on the Alternating Ring Opening Metathesis of Bicyclo[4.2.0]oct-6-ene-7-carboxamides and Cyclohexene. ACS Organic & Inorganic Au 2023, Article ASAP.
  2. Kaoru Tashiro, Midori Akiyama, Kimiaki Kashiwagi, Takashi Okazoe. The Fluorocarbene Exploit: Enforcing Alternation in Ring-Opening Metathesis Polymerization. Journal of the American Chemical Society 2023, 145 (5) , 2941-2950. https://doi.org/10.1021/jacs.2c11373
  3. Liqi Wang, Xujun Zheng, Tatiana B. Kouznetsova, Tiffany Yen, Tetsu Ouchi, Cameron L. Brown, Stephen L. Craig. Mechanochemistry of Cubane. Journal of the American Chemical Society 2022, 144 (50) , 22865-22869. https://doi.org/10.1021/jacs.2c10878
  4. Subhajit Pal, Indradip Mandal, Andreas F. M. Kilbinger. Controlled Alternating Metathesis Copolymerization of Terminal Alkynes. ACS Macro Letters 2022, 11 (7) , 847-853. https://doi.org/10.1021/acsmacrolett.2c00258
  5. Xuelin Sui, Will R. Gutekunst. Cascade Alternating Metathesis Cyclopolymerization of Diynes and Dihydrofuran. ACS Macro Letters 2022, 11 (5) , 630-635. https://doi.org/10.1021/acsmacrolett.2c00140
  6. Changxia Shi, Ryan W. Clarke, Michael L. McGraw, Eugene Y.-X. Chen. Closing the “One Monomer–Two Polymers–One Monomer” Loop via Orthogonal (De)polymerization of a Lactone/Olefin Hybrid. Journal of the American Chemical Society 2022, 144 (5) , 2264-2275. https://doi.org/10.1021/jacs.1c12278
  7. Mohammad Yasir, Andreas F. M. Kilbinger. Cascade Ring-Opening/Ring-Closing Metathesis Polymerization of a Monomer Containing a Norbornene and a Cyclohexene Ring. ACS Macro Letters 2021, 10 (2) , 210-214. https://doi.org/10.1021/acsmacrolett.0c00882
  8. Kevin Nguyen, Helen A. Clement, Louise Bernier, Jotham W. Coe, William Farrell, Christopher J. Helal, Matthew R. Reese, Neal W. Sach, Jack C. Lee, Dennis G. Hall. Catalytic Enantioselective Synthesis of a cis-β-Boronyl Cyclobutylcarboxyester Scaffold and Its Highly Diastereoselective Nickel/Photoredox Dual-Catalyzed Csp3–Csp2 Cross-Coupling to Access Elusive trans-β-Aryl/Heteroaryl Cyclobutylcarboxyesters. ACS Catalysis 2021, 11 (1) , 404-413. https://doi.org/10.1021/acscatal.0c04520
  9. Xuelin Sui, Tianqi Zhang, Alec B. Pabarue, Liangbing Fu, Will R. Gutekunst. Alternating Cascade Metathesis Polymerization of Enynes and Cyclic Enol Ethers with Active Ruthenium Fischer Carbenes. Journal of the American Chemical Society 2020, 142 (30) , 12942-12947. https://doi.org/10.1021/jacs.0c06045
  10. Benjamin R. Elling, Jessica K. Su, Yan Xia. Degradable Polyacetals/Ketals from Alternating Ring-Opening Metathesis Polymerization. ACS Macro Letters 2020, 9 (2) , 180-184. https://doi.org/10.1021/acsmacrolett.9b00936
  11. Dylan J. Walsh, Michael G. Hyatt, Susannah A. Miller, Damien Guironnet. Recent Trends in Catalytic Polymerizations. ACS Catalysis 2019, 9 (12) , 11153-11188. https://doi.org/10.1021/acscatal.9b03226
  12. Dongyoung Oh, Yousuke Furuya, Makoto Ouchi. Unusual Radical Copolymerization of Suprabulky Methacrylate with N-Hydroxysuccinmide Acrylate: Facile Syntheses of Alternating-Rich Copolymers of Methacrylic Acid and N-Alkyl Acrylamide. Macromolecules 2019, 52 (22) , 8577-8586. https://doi.org/10.1021/acs.macromol.9b01807
  13. Subhajit Pal, Mahshid Alizadeh, Andreas F. M. Kilbinger. Telechelics Based on Catalytic Alternating Ring-Opening Metathesis Polymerization. ACS Macro Letters 2019, 8 (10) , 1396-1401. https://doi.org/10.1021/acsmacrolett.9b00750
  14. Jingling Zhang, Guofang Li, Nicole S. Sampson. Incorporation of Large Cycloalkene Rings into Alternating Copolymers Allows Control of Glass Transition and Hydrophobicity. ACS Macro Letters 2018, 7 (9) , 1068-1072. https://doi.org/10.1021/acsmacrolett.8b00510
  15. Ken-ichi Takao, Kento Mori, Kenya Kasuga, Ryuki Nanamiya, Ayumi Namba, Yuuki Fukushima, Ryuichi Nemoto, Takuma Mogi, Hiroyuki Yasui, Akihiro Ogura, Keisuke Yoshida, Kin-ichi Tadano. Total Synthesis of Clavilactones. The Journal of Organic Chemistry 2018, 83 (13) , 7060-7075. https://doi.org/10.1021/acs.joc.7b03268
  16. Guofang Li, Nicole S. Sampson. Alternating Ring-Opening Metathesis Polymerization (AROMP) of Hydrophobic and Hydrophilic Monomers Provides Oligomers with Side-Chain Sequence Control. Macromolecules 2018, 51 (11) , 3932-3940. https://doi.org/10.1021/acs.macromol.8b00562
  17. Wesley S. Farrell and Kathryn L. Beers . Ring-Opening Metathesis Polymerization of Butyl-Substituted trans-Cyclooctenes. ACS Macro Letters 2017, 6 (8) , 791-795. https://doi.org/10.1021/acsmacrolett.7b00420
  18. Yangyang Sun, Zhaowei Jia, Changjuan Chen, Yong Cong, Xiaoyang Mao, and Jincai Wu . Alternating Sequence Controlled Copolymer Synthesis of α-Hydroxy Acids via Syndioselective Ring-Opening Polymerization of O-Carboxyanhydrides Using Zirconium/Hafnium Alkoxide Initiators. Journal of the American Chemical Society 2017, 139 (31) , 10723-10732. https://doi.org/10.1021/jacs.7b04712
  19. Eun Sil Jang, Jeremy M. John, and Richard R. Schrock . Synthesis of cis,syndiotactic-A-alt-B Copolymers from Enantiomerically Pure Endo-2-Substituted-5,6-Norbornenes. Journal of the American Chemical Society 2017, 139 (14) , 5043-5046. https://doi.org/10.1021/jacs.7b01747
  20. Eun Sil Jang, Jeremy M. John, and Richard R. Schrock . Synthesis of Cis,syndiotactic A-alt-B Copolymers from Two Enantiomerically Pure Trans-2,3-Disubstituted-5,6-Norbornenes. ACS Central Science 2016, 2 (9) , 631-636. https://doi.org/10.1021/acscentsci.6b00200
  21. Peter Chen . Designing Sequence Selectivity into a Ring-Opening Metathesis Polymerization Catalyst. Accounts of Chemical Research 2016, 49 (5) , 1052-1060. https://doi.org/10.1021/acs.accounts.6b00085
  22. Kathlyn A. Parker and Nicole S. Sampson . Precision Synthesis of Alternating Copolymers via Ring-Opening Polymerization of 1-Substituted Cyclobutenes. Accounts of Chemical Research 2016, 49 (3) , 408-417. https://doi.org/10.1021/acs.accounts.5b00490
  23. Hyangsoo Jeong, Jeremy M. John, and Richard R. Schrock . Formation of Alternating trans-A-alt-B Copolymers through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Imido Alkylidene Complexes. Organometallics 2015, 34 (20) , 5136-5145. https://doi.org/10.1021/acs.organomet.5b00709
  24. Benjamin R. Elling and Yan Xia . Living Alternating Ring-Opening Metathesis Polymerization Based on Single Monomer Additions. Journal of the American Chemical Society 2015, 137 (31) , 9922-9926. https://doi.org/10.1021/jacs.5b05497
  25. Li Tan, Guofang Li, Kathlyn A. Parker, and Nicole S. Sampson . Ru-Catalyzed Isomerization Provides Access to Alternating Copolymers via Ring-Opening Metathesis Polymerization. Macromolecules 2015, 48 (14) , 4793-4800. https://doi.org/10.1021/acs.macromol.5b01058
  26. Hyangsoo Jeong, Jeremy M. John, Richard R. Schrock, and Amir H. Hoveyda . Synthesis of Alternating trans-AB Copolymers through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Alkylidenes. Journal of the American Chemical Society 2015, 137 (6) , 2239-2242. https://doi.org/10.1021/jacs.5b00221
  27. Li Tan, Kathlyn A. Parker, and Nicole S. Sampson . A Bicyclo[4.2.0]octene-Derived Monomer Provides Completely Linear Alternating Copolymers via Alternating Ring-Opening Metathesis Polymerization (AROMP). Macromolecules 2014, 47 (19) , 6572-6579. https://doi.org/10.1021/ma5012039
  28. Alice B. Chang Garret M. Miyake Robert H. Grubbs . Sequence-Controlled Polymers by Ruthenium-Mediated Ring-Opening Metathesis Polymerization. 2014, 161-188. https://doi.org/10.1021/bk-2014-1170.ch011
  29. Ken-ichi Takao, Ryuki Nanamiya, Yuuki Fukushima, Ayumi Namba, Keisuke Yoshida, and Kin-ichi Tadano . Total Synthesis of (+)-Clavilactone A and (−)-Clavilactone B by Ring-Opening/Ring-Closing Metathesis. Organic Letters 2013, 15 (21) , 5582-5585. https://doi.org/10.1021/ol4027842
  30. Nai-Ti Lin, Yuan-Zhen Ke, Kamani Satyanarayana, Shou-Ling Huang, Yi-Kang Lan, Hsiao-Ching Yang, and Tien-Yau Luh . On the Stereoselectivity of Ring-Opening Metathesis Polymerization (ROMP) of N-Arylpyrrolidine-Fused Cyclobutenes with Molybdenum– and Ruthenium–Alkylidene Catalyst. Macromolecules 2013, 46 (18) , 7173-7179. https://doi.org/10.1021/ma401007b
  31. Joy Romulus, Li Tan, Marcus Weck, and Nicole S. Sampson . Alternating Ring-Opening Metathesis Polymerization Copolymers Containing Charge-Transfer Units. ACS Macro Letters 2013, 2 (8) , 749-752. https://doi.org/10.1021/mz4002673
  32. Hyeon Park, Ho-Keun Lee, and Tae-Lim Choi . Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Relationship between Monomer Structure and Reactivity. Journal of the American Chemical Society 2013, 135 (29) , 10769-10775. https://doi.org/10.1021/ja4039278
  33. Christopher S. Daeffler and Robert H. Grubbs . Catalyst-Dependent Routes to Ring-Opening Metathesis Alternating Copolymers of Substituted Oxanorbornenes and Cyclooctene. Macromolecules 2013, 46 (9) , 3288-3292. https://doi.org/10.1021/ma400141c
  34. Anton Blencowe and Greg G. Qiao . Ring-Opening Metathesis Polymerization with the Second Generation Hoveyda–Grubbs Catalyst: An Efficient Approach toward High-Purity Functionalized Macrocyclic Oligo(cyclooctene)s. Journal of the American Chemical Society 2013, 135 (15) , 5717-5725. https://doi.org/10.1021/ja312418z
  35. Jihua Zhang, Megan E. Matta, Henry Martinez, and Marc A. Hillmyer . Precision Vinyl Acetate/Ethylene (VAE) Copolymers by ROMP of Acetoxy-Substituted Cyclic Alkenes. Macromolecules 2013, 46 (7) , 2535-2543. https://doi.org/10.1021/ma400092z
  36. Jihua Zhang, Megan E. Matta, and Marc A. Hillmyer . Synthesis of Sequence-Specific Vinyl Copolymers by Regioselective ROMP of Multiply Substituted Cyclooctenes. ACS Macro Letters 2012, 1 (12) , 1383-1387. https://doi.org/10.1021/mz300535r
  37. Dao Le, Véronique Montembault, Sagrario Pascual, Stéphanie Legoupy, and Laurent Fontaine . An Orthogonal Modular Approach to Macromonomers Using Clickable Cyclobutenyl Derivatives and RAFT Polymerization. Macromolecules 2012, 45 (19) , 7758-7769. https://doi.org/10.1021/ma3016163
  38. Hyeon Park and Tae-Lim Choi . Fast Tandem Ring-Opening/Ring-Closing Metathesis Polymerization from a Monomer Containing Cyclohexene and Terminal Alkyne. Journal of the American Chemical Society 2012, 134 (17) , 7270-7273. https://doi.org/10.1021/ja3017335
  39. Nai-Hua Yeh, Chih-Wei Chen, Shern-Long Lee, Hung-Jen Wu, Chun-hsien Chen, and Tien-Yau Luh . Polynorbornene-Based Double-Stranded Ladderphanes with Cubane, Cuneane, Tricyclooctadiene, and Cyclooctatetraene Linkers. Macromolecules 2012, 45 (6) , 2662-2667. https://doi.org/10.1021/ma300027k
  40. Marija Jović, Sebastian Torker, and Peter Chen . Non-innocent Character of Oxyanions in Ruthenium Metathesis Catalysts. Organometallics 2011, 30 (15) , 3971-3980. https://doi.org/10.1021/om200124z
  41. Kil Sun Lee and Tae-Lim Choi . Accelerated Ring-Opening Metathesis Polymerization of a Secondary Amide of 1-Cyclobutene by Hydrogen-Bonding Interaction. Organic Letters 2011, 13 (15) , 3908-3911. https://doi.org/10.1021/ol2014363
  42. Airong Song, Stephen G. Walker, Kathlyn A. Parker, and Nicole S. Sampson . Antibacterial Studies of Cationic Polymers with Alternating, Random, and Uniform Backbones. ACS Chemical Biology 2011, 6 (6) , 590-599. https://doi.org/10.1021/cb100413w
  43. Louis M. Pitet and Marc A. Hillmyer . Carboxy-Telechelic Polyolefins by ROMP Using Maleic Acid as a Chain Transfer Agent. Macromolecules 2011, 44 (7) , 2378-2381. https://doi.org/10.1021/ma102975r
  44. Airong Song, Kathlyn A. Parker and Nicole S. Sampson. Cyclic Alternating Ring-Opening Metathesis Polymerization (CAROMP). Rapid Access to Functionalized Cyclic Polymers. Organic Letters 2010, 12 (17) , 3729-3731. https://doi.org/10.1021/ol101432m
  45. Airong Song, Jae Chul Lee, Kathlyn A. Parker and Nicole S. Sampson. Scope of the Ring-Opening Metathesis Polymerization (ROMP) Reaction of 1-Substituted Cyclobutenes. Journal of the American Chemical Society 2010, 132 (30) , 10513-10520. https://doi.org/10.1021/ja1037098
  46. Sutthira Sutthasupa, Masashi Shiotsuki, Toshio Masuda and Fumio Sanda . Alternating Ring-Opening Metathesis Copolymerization of Amino Acid Derived Norbornene Monomers Carrying Nonprotected Carboxy and Amino Groups Based on Acid−Base Interaction. Journal of the American Chemical Society 2009, 131 (30) , 10546-10551. https://doi.org/10.1021/ja903248c
  47. Araceli Martínez, Daniel Zárate-Saldaña, Joel Vargas, Arlette A. Santiago. Unsaturated Copolyesters from Macrolactone/Norbornene: Toward Reaction Kinetics of Metathesis Copolymerization Using Ruthenium Carbene Catalysts. International Journal of Molecular Sciences 2022, 23 (9) , 4521. https://doi.org/10.3390/ijms23094521
  48. Xuwen Li, Li Han, Ruixue Zhang, Chao Li, Songbo Zhang, Hongyuan Bai, Xuefei Wang, Bo Wang, Hongwei Ma. Regulation from gradient to near periodic sequence during anionic copolymerization of styrene and dimethyl-[4-(1-phenyl-vinyl)phenyl]silane (DPE-SiH). Polymer 2022, 244 , 124663. https://doi.org/10.1016/j.polymer.2022.124663
  49. Cumali ÇELİK, Gokhan ACİK. Synthesis and Characterization of Benzodioxinone-Bearing Methacrylate-Based Random Copolymer via Atom Transfer Radical Polymerization. Journal of the Turkish Chemical Society Section A: Chemistry 2021, 8 (2) , 501-510. https://doi.org/10.18596/jotcsa.879021
  50. Subhajit Pal, Mahshid Alizadeh, Phally Kong, Andreas F. M. Kilbinger. Oxanorbornenes: promising new single addition monomers for the metathesis polymerization. Chemical Science 2021, 12 (19) , 6705-6711. https://doi.org/10.1039/D1SC00036E
  51. M. Zhou. alternating ring‐opening metathesis polymerization. 2020https://doi.org/10.1002/9783527809080.cataz00654
  52. Kana Nishimori, Makoto Ouchi. AB-alternating copolymers via chain-growth polymerization: synthesis, characterization, self-assembly, and functions. Chemical Communications 2020, 56 (24) , 3473-3483. https://doi.org/10.1039/D0CC00275E
  53. Ken-ichi Takao, Akihiro Ogura. Recent Advances in the Total Synthesis of Clavilactones. HETEROCYCLES 2020, 100 (9) , 1355. https://doi.org/10.3987/REV-20-928
  54. Jessica K. Su, Zexin Jin, Rui Zhang, Gang Lu, Peng Liu, Yan Xia. Tuning the Reactivity of Cyclopropenes from Living Ring‐Opening Metathesis Polymerization (ROMP) to Single‐Addition and Alternating ROMP. Angewandte Chemie 2019, 131 (49) , 17935-17940. https://doi.org/10.1002/ange.201909688
  55. Jessica K. Su, Zexin Jin, Rui Zhang, Gang Lu, Peng Liu, Yan Xia. Tuning the Reactivity of Cyclopropenes from Living Ring‐Opening Metathesis Polymerization (ROMP) to Single‐Addition and Alternating ROMP. Angewandte Chemie International Edition 2019, 58 (49) , 17771-17776. https://doi.org/10.1002/anie.201909688
  56. Veronica Paradiso, Fabia Grisi. Ruthenium‐Catalyzed Alternating Ring‐Opening Metathesis Copolymerization of Norborn‐2‐ene with Cyclic Olefins. Advanced Synthesis & Catalysis 2019, 361 (17) , 4133-4139. https://doi.org/10.1002/adsc.201900565
  57. Yiming Zhang, Li Han, Hongwei Ma, Lincan Yang, Pibo Liu, Heyu Shen, Chao Li, Yang Li. The investigation on synthesis of periodic polymers with 1,1-diphenylethylene (DPE) derivatives via living anionic polymerization. Polymer 2019, 169 , 95-105. https://doi.org/10.1016/j.polymer.2019.02.033
  58. Michael R. Buchmeiser. Functional Precision Polymers via Stereo- and Regioselective Polymerization Using Group 6 Metal Alkylidene and Group 6 and 8 Metal Alkylidene N -Heterocyclic Carbene Complexes. Macromolecular Rapid Communications 2019, 40 (1) , 1800492. https://doi.org/10.1002/marc.201800492
  59. Yuan-Zhen Ke, Shou-Ling Huang, Guoqiao Lai, Tien-Yau Luh. Selective ring-opening metathesis polymerization (ROMP) of cyclobutenes. Unsymmetrical ladderphane containing polycyclobutene and polynorbornene strands. Beilstein Journal of Organic Chemistry 2019, 15 , 44-51. https://doi.org/10.3762/bjoc.15.4
  60. Anton A. Homon, Oleksandr V. Hryshchuk, Serhii Trofymchuk, Oleg Michurin, Yuliya Kuchkovska, Dmytro S. Radchenko, Oleksandr O. Grygorenko. Synthesis of 3-Azabicyclo[3.2.0]heptane-Derived Building Blocks via [3+2] Cycloaddition. European Journal of Organic Chemistry 2018, 2018 (40) , 5596-5604. https://doi.org/10.1002/ejoc.201800972
  61. Kouhei Nadamoto, Kei Maruyama, Naoka Fujii, Toshiaki Ikeda, Shin-ichi Kihara, Takeharu Haino. Supramolecular Copolymerization by Sequence Reorganization of a Supramolecular Homopolymer. Angewandte Chemie 2018, 130 (24) , 7146-7151. https://doi.org/10.1002/ange.201800980
  62. Kouhei Nadamoto, Kei Maruyama, Naoka Fujii, Toshiaki Ikeda, Shin-ichi Kihara, Takeharu Haino. Supramolecular Copolymerization by Sequence Reorganization of a Supramolecular Homopolymer. Angewandte Chemie International Edition 2018, 57 (24) , 7028-7033. https://doi.org/10.1002/anie.201800980
  63. Stefan Brits, William J. Neary, Goutam Palui, Justin G. Kennemur. A new echelon of precision polypentenamers: highly isotactic branching on every five carbons. Polymer Chemistry 2018, 9 (13) , 1719-1727. https://doi.org/10.1039/C7PY01922J
  64. Junpo He, Jie Ren, Erlita Mastan. Sequence-Controlled Polymers by Chain Polymerization. 2017, 281-326. https://doi.org/10.1002/9783527806096.ch10
  65. Makoto Ouchi. Sequence Regulation in Chain-Growth Polymerizations. 2017, 257-279. https://doi.org/10.1002/9783527806096.ch9
  66. Tien-Yau Luh, Liang Ding. Recent advances in chemistry of ladderphanes and related polymers. Tetrahedron 2017, 73 (46) , 6487-6513. https://doi.org/10.1016/j.tet.2017.09.029
  67. Jia Wei, William Trout, Yoan C. Simon, Sergio Granados-Focil. Ring opening metathesis polymerization of triazole-bearing cyclobutenes: Diblock copolymer synthesis and evaluation of the effect of side group size on polymerization kinetics. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (11) , 1929-1939. https://doi.org/10.1002/pola.28565
  68. Shaofei Song, Zhisheng Fu, Junting Xu, Zhiqiang Fan. Synthesis of functional polyolefins via ring-opening metathesis polymerization of ester-functionalized cyclopentene and its copolymerization with cyclic comonomers. Polymer Chemistry 2017, 8 (38) , 5924-5933. https://doi.org/10.1039/C7PY01330B
  69. Dafni Moatsou, Amit Nagarkar, Andreas F. M. Kilbinger, Rachel K. O'Reilly. Degradable precision polynorbornenes via ring-opening metathesis polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54 (9) , 1236-1242. https://doi.org/10.1002/pola.27964
  70. Kun Liu, Lei Ren, Qing He, Wei Jian Xu. Synthesis of Copolymers by Living Carbanionic Alternating Copolymerization. Macromolecular Rapid Communications 2016, 37 (9) , 752-758. https://doi.org/10.1002/marc.201600009
  71. Malte S. Mikus, Sebastian Torker, Amir H. Hoveyda. Controllable ROMP Tacticity by Harnessing the Fluxionality of Stereogenic‐at‐Ruthenium Complexes. Angewandte Chemie 2016, 128 (16) , 5081-5086. https://doi.org/10.1002/ange.201601004
  72. Malte S. Mikus, Sebastian Torker, Amir H. Hoveyda. Controllable ROMP Tacticity by Harnessing the Fluxionality of Stereogenic‐at‐Ruthenium Complexes. Angewandte Chemie International Edition 2016, 55 (16) , 4997-5002. https://doi.org/10.1002/anie.201601004
  73. Yaochen Zheng, Shengying Cai, Li Peng, Yu Jin, Han Xu, Zhulin Weng, Zhengguo Gao, Bo Zhao, Chao Gao. Group interval-controlled polymers: an example of epoxy functional polymers via step-growth thiol–yne polymerization. Polymer Chemistry 2016, 7 (40) , 6202-6210. https://doi.org/10.1039/C6PY01343K
  74. Amit A. Nagarkar, Andreas F. M. Kilbinger. Catalytic living ring-opening metathesis polymerization. Nature Chemistry 2015, 7 (9) , 718-723. https://doi.org/10.1038/nchem.2320
  75. Debapriya Banerjee, Kenneth S. Schweizer. Controlling effective interactions and spatial dispersion of nanoparticles in multiblock copolymer melts. Journal of Polymer Science Part B: Polymer Physics 2015, 53 (16) , 1098-1111. https://doi.org/10.1002/polb.23752
  76. Minliang Li, Haibin Song, Baiquan Wang. Synthesis and Structures of N-Heterocyclic Carbene-Sulfonate Ruthenium Complexes and Their Applications in the Ring-Opening Metathesis Polymerization of Norbornene. European Journal of Inorganic Chemistry 2015, 2015 (24) , 4055-4061. https://doi.org/10.1002/ejic.201500499
  77. Christian Slugovc. Synthesis of Homopolymers and Copolymers. 2015, 1-23. https://doi.org/10.1002/9783527674107.ch27
  78. Peng Liu, Buck L. H. Taylor, Jesus Garcia-Lopez, Kendall N. Houk. Computational Studies of Ruthenium-Catalyzed Olefin Metathesis. 2015, 199-252. https://doi.org/10.1002/9783527674107.ch7
  79. Henry Martinez, Jihua Zhang, Shingo Kobayashi, Yuewen Xu, Louis M. Pitet, Megan E. Matta, Marc A. Hillmyer. Functionalized regio-regular linear polyethylenes from the ROMP of 3-substituted cyclooctenes. Applied Petrochemical Research 2015, 5 (1) , 19-25. https://doi.org/10.1007/s13203-014-0048-z
  80. Lei Yu, Long-Hai Wang, Zong-Tao Hu, Ye-Zi You, De-Cheng Wu, Chun-Yan Hong. Sequential Michael addition thiol–ene and radical-mediated thiol–ene reactions in one-pot produced sequence-ordered polymers. Polymer Chemistry 2015, 6 (9) , 1527-1532. https://doi.org/10.1039/C4PY01363H
  81. Jin Han, Yaochen Zheng, Bo Zhao, Sipei Li, Yuanchao Zhang, Chao Gao. Sequentially Hetero-functional, Topological Polymers by Step-growth Thiol-yne Approach. Scientific Reports 2014, 4 (1) https://doi.org/10.1038/srep04387
  82. Bernd Schmidt, Stefan Krehl. Domino and Other Olefin Metathesis Reaction Sequences. 2014, 187-232. https://doi.org/10.1002/9781118711613.ch5
  83. Astrid-Caroline Knall, Christian Slugovc. Olefin Metathesis Polymerization. 2014, 269-284. https://doi.org/10.1002/9781118711613.ch7
  84. Mahesh B. Halle, Rodney A. Fernandes. A relay ring-opening/double ring-closing metathesis strategy for the bicyclic macrolide-butenolide core structures. RSC Adv. 2014, 4 (108) , 63342-63348. https://doi.org/10.1039/C4RA10937F
  85. Dafni Moatsou, Claire F. Hansell, Rachel K. O'Reilly. Precision polymers: a kinetic approach for functional poly(norbornenes). Chem. Sci. 2014, 5 (6) , 2246-2250. https://doi.org/10.1039/C4SC00752B
  86. Flavien Leroux, Véronique Montembault, Sagrario Pascual, William Guerin, Sophie M. Guillaume, Laurent Fontaine. Synthesis and polymerization of cyclobutenyl-functionalized polylactide and polycaprolactone: a consecutive ROP/ROMP route towards poly(1,4-butadiene)-g-polyesters. Polymer Chemistry 2014, 5 (10) , 3476. https://doi.org/10.1039/c3py01611k
  87. Henry Martinez, Ning Ren, Megan E. Matta, Marc A. Hillmyer. Ring-opening metathesis polymerization of 8-membered cyclic olefins. Polymer Chemistry 2014, 5 (11) , 3507. https://doi.org/10.1039/c3py01787g
  88. D. Le, G. Morandi, S. Legoupy, S. Pascual, V. Montembault, L. Fontaine. Cyclobutenyl macromonomers: Synthetic strategies and ring-opening metathesis polymerization. European Polymer Journal 2013, 49 (5) , 972-983. https://doi.org/10.1016/j.eurpolymj.2013.01.008
  89. Dao Le, Véronique Montembault, Sagrario Pascual, Floraine Collette, Valérie Héroguez, Laurent Fontaine. Synthesis of 1,4-polybutadiene-g-poly(ethylene oxide) via the macromonomer approach by ROMP. Polymer Chemistry 2013, 4 (6) , 2168. https://doi.org/10.1039/c3py21103g
  90. Oskar Nuyken, Martin Schneider, Ulrich Frenzel. Metathesis Polymerization. 2012https://doi.org/10.1002/0471440264.pst195
  91. J.P. Moerdyk, C.W. Bielawski. Architectures of Polymers Synthesized using ROMP. 2012, 523-550. https://doi.org/10.1016/B978-0-444-53349-4.00094-7
  92. Julia M. Robinson, Sami F. Tlais, Jennie Fong, Rick L. Danheiser. A [4+4] annulation strategy for the synthesis of eight-membered carbocycles based on intramolecular cycloadditions of conjugated enynes. Tetrahedron 2011, 67 (51) , 9890-9898. https://doi.org/10.1016/j.tet.2011.09.031
  93. Emilie Brulé, Jia Guo, Geoffrey W. Coates, Christophe M. Thomas. Metal-Catalyzed Synthesis of Alternating Copolymers. Macromolecular Rapid Communications 2011, 32 (2) , 169-185. https://doi.org/10.1002/marc.201000524
  94. James W. Herndon. The chemistry of the carbon–transition metal double and triple bond: Annual survey covering the year 2009. Coordination Chemistry Reviews 2011, 255 (1-2) , 3-100. https://doi.org/10.1016/j.ccr.2010.07.003
  95. Sutthira Sutthasupa, Masashi Shiotsuki, Fumio Sanda. Recent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials. Polymer Journal 2010, 42 (12) , 905-915. https://doi.org/10.1038/pj.2010.94
  96. Sebastian Torker, Andre Müller, Peter Chen. Building Stereoselectivity into a Chemoselective Ring-Opening Metathesis Polymerization Catalyst for Alternating Copolymerization. Angewandte Chemie 2010, 122 (22) , 3850-3854. https://doi.org/10.1002/ange.200906846
  97. Sebastian Torker, Andre Müller, Peter Chen. Building Stereoselectivity into a Chemoselective Ring-Opening Metathesis Polymerization Catalyst for Alternating Copolymerization. Angewandte Chemie International Edition 2010, 49 (22) , 3762-3766. https://doi.org/10.1002/anie.200906846
  98. Meiran Xie, Weizhen Wang, Liang Ding, Jingwei Liu, Dan Yang, Ling Wei, Yiqun Zhang. Cleavable multiblock copolymer synthesized by ring-opening metathesis copolymerization of cyclooctene and macrocyclic olefin and its hydrolysis to give carboxyl-telechelic polymer. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48 (2) , 380-388. https://doi.org/10.1002/pola.23795
  99. Bogdan Spurcaciu, Emil Buzdugan, Cristian Nicolae, Paul Ghioca, Lorena Iancu, Valerian Dragutan, Ileana Dragutan. New Applications of Ring-Opening Metathesis Polymerization for Grafting Alkylene Oxide-Based Copolymers. 2010, 409-416. https://doi.org/10.1007/978-90-481-3433-5_27
  100. José Barluenga, Lorena Riesgo, Luis A. López, Eduardo Rubio, Miguel Tomás. Discrimination of Diazo Compounds Toward Carbenoids: Copper(I)-Catalyzed Synthesis of Substituted Cyclobutenes. Angewandte Chemie 2009, 121 (41) , 7705-7708. https://doi.org/10.1002/ange.200903902
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect