ACS Publications. Most Trusted. Most Cited. Most Read
Structure of Triplet Propynylidene (HCCCH) as Probed by IR, UV/vis, and EPR Spectroscopy of Isotopomers
My Activity

Figure 1Loading Img
    Article

    Structure of Triplet Propynylidene (HCCCH) as Probed by IR, UV/vis, and EPR Spectroscopy of Isotopomers
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, and Department of Chemistry, Truman State University, Kirksville, Missouri 63501
    †University of Wisconsin.
    ‡Current Address: CIMA Labs, Inc., 7325 Aspen Lane, Brooklyn Park, MN 55428.
    §Truman State University.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 26, 9442–9455
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja901606a
    Published June 16, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Spectroscopic data for triplet isotopomers H−C−C−C−H, H−13C−C−C−H, and H−C−13C−C−H are consistent with computational predictions for a symmetric structure in which the terminal carbons are equivalent (C2 or C2v) and are inconsistent with a planar (Cs) structure in which they are not. Experimentally observed 13C isotope shifts in the IR spectra and 13C hyperfine coupling constants in the EPR spectra exhibit good agreement with values predicted by theory for a C2 structure. The 13C hyperfine coupling constants also provide an independent experimental estimate for the bond angles in the molecule. The isotope-dependence of the zero-field splitting parameters reveals the influence of molecular motion in modulating the values of these parameters. The interpretation of motional effects provides a basis for rationalizing the anomalously low E value, which had previously been interpreted in terms of an axially symmetric (Dh) structure. Computational studies involving Natural Bond Orbital and Natural Resonance Theory analyses provide insight into the spin densities and the complex electronic structure of this reactive intermediate.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Estimation of bond angles and D value in triplet HCCCH (2); EPR hyperfine simulations of triplet HCCCH (2a, 2b); UV/vis spectra of triplet HCCCH (2, 2a); experimental and computed IR spectra for triplet HCCCH (2, 2a, 2d); computed IR harmonic vibrational frequencies and intensities for triplet Cs-structures (3a, 3c); Cartesian coordinates for computed structures; complete literature citation for ref 82. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 39 publications.

    1. Yun Chang, Ying-Sheng Wu, Shih-Huang Tung, Wen-Chang Chen, Chu-Chen Chueh, Cheng-Liang Liu. N-Type Doping of Naphthalenediimide-Based Random Donor–Acceptor Copolymers to Enhance Transistor Performance and Structural Crystallinity. ACS Applied Materials & Interfaces 2023, 15 (12) , 15745-15757. https://doi.org/10.1021/acsami.2c23067
    2. Weiyu Li, Lei Zhou. Synthesis of Tetrasubstituted Allenes via Visible-Light-Promoted Radical 1,3-Difunctionalization of Alkynyl Diazo Compounds. Organic Letters 2022, 24 (22) , 3976-3981. https://doi.org/10.1021/acs.orglett.2c01366
    3. Yury Kutin, Justus Reitz, Patrick W. Antoni, Anton Savitsky, Dimitrios A. Pantazis, Müge Kasanmascheff, Max M. Hansmann. Characterization of a Triplet Vinylidene. Journal of the American Chemical Society 2021, 143 (50) , 21410-21415. https://doi.org/10.1021/jacs.1c11062
    4. Bastian Bernhardt, Marcel Ruth, André K. Eckhardt, Peter R. Schreiner. Ethynylhydroxycarbene (H–C≡C–C̈–OH). Journal of the American Chemical Society 2021, 143 (10) , 3741-3746. https://doi.org/10.1021/jacs.1c00897
    5. Esfir G. Baskir, Valentin D. Gvozdev, Konstantin N. Shavrin, Mikhail P. Egorov, Oleg M. Nefedov. Infrared-Spectroscopic Study of (4-Methylpent-3-en-1-ynyl)methylthiocarbene, Its Photochemical Transformations, and Reactions in an Argon Matrix. The Journal of Physical Chemistry A 2019, 123 (42) , 9175-9184. https://doi.org/10.1021/acs.jpca.9b06798
    6. Engelbert Reusch, Dustin Kaiser, Domenik Schleier, Rachel Buschmann, Anke Krueger, Thomas Hermann, Bernd Engels, Ingo Fischer, Patrick Hemberger. Pentadiynylidene and Its Methyl-Substituted Derivates: Threshold Photoelectron Spectroscopy of R1-C5-R2 Triplet Carbon Chains. The Journal of Physical Chemistry A 2019, 123 (10) , 2008-2017. https://doi.org/10.1021/acs.jpca.8b12244
    7. Tamás Vörös, Győző György Lajgút, Gábor Magyarfalvi, and György Tarczay . Photochemical Formation of Diazenecarbaldehyde (HNNCHO) and Diazenecarbothialdehyde (HNNCHS) in Low-Temperature Matrices. The Journal of Physical Chemistry A 2018, 122 (4) , 1034-1044. https://doi.org/10.1021/acs.jpca.7b12820
    8. Curt Wentrup . Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles. Chemical Reviews 2017, 117 (5) , 4562-4623. https://doi.org/10.1021/acs.chemrev.6b00738
    9. Stephanie N. Knezz, Terese A. Waltz, Benjamin C. Haenni, Nicola J. Burrmann, and Robert J. McMahon . Spectroscopy and Photochemistry of Triplet 1,3-Dimethylpropynylidene (MeC3Me). Journal of the American Chemical Society 2016, 138 (38) , 12596-12604. https://doi.org/10.1021/jacs.6b07444
    10. Tao Yang, Beni B. Dangi, Pavlo Maksyutenko, and Ralf I. Kaiser , Luke W. Bertels and Martin Head-Gordon . Combined Experimental and Theoretical Study on the Formation of the Elusive 2-Methyl-1-silacycloprop-2-enylidene Molecule under Single Collision Conditions via Reactions of the Silylidyne Radical (SiH; X2Π) with Allene (H2CCCH2; X1A1) and D4-Allene (D2CCCD2; X1A1). The Journal of Physical Chemistry A 2015, 119 (50) , 12562-12578. https://doi.org/10.1021/acs.jpca.5b09773
    11. Jing-Heng Meng, Qing-Yu Liu, and Sheng-Gui He . Photoelectron Imaging Spectroscopy of AuC3H– Anions: Four Isomers. The Journal of Physical Chemistry A 2015, 119 (46) , 11265-11270. https://doi.org/10.1021/acs.jpca.5b05122
    12. David L. Osborn, Kristen M. Vogelhuber, Scott W. Wren, Elisa M. Miller, Yu-Ju Lu, Amanda S. Case, Leonid Sheps, Robert J. McMahon, John F. Stanton, Lawrence B. Harding, Branko Ruscic, and W. Carl Lineberger . Electronic States of the Quasilinear Molecule Propargylene (HCCCH) from Negative Ion Photoelectron Spectroscopy. Journal of the American Chemical Society 2014, 136 (29) , 10361-10372. https://doi.org/10.1021/ja5039984
    13. Martin Høj, David Kvaskoff, and Curt Wentrup . Nitrene-Carbene-Carbene Rearrangement. Photolysis and Thermolysis of Tetrazolo[5,1-a]phthalazine with Formation of 1-Phthalazinylnitrene, o-Cyanophenylcarbene, and Phenylcyanocarbene. The Journal of Organic Chemistry 2014, 79 (1) , 307-313. https://doi.org/10.1021/jo402448u
    14. Manabu Abe . Diradicals. Chemical Reviews 2013, 113 (9) , 7011-7088. https://doi.org/10.1021/cr400056a
    15. Scott Gronert, James R. Keeffe, and Rory A. More O’Ferrall . Stabilities of Carbenes: Independent Measures for Singlets and Triplets. Journal of the American Chemical Society 2011, 133 (10) , 3381-3389. https://doi.org/10.1021/ja1071493
    16. Phillip S. Thomas, Nathan P. Bowling, Nicola J. Burrmann, and Robert J. McMahon. Dialkynyl Carbene Derivatives: Generation and Characterization of Triplet tert-Butylpentadiynylidene (t-Bu−C≡C−C̈−C≡C−H) and Dimethylpentadiynylidene (Me−C≡C−C̈−C≡C−Me). The Journal of Organic Chemistry 2010, 75 (19) , 6372-6381. https://doi.org/10.1021/jo101096n
    17. Nathan P. Bowling, Nicola J. Burrmann, Robert J. Halter, Jonathan A. Hodges, and Robert J. McMahon. Synthesis of Simple Diynals, Diynones, Their Hydrazones, and Diazo Compounds: Precursors to a Family of Dialkynyl Carbenes (R1—C≡C—C̈—C≡C—R2). The Journal of Organic Chemistry 2010, 75 (19) , 6382-6390. https://doi.org/10.1021/jo101125y
    18. David Kvaskoff, Pawel Bednarek and Curt Wentrup. 2-Pyridylnitrene and 3-Pyridazylcarbene and Their Relationship via Ring-Expansion, Ring-Opening, Ring-Contraction, and Fragmentation. The Journal of Organic Chemistry 2010, 75 (5) , 1600-1611. https://doi.org/10.1021/jo902570d
    19. Lenin J. Díaz Soto, Ricardo R. Oliveira, Leonardo Baptista, Enio F. da Silveira, Marco Antonio Chaer Nascimento. Energy and spectroscopic parameters of neutral and cations isomers of the C n H 2 ( n  = 2–6) families using high‐level ab‐initio approaches. Journal of Computational Chemistry 2024, 45 (32) , 2793-2804. https://doi.org/10.1002/jcc.27485
    20. Mengtian Huo, Yongquan Ning, Xudong Zheng, Xinyue Han, Swastik Karmakar, Jing Sun, Xihe Bi. Synthesis of Propargyl Boranes via Silver Catalyzed Insertion of Alkynyl Carbene into B‐H Bond. ChemCatChem 2023, 15 (2) https://doi.org/10.1002/cctc.202201381
    21. Terri E. Field-Theodore, Peter R. Taylor. Interstellar hide and go seek: C 3 H 4 O. There and back (again). Physical Chemistry Chemical Physics 2022, 24 (32) , 19184-19198. https://doi.org/10.1039/D2CP00995A
    22. George C. Shields. Twenty years of exceptional success: The molecular education and research consortium in undergraduate computational chemistry ( MERCURY ). International Journal of Quantum Chemistry 2020, 120 (20) https://doi.org/10.1002/qua.26274
    23. Michael N. R. Ashfold, Rebecca A. Ingle, Tolga N. V. Karsili, Jingsong Zhang. Photoinduced C–H bond fission in prototypical organic molecules and radicals. Physical Chemistry Chemical Physics 2019, 21 (26) , 13880-13901. https://doi.org/10.1039/C8CP07454B
    24. Venkatesan S. Thimmakondu, Amir Karton. The quest for the carbene bent-pentadiynylidene isomer of C5H2. Chemical Physics 2018, 515 , 411-417. https://doi.org/10.1016/j.chemphys.2018.04.023
    25. Gustavo A. Garcia, Bérenger Gans, Julia Krüger, Fabian Holzmeier, Anja Röder, Allan Lopes, Christa Fittschen, Christian Alcaraz, Jean-Christophe Loison. Valence shell threshold photoelectron spectroscopy of C 3 H x ( x = 0–3). Physical Chemistry Chemical Physics 2018, 20 (13) , 8707-8718. https://doi.org/10.1039/C8CP00510A
    26. Jean-Christophe Loison, Marcelino Agúndez, Valentine Wakelam, Evelyne Roueff, Pierre Gratier, Núria Marcelino, Dianailys Nuñez Reyes, José Cernicharo, Maryvonne Gerin. The interstellar chemistry of C3H and C3H2 isomers. Monthly Notices of the Royal Astronomical Society 2017, 470 (4) , 4075-4088. https://doi.org/10.1093/mnras/stx1265
    27. Yang Yang, Zhaohong Liu, Alessio Porta, Giuseppe Zanoni, Xihe Bi. Alkynyl N ‐Nosylhydrazones: Easy Decomposition to Alknynl Diazomethanes and Application in Allene Synthesis. Chemistry – A European Journal 2017, 23 (38) , 9009-9013. https://doi.org/10.1002/chem.201701462
    28. Michael S. Schuurman, Jens Giegerich, Kai Pachner, Daniel Lang, Benjamin Kiendl, Ryan J. MacDonell, Anke Krueger, Ingo Fischer. Photodissociation Dynamics of Cyclopropenylidene, c ‐C 3 H 2. Chemistry – A European Journal 2015, 21 (41) , 14486-14495. https://doi.org/10.1002/chem.201501624
    29. Bernadette M. Broderick, Christopher P. Moradi, Gary E. Douberly. Infrared laser Stark spectroscopy of hydroxymethoxycarbene in 4He nanodroplets. Chemical Physics Letters 2015, 639 , 99-104. https://doi.org/10.1016/j.cplett.2015.09.001
    30. Bernadette M. Broderick, Laura McCaslin, Christopher P. Moradi, John F. Stanton, Gary E. Douberly. Reactive intermediates in 4He nanodroplets: Infrared laser Stark spectroscopy of dihydroxycarbene. The Journal of Chemical Physics 2015, 142 (14) https://doi.org/10.1063/1.4917421
    31. Jens Giegerich, Jens Petersen, Roland Mitrić, Ingo Fischer. Photodissociation dynamics of propargylene, HCCCH. Phys. Chem. Chem. Phys. 2014, 16 (13) , 6294-6302. https://doi.org/10.1039/C3CP53213E
    32. Dennis Gerbig, David Ley. Computational methods for contemporary carbene chemistry. WIREs Computational Molecular Science 2013, 3 (3) , 242-272. https://doi.org/10.1002/wcms.1124
    33. Ralf I. Kaiser, Xibin Gu, Fangtong Zhang, Pavlo Maksyutenko. Crossed beam reactions of methylidyne [CH(X 2 Π)] with D2-acetylene [C 2 D 2 (X 1 Σ g + )] and of D1-methylidyne [CD(X 2 Π)] with acetylene [C 2 H 2 (X 1 Σ g + )]. Phys. Chem. Chem. Phys. 2012, 14 (2) , 575-588. https://doi.org/10.1039/C1CP22635E
    34. Eugenii Ya. Misochko, Alexander V. Akimov, Denis V. Korchagin, Artem A. Masitov, Konstantin N. Shavrin. Matrix isolation ESR spectroscopy and quantum chemical calculations on 5-methylhexa-1,2,4-triene-1,3-diyl, a highly delocalized triplet “hybrid” carbene. Physical Chemistry Chemical Physics 2012, 14 (6) , 2032. https://doi.org/10.1039/c2cp22853j
    35. E. Ya. Misochko, A. V. Akimov, A. A. Masitov, D. V. Korchagin, S. M. Aldoshin, S. E. Boganov, K. N. Shavrin, V. D. Gvozdev, M. P. Egorov, O. M. Nefedov. The electronic structure of 5-methylhexa-1,2,4-triene-1,3-diyl, the first representative of highly delocalized triplet ethynylvinylcarbenes, from ESR spectroscopy data and quantum chemical calculations. Russian Chemical Bulletin 2011, 60 (11) , 2180-2187. https://doi.org/10.1007/s11172-011-0336-z
    36. Pavlo Maksyutenko, Fangtong Zhang, Xibin Gu, Ralf I. Kaiser. A crossed molecular beam study on the reaction of methylidyne radicals [CH(X 2 Π)] with acetylene [C 2 H 2 (X 1 Σ g + )]—competing C 3 H 2 + H and C 3 H + H 2 channels. Phys. Chem. Chem. Phys. 2011, 13 (1) , 240-252. https://doi.org/10.1039/C0CP01529F
    37. Michael Steinbauer, Melanie Lang, Ingo Fischer, Bárbara K. Cunha de Miranda, Claire Romanzin, Christian Alcaraz. The photoionisation of propargylene and diazopropyne. Physical Chemistry Chemical Physics 2011, 13 (40) , 17956. https://doi.org/10.1039/c1cp22265a
    38. Christopher J. Rhodes. Electron spin resonance. Annual Reports Section "C" (Physical Chemistry) 2011, 107 , 47. https://doi.org/10.1039/c1pc90002a
    39. Stefan Bräse. Organische Chemie 2009. Nachrichten aus der Chemie 2010, 58 (3) , 267-299. https://doi.org/10.1002/nadc.201068299

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 26, 9442–9455
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja901606a
    Published June 16, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    1390

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.