ACS Publications. Most Trusted. Most Cited. Most Read
Reverse pH-Dependence of Chromophore Protonation Explains the Large Stokes Shift of the Red Fluorescent Protein mKeima
My Activity

Figure 1Loading Img
    Communication

    Reverse pH-Dependence of Chromophore Protonation Explains the Large Stokes Shift of the Red Fluorescent Protein mKeima
    Click to copy article linkArticle link copied!

    View Author Information
    Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire Végétale, CEA, CNRS, INRA, Université Joseph Fourier, 17 rue des Martyrs, F-38054 Grenoble, France, IBS, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, Université Joseph Fourier, 41 rue Jules Horowitz, F-38027 Grenoble, France, and ESRF, 6 rue Jules Horowitz, BP 220, F-38043 Grenoble Cedex, France
    †Institut de Recherches en Technologies et Sciences pour le Vivant.
    ‡Institut de Biologie Structurale Jean-Pierre Ebel.
    §ESRF.
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 30, 10356–10357
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja903695n
    Published July 10, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The recently developed red fluorescent protein Keima exhibits the largest Stokes shift (180 nm) observed to date. Combining X-ray crystallography with (in crystallo) UV−visible absorption, fluorescence, and Raman spectroscopy, we have investigated molecular determinants of this peculiar property. The results demonstrate a pH-dependent “reverse chromophore protonation” triggered by the key residue Asp157 and which couples to cis/trans isomerization of the chromophore. These data provided guidelines to rationally design a useful Keima variant.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Crystal growth, X-ray and spectroscopic data collection, structure determination, and illustrations. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 86 publications.

    1. Ryohei Ozaki-Noma, Tetsuichi Wazawa, Taishi Kakizuka, Hisashi Shidara, Kiwamu Takemoto, Takeharu Nagai. Positive-Type Reversibly Photoswitching Red Fluorescent Protein for Dual-Color Superresolution Imaging with Single Light Exposure for Off-Switching. ACS Nano 2025, Article ASAP.
    2. Guang-Ning Pan, Xiang-Yang Liu, Ganglong Cui, Wei-Hai Fang. QM/MM Calculations on Excited-State Proton Transfer and Photoisomerization of a Red Fluorescent Protein mKeima with Large Stokes Shift. Biochemistry 2025, 64 (1) , 277-288. https://doi.org/10.1021/acs.biochem.4c00586
    3. Garima Bhutani, Pratima Verma, Ajay Jayachandran, Sasthi Paul, Kausik Chattopadhyay, Arijit K. De. Unveiling the Role of Hidden Isomers in Large Stokes Shift in mKeima: Harnessing pH-Sensitive Dual-Emission in Bioimaging. The Journal of Physical Chemistry B 2023, 127 (14) , 3197-3207. https://doi.org/10.1021/acs.jpcb.3c01531
    4. Freddy Zutterman, Vincent Liégeois, Benoît Champagne. TDDFT Investigation of the Raman and Resonant Raman Spectra of Fluorescent Protein Chromophore Models. The Journal of Physical Chemistry B 2022, 126 (18) , 3414-3424. https://doi.org/10.1021/acs.jpcb.2c01202
    5. Maria G. Khrenova, Fedor D. Mulashkin, Alexander V. Nemukhin. Modeling Spectral Tuning in Red Fluorescent Proteins Using the Dipole Moment Variation upon Excitation. Journal of Chemical Information and Modeling 2021, 61 (10) , 5125-5132. https://doi.org/10.1021/acs.jcim.1c00981
    6. Nina Eleni Christou, Karine Giandoreggio-Barranco, Isabel Ayala, Oleksandr Glushonkov, Virgile Adam, Dominique Bourgeois, Bernhard Brutscher. Disentangling Chromophore States in a Reversibly Switchable Green Fluorescent Protein: Mechanistic Insights from NMR Spectroscopy. Journal of the American Chemical Society 2021, 143 (19) , 7521-7530. https://doi.org/10.1021/jacs.1c02442
    7. Fasheng Chen, Qiao Zeng, Wei Zhuang, and WanZhen Liang . Characterizing the Structures, Spectra, and Energy Landscapes Involved in the Excited-State Proton Transfer Process of Red Fluorescent Protein LSSmKate1. The Journal of Physical Chemistry B 2016, 120 (37) , 9833-9842. https://doi.org/10.1021/acs.jpcb.6b04708
    8. Eunjin Yoon, Patrick E. Konold, Junghwa Lee, Taiha Joo, and Ralph Jimenez . Far-Red Emission of mPlum Fluorescent Protein Results from Excited-State Interconversion between Chromophore Hydrogen-Bonding States. The Journal of Physical Chemistry Letters 2016, 7 (12) , 2170-2174. https://doi.org/10.1021/acs.jpclett.6b00823
    9. Eduard Fron, Herlinde De Keersmaecker, Susana Rocha, Yannick Baeten, Gang Lu, Hiroshi Uji-i, Mark Van der Auweraer, Johan Hofkens, and Hideaki Mizuno . Mechanism Behind the Apparent Large Stokes Shift in LSSmOrange Investigated by Time-Resolved Spectroscopy. The Journal of Physical Chemistry B 2015, 119 (47) , 14880-14891. https://doi.org/10.1021/acs.jpcb.5b09189
    10. Marc Nadal-Ferret, Ricard Gelabert, Miquel Moreno, and José M. Lluch . How Does the Environment Affect the Absorption Spectrum of the Fluorescent Protein mKeima?. Journal of Chemical Theory and Computation 2013, 9 (3) , 1731-1742. https://doi.org/10.1021/ct301003t
    11. Carlos Randino, Miquel Moreno, Ricard Gelabert, and José M. Lluch . Peek at the Potential Energy Surfaces of the LSSmKate1 and LSSmKate2 Proteins. The Journal of Physical Chemistry B 2012, 116 (49) , 14302-14310. https://doi.org/10.1021/jp3104134
    12. Fedor V. Subach and Vladislav V. Verkhusha . Chromophore Transformations in Red Fluorescent Proteins. Chemical Reviews 2012, 112 (7) , 4308-4327. https://doi.org/10.1021/cr2001965
    13. Bokyung Kim, Christopher N. Lam, and Bradley D. Olsen . Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers. Macromolecules 2012, 45 (11) , 4572-4580. https://doi.org/10.1021/ma2024914
    14. Mathew Tantama, Yin Pun Hung, and Gary Yellen . Imaging Intracellular pH in Live Cells with a Genetically Encoded Red Fluorescent Protein Sensor. Journal of the American Chemical Society 2011, 133 (26) , 10034-10037. https://doi.org/10.1021/ja202902d
    15. Kevin P. Kent and Steven G. Boxer . Light-Activated Reassembly of Split Green Fluorescent Protein. Journal of the American Chemical Society 2011, 133 (11) , 4046-4052. https://doi.org/10.1021/ja110256c
    16. Kiryl D. Piatkevich, Vladimir N. Malashkevich, Steven C. Almo and Vladislav V. Verkhusha. Engineering ESPT Pathways Based on Structural Analysis of LSSmKate Red Fluorescent Proteins with Large Stokes Shift. Journal of the American Chemical Society 2010, 132 (31) , 10762-10770. https://doi.org/10.1021/ja101974k
    17. Mickaël Lelimousin, Virgile Adam, G. Ulrich Nienhaus, Dominique Bourgeois and Martin J. Field . Photoconversion of the Fluorescent Protein EosFP: A Hybrid Potential Simulation Study Reveals Intersystem Crossings. Journal of the American Chemical Society 2009, 131 (46) , 16814-16823. https://doi.org/10.1021/ja905380y
    18. Mickaël Lelimousin, Marjolaine Noirclerc-Savoye, Christelle Lazareno-Saez, Bernhard Paetzold, Sophie Le Vot, Richard Chazal, Pauline Macheboeuf, Martin J. Field, Dominique Bourgeois and Antoine Royant . Intrinsic Dynamics in ECFP and Cerulean Control Fluorescence Quantum Yield. Biochemistry 2009, 48 (42) , 10038-10046. https://doi.org/10.1021/bi901093w
    19. J. Nathan Henderson, Maire F. Osborn, Nayden Koon, Rinat Gepshtein, Dan Huppert and S. James Remington . Excited State Proton Transfer in the Red Fluorescent Protein mKeima. Journal of the American Chemical Society 2009, 131 (37) , 13212-13213. https://doi.org/10.1021/ja904665x
    20. Garima Bhutani, Pratima Verma, Sasthi Paul, Shaina Dhamija, Kausik Chattopadhyay, Arijit K. De. Elucidating photocycle in large Stokes shift red fluorescent proteins: Focus on mKeima. Photochemistry and Photobiology 2024, 100 (4) , 897-909. https://doi.org/10.1111/php.13964
    21. Ki Hyun Nam, Yongbin Xu. Structural Analysis of the Large Stokes Shift Red Fluorescent Protein tKeima. Molecules 2024, 29 (11) , 2579. https://doi.org/10.3390/molecules29112579
    22. Riccardo Nifosì, Barbara Storti, Ranieri Bizzarri. Reversibly switchable fluorescent proteins: “the fair switch project”. La Rivista del Nuovo Cimento 2024, 47 (2) , 91-178. https://doi.org/10.1007/s40766-024-00052-1
    23. Shu-Ang Li, Xiao-Yan Meng, Ying-Jie Zhang, Cai-Li Chen, Yu-Xue Jiao, Yong-Qing Zhu, Pei-Pei Liu, Wei Sun. Progress in pH-Sensitive sensors: essential tools for organelle pH detection, spotlighting mitochondrion and diverse applications. Frontiers in Pharmacology 2024, 14 https://doi.org/10.3389/fphar.2023.1339518
    24. Alexandra J. Gilsrud, Derek P. Narendra. Methods for Monitoring Mitophagy Using mt-Keima. 2024, 151-160. https://doi.org/10.1007/978-1-0716-4067-8_12
    25. Viola Nähse, Camilla Raiborg, Kia Wee Tan, Sissel Mørk, Maria Lyngaas Torgersen, Eva Maria Wenzel, Mireia Nager, Veijo T. Salo, Terje Johansen, Elina Ikonen, Kay Oliver Schink, Harald Stenmark. ATPase activity of DFCP1 controls selective autophagy. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39641-9
    26. Trisha Diba Farha, Samyoung Kim, Mieko Imayasu, Atsushi Miyawaki, Hidekazu Tsutsui. Reverse pH-dependent fluorescence protein visualizes pattern of interfacial proton dynamics during hydrogen evolution reaction. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-44758-4
    27. Taylor D. Krueger, Cheng Chen, Chong Fang. Targeting Ultrafast Spectroscopic Insights into Red Fluorescent Proteins. Chemistry – An Asian Journal 2023, 18 (20) https://doi.org/10.1002/asia.202300668
    28. Cheng Chen, J. Nathan Henderson, Dmitry A. Ruchkin, Jacob M. Kirsh, Mikhail S. Baranov, Alexey M. Bogdanov, Jeremy H. Mills, Steven G. Boxer, Chong Fang. Structural Characterization of Fluorescent Proteins Using Tunable Femtosecond Stimulated Raman Spectroscopy. International Journal of Molecular Sciences 2023, 24 (15) , 11991. https://doi.org/10.3390/ijms241511991
    29. Hongli Li, Celien Lismont, Cláudio F. Costa, Mohamed A. F. Hussein, Myriam Baes, Marc Fransen. Enhanced Levels of Peroxisome-Derived H2O2 Do Not Induce Pexophagy but Impair Autophagic Flux in HEK-293 and HeLa Cells. Antioxidants 2023, 12 (3) , 613. https://doi.org/10.3390/antiox12030613
    30. Minji Wang, Yifan Da, Yang Tian. Fluorescent proteins and genetically encoded biosensors. Chemical Society Reviews 2023, 52 (4) , 1189-1214. https://doi.org/10.1039/D2CS00419D
    31. Taylor D. Krueger, Longteng Tang, Chong Fang. Delineating Ultrafast Structural Dynamics of a Green-Red Fluorescent Protein for Calcium Sensing. Biosensors 2023, 13 (2) , 218. https://doi.org/10.3390/bios13020218
    32. Ziyu Wang, Ya Zhang, Cheng Chen, Ruixue Zhu, Jiaming Jiang, Tsu‐Chien Weng, Quanjiang Ji, Yifan Huang, Chong Fang, Weimin Liu. Mapping the Complete Photocycle that Powers a Large Stokes Shift Red Fluorescent Protein. Angewandte Chemie 2023, 135 (5) https://doi.org/10.1002/ange.202212209
    33. Ziyu Wang, Ya Zhang, Cheng Chen, Ruixue Zhu, Jiaming Jiang, Tsu‐Chien Weng, Quanjiang Ji, Yifan Huang, Chong Fang, Weimin Liu. Mapping the Complete Photocycle that Powers a Large Stokes Shift Red Fluorescent Protein. Angewandte Chemie International Edition 2023, 62 (5) https://doi.org/10.1002/anie.202212209
    34. Juhyung Lee, Yue Xu, Layla Saidi, Miao Xu, Konrad Zinsmaier, Yihong Ye. Abnormal triaging of misfolded proteins by adult neuronal ceroid lipofuscinosis-associated DNAJC5/CSPα mutants causes lipofuscin accumulation. Autophagy 2023, 19 (1) , 204-223. https://doi.org/10.1080/15548627.2022.2065618
    35. M.G. Khrenova, A.P. Savitsky. Fluorescent proteins. 2023, 337-349. https://doi.org/10.1016/B978-0-323-91738-4.00015-4
    36. Yuko Kato, Koji Yoshida, Yoshihito Ohba, Ikki Fujimoto, Yukimitsu Imahara, Shu Nakachi, Kenichiro Nakashima, Kosei Shioji, Toshio Yamaguchi. Different properties of two types of red fluorescent proteins in octocoral, Scleronephthya spp. as Akane families. Luminescence 2022, 37 (12) , 2074-2082. https://doi.org/10.1002/bio.4394
    37. Jonas Benjamin Michaelis, Melinda Elaine Brunstein, Süleyman Bozkurt, Ludovico Alves, Martin Wegner, Manuel Kaulich, Christian Pohl, Christian Münch. Protein import motor complex reacts to mitochondrial misfolding by reducing protein import and activating mitophagy. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32564-x
    38. Kun Liu, Xing Li, Zheng Li, Jiani Cao, Xiaoyan Li, Youqing Xu, Lei Liu, Tongbiao Zhao. Evaluating mitophagy in embryonic stem cells by using fluorescence-based imaging. Frontiers in Cell and Developmental Biology 2022, 10 https://doi.org/10.3389/fcell.2022.910464
    39. Garima Bhutani, Pratima Verma, Kausik Chattopadhyay, Arijit K. De. Ultrafast Dynamics of “Reverse Protonation” in the Red Fluorescent Protein mKeima. 2022, W4A.1. https://doi.org/10.1364/UP.2022.W4A.1
    40. Hidehiko Kawai, Kentaro Yazama, Yuri Yanai, Ryotaro Kamitsubo, Hiroyuki Kamiya. Gene correction by 5′-tailed duplexes with short editor oligodeoxyribonucleotides. Journal of Bioscience and Bioengineering 2021, 132 (6) , 552-559. https://doi.org/10.1016/j.jbiosc.2021.08.012
    41. Tonje Sønstevold, Nikolai Engedal, Maria Lyngaas Torgersen. Perturbation of Cellular Redox Homeostasis Dictates Divergent Effects of Polybutyl Cyanoacrylate (PBCA) Nanoparticles on Autophagy. Cells 2021, 10 (12) , 3432. https://doi.org/10.3390/cells10123432
    42. Suresh Kumar, Ruheena Javed, Michal Mudd, Sandeep Pallikkuth, Keith A. Lidke, Ashish Jain, Karthikeyan Tangavelou, Sigurdur Runar Gudmundsson, Chunyan Ye, Tor Erik Rusten, Jan Haug Anonsen, Alf Håkon Lystad, Aurore Claude-Taupin, Anne Simonsen, Michelle Salemi, Brett Phinney, Jing Li, Lian-Wang Guo, Steven B. Bradfute, Graham S. Timmins, Eeva-Liisa Eskelinen, Vojo Deretic. Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes. Cell 2021, 184 (24) , 5950-5969.e22. https://doi.org/10.1016/j.cell.2021.10.017
    43. Chi-Jing Choong, Tatsusada Okuno, Kensuke Ikenaka, Kousuke Baba, Hideki Hayakawa, Masato Koike, Mutsumi Yokota, Junko Doi, Keita Kakuda, Toshihide Takeuchi, Akiko Kuma, Shuhei Nakamura, Yoshitaka Nagai, Seiichi Nagano, Tamotsu Yoshimori, Hideki Mochizuki. Alternative mitochondrial quality control mediated by extracellular release. Autophagy 2021, 17 (10) , 2962-2974. https://doi.org/10.1080/15548627.2020.1848130
    44. Yanrong Zheng, Xiangnan Zhang, Zhong Chen. Monitoring Autophagy by Optical Microscopy. 2021, 117-130. https://doi.org/10.1007/978-981-16-2830-6_8
    45. Yan Su, He Ren, Meng Tang, You Zheng, Bo Zhang, Chenxi Wang, Xinyu Hou, Zubiao Niu, Zhongyi Wang, Xiaoyan Gao, Lihua Gao, Hong Jiang, Zhaolie Chen, Tianzhi Luo, Qiang Sun. Role and dynamics of vacuolar pH during cell-in-cell mediated death. Cell Death & Disease 2021, 12 (1) https://doi.org/10.1038/s41419-021-03396-2
    46. José A. Nicolás-Ávila, Ana V. Lechuga-Vieco, Lorena Esteban-Martínez, María Sánchez-Díaz, Elena Díaz-García, Demetrio J. Santiago, Andrea Rubio-Ponce, Jackson LiangYao Li, Akhila Balachander, Juan A. Quintana, Raquel Martínez-de-Mena, Beatriz Castejón-Vega, Andrés Pun-García, Paqui G. Través, Elena Bonzón-Kulichenko, Fernando García-Marqués, Lorena Cussó, Noelia A-González, Andrés González-Guerra, Marta Roche-Molina, Sandra Martin-Salamanca, Georgiana Crainiciuc, Gabriela Guzmán, Jagoba Larrazabal, Elías Herrero-Galán, Jorge Alegre-Cebollada, Greg Lemke, Carla V. Rothlin, Luis Jesús Jimenez-Borreguero, Guillermo Reyes, Antonio Castrillo, Manuel Desco, Pura Muñoz-Cánoves, Borja Ibáñez, Miguel Torres, Lai Guan Ng, Silvia G. Priori, Héctor Bueno, Jesús Vázquez, Mario D. Cordero, Juan A. Bernal, José A. Enríquez, Andrés Hidalgo. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020, 183 (1) , 94-109.e23. https://doi.org/10.1016/j.cell.2020.08.031
    47. Chunxin Wang. A Sensitive and Quantitative mKeima Assay for Mitophagy via FACS. Current Protocols in Cell Biology 2020, 86 (1) https://doi.org/10.1002/cpcb.99
    48. Hannah Calvelli, Judith Krigman, Mashun Onishi, Derek P. Narendra, Nuo Sun, Koji Okamoto. Detection of mitophagy in mammalian cells, mice, and yeast. 2020, 557-579. https://doi.org/10.1016/bs.mcb.2019.10.006
    49. Ana Tinoco, Egipto Antunes, Madalena Martins, Filipa Gonçalves, Andreia C. Gomes, Carla Silva, Artur Cavaco-Paulo, Artur Ribeiro. Fusion proteins with chromogenic and keratin binding modules. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-50283-0
    50. Yuexi Gu, Yakubu Princely Abudu, Suresh Kumar, Bhawana Bissa, Seong Won Choi, Jingyue Jia, Michael Lazarou, Eeva‐Liisa Eskelinen, Terje Johansen, Vojo Deretic. Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNARE s. The EMBO Journal 2019, 38 (22) https://doi.org/10.15252/embj.2019101994
    51. Pengchong Xue, Tong Zhang, Yanning Han. Multicolour- and high-colour-contrast switching in response to force and acid vapour by introducing an asymmetric D–π–A–π–D structure. Journal of Materials Chemistry C 2019, 7 (31) , 9537-9544. https://doi.org/10.1039/C9TC03257F
    52. Uday Kumar Sukumar, Arutselvan Natarajan, Tarik F. Massoud, Ramasamy Paulmurugan. Applications of Fluorescent Protein-Based Sensors in Bioimaging. 2019, 149-183. https://doi.org/10.1007/7355_2019_90
    53. Yongbin Xu, Kwang Yeon Hwang, Ki Hyun Nam. Spectral and structural analysis of large Stokes shift fluorescent protein dKeima570. Journal of Microbiology 2018, 56 (11) , 822-827. https://doi.org/10.1007/s12275-018-8319-5
    54. Kevin C. Yang, Paalini Sathiyaseelan, Cally Ho, Sharon M. Gorski. Evolution of tools and methods for monitoring autophagic flux in mammalian cells. Biochemical Society Transactions 2018, 46 (1) , 97-110. https://doi.org/10.1042/BST20170102
    55. Shun-ichi Yamashita, Tomotake Kanki. Detection of Iron Depletion- and Hypoxia-Induced Mitophagy in Mammalian Cells. 2018, 315-324. https://doi.org/10.1007/978-1-4939-7831-1_18
    56. Ji-Eun Bae, In Jung Kim, Ki Hyun Nam. Disruption of the hydrogen bonding network determines the pH-induced non-fluorescent state of the fluorescent protein ZsYellow by protonation of Glu221. Biochemical and Biophysical Research Communications 2017, 493 (1) , 562-567. https://doi.org/10.1016/j.bbrc.2017.08.152
    57. Shun-ichi Yamashita, Tomotake Kanki. Detection of Hypoxia-Induced and Iron Depletion-Induced Mitophagy in Mammalian Cells. 2017, 141-149. https://doi.org/10.1007/7651_2017_19
    58. L. King, H. Plun-Favreau. Mitophagy. 2017, 139-177. https://doi.org/10.1016/B978-0-12-803783-6.00005-5
    59. Yan-Cheng Tang, Hong-Xia Tian, Tao Yi, Hu-Biao Chen. The critical roles of mitophagy in cerebral ischemia. Protein & Cell 2016, 7 (10) , 699-713. https://doi.org/10.1007/s13238-016-0307-0
    60. Gregor Jung. Fluorescent Proteins: The Show Must Go On!. 2016, 55-90. https://doi.org/10.1002/9781119179320.ch4
    61. Nuo Sun, Jeanho Yun, Jie Liu, Daniela Malide, Chengyu Liu, Ilsa I. Rovira, Kira M. Holmström, Maria M. Fergusson, Young Hyun Yoo, Christian A. Combs, Toren Finkel. Measuring In Vivo Mitophagy. Molecular Cell 2015, 60 (4) , 685-696. https://doi.org/10.1016/j.molcel.2015.10.009
    62. Tobias Albrecht, Yongxin Zhao, Trang Hai Nguyen, Robert E. Campbell, James D. Johnson. Fluorescent biosensors illuminate calcium levels within defined beta-cell endosome subpopulations. Cell Calcium 2015, 57 (4) , 263-274. https://doi.org/10.1016/j.ceca.2015.01.008
    63. Anika Hense, Karin Nienhaus, G. Ulrich Nienhaus. Exploring color tuning strategies in red fluorescent proteins. Photochemical & Photobiological Sciences 2015, 14 (2) , 200-212. https://doi.org/10.1039/c4pp00212a
    64. Yuko Hirota, Shun-ichi Yamashita, Yusuke Kurihara, Xiulian Jin, Masamune Aihara, Tetsu Saigusa, Dongchon Kang, Tomotake Kanki. Mitophagy is primarily due to alternative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 2015, 11 (2) , 332-343. https://doi.org/10.1080/15548627.2015.1023047
    65. Carlos Randino, Ricard Gelabert, Miquel Moreno, José M. Lluch, Kiryl D. Piatkevich. Molecular modelling of the pH influence in the geometry and the absorbance spectrum of near-infrared TagRFP675 fluorescent protein. Physical Chemistry Chemical Physics 2015, 17 (43) , 29363-29373. https://doi.org/10.1039/C5CP04428F
    66. David von Stetten, Thierry Giraud, Philippe Carpentier, Franc Sever, Maxime Terrien, Fabien Dobias, Douglas H. Juers, David Flot, Christoph Mueller-Dieckmann, Gordon A. Leonard, Daniele de Sanctis, Antoine Royant. In crystallo optical spectroscopy ( ic OS) as a complementary tool on the macromolecular crystallography beamlines of the ESRF. Acta Crystallographica Section D Biological Crystallography 2015, 71 (1) , 15-26. https://doi.org/10.1107/S139900471401517X
    67. Kiryl D. Piatkevich, Brian P. English, Vladimir N. Malashkevich, Hui Xiao, Steven C. Almo, Robert H. Singer, Vladislav V. Verkhusha. Photoswitchable Red Fluorescent Protein with a Large Stokes Shift. Chemistry & Biology 2014, 21 (10) , 1402-1414. https://doi.org/10.1016/j.chembiol.2014.08.010
    68. Sergei Pletnev, Daria M. Shcherbakova, Oksana M. Subach, Nadya V. Pletneva, Vladimir N. Malashkevich, Steven C. Almo, Zbigniew Dauter, Vladislav V. Verkhusha, . Orange Fluorescent Proteins: Structural Studies of LSSmOrange, PSmOrange and PSmOrange2. PLoS ONE 2014, 9 (6) , e99136. https://doi.org/10.1371/journal.pone.0099136
    69. Chenxi Duan, Virgile Adam, Martin Byrdin, Dominique Bourgeois. Structural Basis of Photoswitching in Fluorescent Proteins. 2014, 177-202. https://doi.org/10.1007/978-1-4939-0470-9_12
    70. BISWAJIT GUCHHAIT, TUHIN PRADHAN, RANJIT BISWAS. Effects of acid concentration on intramolecular charge transfer reaction of 4-(azetidinyl) benzonitrile in solution. Journal of Chemical Sciences 2014, 126 (1) , 55-63. https://doi.org/10.1007/s12039-013-0558-8
    71. Matthew H. Zimmer, Binsen Li, Ramza Shahid, Paola Peshkepija, Marc Zimmer. Structural consequences of chromophore formation and exploration of conserved lid residues amongst naturally occurring fluorescent proteins. Chemical Physics 2014, 429 , 5-11. https://doi.org/10.1016/j.chemphys.2013.11.015
    72. Y. Shen, M. D. Wiens, R. E. Campbell. A photochromic and thermochromic fluorescent protein. RSC Adv. 2014, 4 (100) , 56762-56765. https://doi.org/10.1039/C4RA10107C
    73. Kiryl D. Piatkevich, Vladimir N. Malashkevich, Kateryna S. Morozova, Nicolai A. Nemkovich, Steven C. Almo, Vladislav V. Verkhusha. Extended Stokes Shift in Fluorescent Proteins: Chromophore–Protein Interactions in a Near-Infrared TagRFP675 Variant. Scientific Reports 2013, 3 (1) https://doi.org/10.1038/srep01847
    74. Xin X Zhou, Michael Z Lin. Photoswitchable fluorescent proteins: ten years of colorful chemistry and exciting applications. Current Opinion in Chemical Biology 2013, 17 (4) , 682-690. https://doi.org/10.1016/j.cbpa.2013.05.031
    75. Dominique Bourgeois, Virgile Adam. Reversible photoswitching in fluorescent proteins: A mechanistic view. IUBMB Life 2012, 64 (6) , 482-491. https://doi.org/10.1002/iub.1023
    76. Hiroyuki Katayama, Takako Kogure, Noboru Mizushima, Tamotsu Yoshimori, Atsushi Miyawaki. A Sensitive and Quantitative Technique for Detecting Autophagic Events Based on Lysosomal Delivery. Chemistry & Biology 2011, 18 (8) , 1042-1052. https://doi.org/10.1016/j.chembiol.2011.05.013
    77. John E. McGeehan, Dominique Bourgeois, Antoine Royant, Philippe Carpentier. Raman-assisted crystallography of biomolecules at the synchrotron: Instrumentation, methods and applications. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (6) , 750-759. https://doi.org/10.1016/j.bbapap.2010.07.021
    78. Paul R. Carey, Yuanyuan Chen, Bo Gong, Matthew Kalp. Kinetic crystallography by Raman microscopy. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (6) , 742-749. https://doi.org/10.1016/j.bbapap.2010.08.006
    79. Stefano Bettati, Elisa Pasqualetto, Graziano Lolli, Barbara Campanini, Roberto Battistutta. Structure and single crystal spectroscopy of Green Fluorescent Proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814 (6) , 824-833. https://doi.org/10.1016/j.bbapap.2010.10.002
    80. Valentina Tozzini, Stefano Luin. Vibrational Spectroscopy of Fluorescent Proteins: A Tool to Investigate the Structure of the Chromophore and Its Environment. 2011, 133-169. https://doi.org/10.1007/4243_2011_31
    81. Stefania Abbruzzetti, Ranieri Bizzarri, Stefano Luin, Riccardo Nifosì, Barbara Storti, Cristiano Viappiania, Fabio Beltram. Photoswitching of E222Q GFP mutants: “concerted” mechanism of chromophore isomerization and protonation. Photochemical & Photobiological Sciences 2010, 9 (10) , 1307-1319. https://doi.org/10.1039/c0pp00189a
    82. Dmitriy M. Chudakov, Mikhail V. Matz, Sergey Lukyanov, Konstantin A. Lukyanov. Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiological Reviews 2010, 90 (3) , 1103-1163. https://doi.org/10.1152/physrev.00038.2009
    83. G. Ulrich Nienhaus. The “Wiggling and Jiggling of Atoms” Leading to Excited‐State Proton Transfer in Green Fluorescent Protein. ChemPhysChem 2010, 11 (5) , 971-974. https://doi.org/10.1002/cphc.200901016
    84. Kiryl D. Piatkevich, James Hulit, Oksana M. Subach, Bin Wu, Arian Abdulla, Jeffrey E. Segall, Vladislav V. Verkhusha. Monomeric red fluorescent proteins with a large Stokes shift. Proceedings of the National Academy of Sciences 2010, 107 (12) , 5369-5374. https://doi.org/10.1073/pnas.0914365107
    85. Kiryl D Piatkevich, Vladislav V Verkhusha. Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Current Opinion in Chemical Biology 2010, 14 (1) , 23-29. https://doi.org/10.1016/j.cbpa.2009.10.011
    86. Fabienne Merola, Bernard Levy, Isabelle Demachy, Helene Pasquier. Photophysics and Spectroscopy of Fluorophores in the Green Fluorescent Protein Family. 2010, 347-383. https://doi.org/10.1007/978-3-642-04702-2_11

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2009, 131, 30, 10356–10357
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja903695n
    Published July 10, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    3222

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.