ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

A Replicable Tetrahedral Nanostructure Self-Assembled from a Single DNA Strand

View Author Information
The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA, Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287
†Arizona State University.
‡Hong Kong University of Science and Technology.
§Arizona State University.
Cite this: J. Am. Chem. Soc. 2009, 131, 36, 13093–13098
Publication Date (Web):August 25, 2009
https://doi.org/10.1021/ja903768f
Copyright © 2009 American Chemical Society
Article Views
3930
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Abstract Image

We report the design and construction of a nanometer-sized tetrahedron from a single strand of DNA that is 286 nucleotides long. The formation of the tetrahedron was verified by restriction enzyme digestion, Ferguson analysis, and atomic force microscopy (AFM) imaging. We further demonstrate that synthesis of the tetrahedron can be easily scaled up through in vivo replication using standard molecular cloning techniques. We found that the in vivo replication efficiency of the tetrahedron is significantly higher in comparison to in vitro replication using rolling-circle amplification (RCA). Our results suggest that it is now possible to design and replicate increasingly complex, single-stranded DNA nanostructures in vivo.

Supporting Information

ARTICLE SECTIONS
Jump To

DNA sequences, materials, detailed methods for in vivo replication, and rolling-circle amplification results.This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 78 publications.

  1. Min Li, Fangfei Yin, Lu Song, Xiuhai Mao, Fan Li, Chunhai Fan, Xiaolei Zuo, Qiang Xia. Nucleic Acid Tests for Clinical Translation. Chemical Reviews 2021, 121 (17) , 10469-10558. https://doi.org/10.1021/acs.chemrev.1c00241
  2. Pai Peng, Qiwei Wang, Yi Du, Huihui Wang, Lili Shi, Tao Li. Extracellular Ion-Responsive Logic Sensors Utilizing DNA Dimeric Nanoassemblies on Cell Surface and Application to Boosting AS1411 Internalization. Analytical Chemistry 2020, 92 (13) , 9273-9280. https://doi.org/10.1021/acs.analchem.0c01612
  3. Kai Xia, Jianlei Shen, Qian Li, Chunhai Fan, Hongzhou Gu. Near-Atomic Fabrication with Nucleic Acids. ACS Nano 2020, 14 (2) , 1319-1337. https://doi.org/10.1021/acsnano.9b09163
  4. Xing Wang, Arun Richard Chandrasekaran, Zhiyong Shen, Yoel P. Ohayon, Tong Wang, Megan E. Kizer, Ruojie Sha, Chengde Mao, Hao Yan, Xiaoping Zhang, Shiping Liao, Baoquan Ding, Banani Chakraborty, Natasha Jonoska, Dong Niu, Hongzhou Gu, Jie Chao, Xiang Gao, Yuhang Li, Tanashaya Ciengshin, Nadrian C. Seeman. Paranemic Crossover DNA: There and Back Again. Chemical Reviews 2019, 119 (10) , 6273-6289. https://doi.org/10.1021/acs.chemrev.8b00207
  5. Yang Xu, Shuoxing Jiang, Chad R. Simmons, Raghu Pradeep Narayanan, Fei Zhang, Ann-Marie Aziz, Hao Yan, Nicholas Stephanopoulos. Tunable Nanoscale Cages from Self-Assembling DNA and Protein Building Blocks. ACS Nano 2019, 13 (3) , 3545-3554. https://doi.org/10.1021/acsnano.8b09798
  6. Wenjuan Ma, Xiaoru Shao, Dan Zhao, Qianshun Li, Mengting Liu, Tengfei Zhou, Xueping Xie, Chenchen Mao, Yuxin Zhang, Yunfeng Lin. Self-Assembled Tetrahedral DNA Nanostructures Promote Neural Stem Cell Proliferation and Neuronal Differentiation. ACS Applied Materials & Interfaces 2018, 10 (9) , 7892-7900. https://doi.org/10.1021/acsami.8b00833
  7. Tian Tian, Jiang Li, Cao Xie, Yanhong Sun, Haozhi Lei, Xinyi Liu, Jiaoyun Xia, Jiye Shi, Lihua Wang, Weiyue Lu, and Chunhai Fan . Targeted Imaging of Brain Tumors with a Framework Nucleic Acid Probe. ACS Applied Materials & Interfaces 2018, 10 (4) , 3414-3420. https://doi.org/10.1021/acsami.7b17927
  8. Nicole A. Estrich, Armando Hernandez-Garcia, Renko de Vries, and Thomas H. LaBean . Engineered Diblock Polypeptides Improve DNA and Gold Solubility during Molecular Assembly. ACS Nano 2017, 11 (1) , 831-842. https://doi.org/10.1021/acsnano.6b07291
  9. Arun Richard Chandrasekaran and Oksana Levchenko . DNA Nanocages. Chemistry of Materials 2016, 28 (16) , 5569-5581. https://doi.org/10.1021/acs.chemmater.6b02546
  10. Daniel L. Jasinski, Emil F. Khisamutdinov, Yuri L. Lyubchenko, and Peixuan Guo . Physicochemically Tunable Polyfunctionalized RNA Square Architecture with Fluorogenic and Ribozymatic Properties. ACS Nano 2014, 8 (8) , 7620-7629. https://doi.org/10.1021/nn502160s
  11. Stephanie S. Simmel, Philipp C. Nickels, and Tim Liedl . Wireframe and Tensegrity DNA Nanostructures. Accounts of Chemical Research 2014, 47 (6) , 1691-1699. https://doi.org/10.1021/ar400319n
  12. Sissel Juul, Federico Iacovelli, Mattia Falconi, Sofie L. Kragh, Brian Christensen, Rikke Frøhlich, Oskar Franch, Emil L. Kristoffersen, Magnus Stougaard, Kam W. Leong, Yi-Ping Ho, Esben S. Sørensen, Victoria Birkedal, Alessandro Desideri, and Birgitta R. Knudsen . Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage. ACS Nano 2013, 7 (11) , 9724-9734. https://doi.org/10.1021/nn4030543
  13. Chuan Zhang, Cheng Tian, Xiang Li, Hang Qian, Chenhui Hao, Wen Jiang, and Chengde Mao . Reversibly Switching the Surface Porosity of a DNA Tetrahedron. Journal of the American Chemical Society 2012, 134 (29) , 11998-12001. https://doi.org/10.1021/ja305969c
  14. Anthony S. Walsh, HaiFang Yin, Christoph M. Erben, Matthew J. A. Wood, and Andrew J. Turberfield . DNA Cage Delivery to Mammalian Cells. ACS Nano 2011, 5 (7) , 5427-5432. https://doi.org/10.1021/nn2005574
  15. Cristiano Luis Pinto Oliveira, Sissel Juul, Hanne Lærke Jørgensen, Bjarne Knudsen, David Tordrup, Francesco Oteri, Mattia Falconi, Jørn Koch, Alessandro Desideri, Jan Skov Pedersen, Felicie Faucon Andersen and Birgitta Ruth Knudsen . Structure of Nanoscale Truncated Octahedral DNA Cages: Variation of Single-Stranded Linker Regions and Influence on Assembly Yields. ACS Nano 2010, 4 (3) , 1367-1376. https://doi.org/10.1021/nn901510v
  16. Congcong Li, Yansha Gao, Qian Li, Shasha Luo, Wenqiang Liao, Zai-Sheng Wu. Adhesive AuNP tape-mediated hierarchical assembly of multicenter DNA nanocomplexes for tumor cell nucleus-targeted staged drug delivery in vivo. Nano Today 2022, 47 , 101687. https://doi.org/10.1016/j.nantod.2022.101687
  17. Shuzhen Yue, Zhenjie Qiao, Xiaofang Wang, Sai Bi. Enzyme-free catalyzed self-assembly of three-dimensional hyperbranched DNA structures for in situ SERS imaging and molecular logic operations. Chemical Engineering Journal 2022, 446 , 136838. https://doi.org/10.1016/j.cej.2022.136838
  18. Wenjuan Ma, Yuxi Zhan, Yuxin Zhang, Chenchen Mao, Xueping Xie, Yunfeng Lin. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction and Targeted Therapy 2021, 6 (1) https://doi.org/10.1038/s41392-021-00727-9
  19. Hui Bai, Jia Li, Heng Zhang, Shuya Liu. Simulative Analysis of a Family of DNA Tetrahedrons Produced by Changing the Twisting Number of Each Double Helix. Journal of Computational Biophysics and Chemistry 2021, 20 (05) , 529-537. https://doi.org/10.1142/S2737416521500319
  20. Luyao Shen, Pengfei Wang, Yonggang Ke. DNA Nanotechnology‐Based Biosensors and Therapeutics. Advanced Healthcare Materials 2021, 10 (15) , 2002205. https://doi.org/10.1002/adhm.202002205
  21. Filip Bošković, Alexander Ohmann, Ulrich F. Keyser, Kaikai Chen. DNA Structural Barcode Copying and Random Access. Small Structures 2021, 2 (5) , 2000144. https://doi.org/10.1002/sstr.202000144
  22. Shuoxing Jiang, Zhilei Ge, Shan Mou, Hao Yan, Chunhai Fan. Designer DNA nanostructures for therapeutics. Chem 2021, 7 (5) , 1156-1179. https://doi.org/10.1016/j.chempr.2020.10.025
  23. Youli Jia, Liman Chen, Jin Liu, Wei Li, Hongzhou Gu. DNA-catalyzed efficient production of single-stranded DNA nanostructures. Chem 2021, 7 (4) , 959-981. https://doi.org/10.1016/j.chempr.2020.12.001
  24. Dhiraj Bhatia, Christian Wunder, Ludger Johannes. Self‐assembled, Programmable DNA Nanodevices for Biological and Biomedical Applications. ChemBioChem 2021, 22 (5) , 763-778. https://doi.org/10.1002/cbic.202000372
  25. Fulin Zhu, Xiaojun Bian, Hongcai Zhang, Yanli Wen, Qian Chen, Yongliang Yan, Liang Li, Gang Liu, Juan Yan. Controllable design of a nano-bio aptasensing interface based on tetrahedral framework nucleic acids in an integrated microfluidic platform. Biosensors and Bioelectronics 2021, 176 , 112943. https://doi.org/10.1016/j.bios.2020.112943
  26. William Copp, Christopher J. Wilds. O 6 ‐Alkylguanine DNA Alkyltransferase Mediated Disassembly of a DNA Tetrahedron. Chemistry – A European Journal 2020, 26 (65) , 14802-14806. https://doi.org/10.1002/chem.202002565
  27. Pravin Shende, Ishant Kataria. Potential applications of folded and unfolded DNA nanocarriers in medicine. Journal of Drug Delivery Science and Technology 2020, 57 , 101729. https://doi.org/10.1016/j.jddst.2020.101729
  28. Huihui Wang, Pai Peng, Qiwei Wang, Yi Du, Zhijin Tian, Tao Li. Environment‐Recognizing DNA‐Computation Circuits for the Intracellular Transport of Molecular Payloads for mRNA Imaging. Angewandte Chemie 2020, 132 (15) , 6155-6163. https://doi.org/10.1002/ange.201916432
  29. Huihui Wang, Pai Peng, Qiwei Wang, Yi Du, Zhijin Tian, Tao Li. Environment‐Recognizing DNA‐Computation Circuits for the Intracellular Transport of Molecular Payloads for mRNA Imaging. Angewandte Chemie International Edition 2020, 59 (15) , 6099-6107. https://doi.org/10.1002/anie.201916432
  30. Xue Li, Donglei Yang, Luyao Shen, Fan Xu, Pengfei Wang. Programmable Assembly of DNA-protein Hybrid Structures. Chemical Research in Chinese Universities 2020, 36 (2) , 211-218. https://doi.org/10.1007/s40242-019-0038-x
  31. Ohsung Ko, Sangwoo Han, Jong Bum Lee. Selective release of DNA nanostructures from DNA hydrogel. Journal of Industrial and Engineering Chemistry 2020, 84 , 46-51. https://doi.org/10.1016/j.jiec.2020.01.005
  32. Jianqin Yan, Jun Chen, Nan Zhang, Yidi Yang, Wangwei Zhu, Li Li, Bin He. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. Journal of Materials Chemistry B 2020, 8 (3) , 492-503. https://doi.org/10.1039/C9TB02266J
  33. Jinglin Fu, Sung Won Oh, Kristin Monckton, Georgia Arbuckle‐Keil, Yonggang Ke, Ting Zhang. Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures. Small 2019, 15 (26) , 1900256. https://doi.org/10.1002/smll.201900256
  34. Pai Peng, Yi Du, Jiao Zheng, Huihui Wang, Tao Li. Reconfigurable Bioinspired Framework Nucleic Acid Nanoplatform Dynamically Manipulated in Living Cells for Subcellular Imaging. Angewandte Chemie 2019, 131 (6) , 1662-1667. https://doi.org/10.1002/ange.201811117
  35. Pai Peng, Yi Du, Jiao Zheng, Huihui Wang, Tao Li. Reconfigurable Bioinspired Framework Nucleic Acid Nanoplatform Dynamically Manipulated in Living Cells for Subcellular Imaging. Angewandte Chemie International Edition 2019, 58 (6) , 1648-1653. https://doi.org/10.1002/anie.201811117
  36. Wenjuan Ma, Xueping Xie, Xiaoru Shao, Yuxin Zhang, Chenchen Mao, Yuxi Zhan, Dan Zhao, Mengting Liu, Qianshun Li, Yunfeng Lin. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Proliferation 2018, 51 (6) , e12503. https://doi.org/10.1111/cpr.12503
  37. Dongran Han, Xiaodong Qi, Cameron Myhrvold, Bei Wang, Mingjie Dai, Shuoxing Jiang, Maxwell Bates, Yan Liu, Byoungkwon An, Fei Zhang, Hao Yan, Peng Yin. Single-stranded DNA and RNA origami. Science 2017, 358 (6369) https://doi.org/10.1126/science.aao2648
  38. Bing Zhu, Lihua Wang, Jiang Li, Chunhai Fan. Precisely Tailored DNA Nanostructures and their Theranostic Applications. The Chemical Record 2017, 17 (12) , 1213-1230. https://doi.org/10.1002/tcr.201700019
  39. Eun Hye Jeong, Hyejin Kim, Bora Jang, Hyesoo Cho, Jaehee Ryu, Boyeon Kim, Youngkuk Park, Jieun Kim, Jong Bum Lee, Hyukjin Lee. Technological development of structural DNA/RNA-based RNAi systems and their applications. Advanced Drug Delivery Reviews 2016, 104 , 29-43. https://doi.org/10.1016/j.addr.2015.10.008
  40. Johann Elbaz, Peng Yin, Christopher A. Voigt. Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms11179
  41. Hui Li, Kaiming Zhang, Fengmei Pi, Sijin Guo, Luda Shlyakhtenko, Wah Chiu, Dan Shu, Peixuan Guo. Controllable Self‐Assembly of RNA Tetrahedrons with Precise Shape and Size for Cancer Targeting. Advanced Materials 2016, 28 (34) , 7501-7507. https://doi.org/10.1002/adma.201601976
  42. Zai-Sheng Wu, Zhifa Shen, Kha Tram, Bruno J. Salena, Yingfu Li. Topological DNA Assemblies Containing Identical or Fraternal Twins. ChemBioChem 2016, 17 (12) , 1142-1145. https://doi.org/10.1002/cbic.201600036
  43. Vid Kočar, John S. Schreck, Slavko Čeru, Helena Gradišar, Nino Bašić, Tomaž Pisanski, Jonathan P. K. Doye, Roman Jerala. Design principles for rapid folding of knotted DNA nanostructures. Nature Communications 2016, 7 (1) https://doi.org/10.1038/ncomms10803
  44. Anna Barth, Daniela Kobbe, Manfred Focke. DNA–DNA kissing complexes as a new tool for the assembly of DNA nanostructures. Nucleic Acids Research 2016, 44 (4) , 1502-1513. https://doi.org/10.1093/nar/gkw014
  45. Oskar Franch, Federico Iacovelli, Mattia Falconi, Sissel Juul, Alessio Ottaviani, Claudia Benvenuti, Silvia Biocca, Yi-Ping Ho, Birgitta R. Knudsen, Alessandro Desideri. DNA hairpins promote temperature controlled cargo encapsulation in a truncated octahedral nanocage structure family. Nanoscale 2016, 8 (27) , 13333-13341. https://doi.org/10.1039/C6NR01806H
  46. Jiang Li, Fan Li, Hao Pei, Lihua Wang, Qing Huang, Chunhai Fan. Construction of Functional DNA Nanostructures for Theranostic Applications. 2015,,, 93-130. https://doi.org/10.1002/9781118998922.ch4
  47. Vid Kočar, Sabina Božič Abram, Tibor Doles, Nino Bašić, Helena Gradišar, Tomaž Pisanski, Roman Jerala. TOPOFOLD , the designed modular biomolecular folds: polypeptide‐based molecular origami nanostructures following the footsteps of DNA. WIREs Nanomedicine and Nanobiotechnology 2015, 7 (2) , 218-237. https://doi.org/10.1002/wnan.1289
  48. Jiang Li, Jie Chao, Jiye Shi, Chunhai Fan. Cotranscriptionally Folded RNA Nanostructures Pave the Way to Intracellular Nanofabrication. ChemBioChem 2015, 16 (1) , 39-41. https://doi.org/10.1002/cbic.201402627
  49. Ping Wang, Zhiwei Xia, Juan Yan, Xunwei Liu, Guangbao Yao, Hao Pei, Xiaolei Zuo, Gang Sun, Dannong He. A study of pH-dependence of shrink and stretch of tetrahedral DNA nanostructures. Nanoscale 2015, 7 (15) , 6467-6470. https://doi.org/10.1039/C5NR00757G
  50. Zai-Sheng Wu, Zhifa Shen, Kha Tram, Yingfu Li. Engineering interlocking DNA rings with weak physical interactions. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms5279
  51. Cody Geary, Paul W. K. Rothemund, Ebbe S. Andersen. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 2014, 345 (6198) , 799-804. https://doi.org/10.1126/science.1253920
  52. Chunhua Liu, Andrew D. Ellington. DNA Nanotechnology: From Biology and Beyond. 2014,,, 135-169. https://doi.org/10.1007/978-3-642-38815-6_6
  53. Qinglin Sheng, Ruixiao Liu, Sai Zhang, Jianbin Zheng. Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure. Biosensors and Bioelectronics 2014, 51 , 191-194. https://doi.org/10.1016/j.bios.2013.07.053
  54. Helena Gradišar, Roman Jerala. Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. Journal of Nanobiotechnology 2014, 12 (1) , 4. https://doi.org/10.1186/1477-3155-12-4
  55. Zhiqing Zhang, M. Monsur Ali, Mark A. Eckert, Dong-Ku Kang, Yih Yang Chen, Leonard S. Sender, David A. Fruman, Weian Zhao. A polyvalent aptamer system for targeted drug delivery. Biomaterials 2013, 34 (37) , 9728-9735. https://doi.org/10.1016/j.biomaterials.2013.08.079
  56. Jin-Wei Duan, Wen-Yuan Qiu. Using dual polyhedral links models to predict characters of DNA polyhedra. Journal of Molecular Structure 2013, 1051 , 233-236. https://doi.org/10.1016/j.molstruc.2013.08.017
  57. Zhen-Gang Wang, Baoquan Ding. DNA Nanotechnology as Reference for RNA Nanotechnology. 2013,,, 313-360. https://doi.org/10.1201/b15152-23
  58. Helena Gradišar, Sabina Božič, Tibor Doles, Damjan Vengust, Iva Hafner-Bratkovič, Alenka Mertelj, Ben Webb, Andrej Šali, Sandi Klavžar, Roman Jerala. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nature Chemical Biology 2013, 9 (6) , 362-366. https://doi.org/10.1038/nchembio.1248
  59. Shuya Liu, Heping Zhang. The HOMFLY polynomials of odd polyhedral links. Journal of Mathematical Chemistry 2013, 51 (5) , 1310-1328. https://doi.org/10.1007/s10910-013-0147-6
  60. Wanqiu Shen. DNA Nanotechnology and Drug Delivery. 2013,,, 321-334. https://doi.org/10.1007/978-3-642-36077-0_15
  61. Dhiraj Bhatia, Yamuna Krishnan. Designer Nucleic Acid-Based Devices in Nanomedicine. 2013,,, 1-10. https://doi.org/10.1007/978-3-662-45775-7_1
  62. Xiaojin He, Lei Dong, Wen Wang, Nian Lin, Yongli Mi. Folding single-stranded DNA to form the smallest 3D DNA triangular prism. Chemical Communications 2013, 49 (28) , 2906. https://doi.org/10.1039/c3cc39266j
  63. Qing-Lin Sheng, Rui-Xiao Liu, Jian-Bin Zheng, Jun-Jie Zhu. Reversible switches of DNA nanostructures between “Closed” and “Open” states and their biosensing applications. Nanoscale 2013, 5 (16) , 7505. https://doi.org/10.1039/c3nr01576a
  64. Chuan Zhang, Weimin Wu, Xiang Li, Cheng Tian, Hang Qian, Guansong Wang, Wen Jiang, Chengde Mao. Controlling the Chirality of DNA Nanocages. Angewandte Chemie 2012, 124 (32) , 8123-8126. https://doi.org/10.1002/ange.201203875
  65. Chuan Zhang, Weimin Wu, Xiang Li, Cheng Tian, Hang Qian, Guansong Wang, Wen Jiang, Chengde Mao. Controlling the Chirality of DNA Nanocages. Angewandte Chemie International Edition 2012, 51 (32) , 7999-8002. https://doi.org/10.1002/anie.201203875
  66. Thomas E. Ouldridge. Introduction. 2012,,, 1-20. https://doi.org/10.1007/978-3-642-30517-7_1
  67. Andre V. Pinheiro, Dongran Han, William M. Shih, Hao Yan. Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology 2011, 6 (12) , 763-772. https://doi.org/10.1038/nnano.2011.187
  68. Hanying Li, Thomas H. LaBean, Kam W. Leong. Nucleic acid-based nanoengineering: novel structures for biomedical applications. Interface Focus 2011, 1 (5) , 702-724. https://doi.org/10.1098/rsfs.2011.0040
  69. Dhiraj Bhatia, Sunaina Surana, Saikat Chakraborty, Sandhya P. Koushika, Yamuna Krishnan. A synthetic icosahedral DNA-based host–cargo complex for functional in vivo imaging. Nature Communications 2011, 2 (1) https://doi.org/10.1038/ncomms1337
  70. Ngo Yin Wong, Chuan Zhang, Li Huey Tan, Yi Lu. Site-Specific Attachment of Proteins onto a 3D DNA Tetrahedron through Backbone-Modified Phosphorothioate DNA. Small 2011, 7 (10) , 1427-1430. https://doi.org/10.1002/smll.201100140
  71. Jung‐Won Keum, Adam P. Hathorne, Harry Bermudez. Controlling forces and pathways in self‐assembly using viruses and DNA. WIREs Nanomedicine and Nanobiotechnology 2011, 3 (3) , 282-297. https://doi.org/10.1002/wnan.129
  72. Thomas E. Ouldridge, Ard A. Louis, Jonathan P. K. Doye. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. The Journal of Chemical Physics 2011, 134 (8) , 085101. https://doi.org/10.1063/1.3552946
  73. David M. Smith, Verena Schüller, Carsten Forthmann, Robert Schreiber, Philip Tinnefeld, Tim Liedl. A Structurally Variable Hinged Tetrahedron Framework from DNA Origami. Journal of Nucleic Acids 2011, 2011 , 1-9. https://doi.org/10.4061/2011/360954
  74. Pik Kwan Lo, Kimberly L Metera, Hanadi F Sleiman. Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Current Opinion in Chemical Biology 2010, 14 (5) , 597-607. https://doi.org/10.1016/j.cbpa.2010.08.002
  75. Carsten Teller, Itamar Willner. Functional nucleic acid nanostructures and DNA machines. Current Opinion in Biotechnology 2010, 21 (4) , 376-391. https://doi.org/10.1016/j.copbio.2010.06.001
  76. Ebbe Sloth Andersen. Prediction and design of DNA and RNA structures. New Biotechnology 2010, 27 (3) , 184-193. https://doi.org/10.1016/j.nbt.2010.02.012
  77. William M Shih, Chenxiang Lin. Knitting complex weaves with DNA origami. Current Opinion in Structural Biology 2010, 20 (3) , 276-282. https://doi.org/10.1016/j.sbi.2010.03.009
  78. Chuan Zhang, Min Su, Yu He, Yujun Leng, Alexander E. Ribbe, Guansong Wang, Wen Jiang, Chengde Mao. Exterior modification of a DNA tetrahedron. Chemical Communications 2010, 46 (36) , 6792. https://doi.org/10.1039/c0cc02363a

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE