ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Three-Dimensional Biomimetic Mineralization of Dense Hydrogel Templates

View Author Information
Environmental Energy Technologies Division, Materials Sciences Division, and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, California 94720 and Department of Materials Science and Engineering, University of California Berkeley, Berkeley, California 94720
†Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory.
‡Materials Sciences Division, Lawrence Berkeley National Laboratory.
§National Center for Electron Microscopy, Lawrence Berkeley National Laboratory.
⊥University of California at Berkeley.
Cite this: J. Am. Chem. Soc. 2009, 131, 29, 9937–9939
Publication Date (Web):July 2, 2009
https://doi.org/10.1021/ja903817z
Copyright © 2009 American Chemical Society

    Article Views

    3345

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    An electric-current-assisted method was used to mineralize dense hydrogels and create hydroxyapatite/hydrogel composites with unique hierarchical structures. The microstructure of the final material can be controlled by the mineralization technique and the chemistry of the organic matrix. A hydroxyapatite/hydrogel composite was obtained with a large inorganic content (∼60% of the weight of the organics). After being heated to 1050 °C, the sintered inorganic phase has a very uniformly distributed porosity and its Brunauer−Emmett−Teller (BET) surface area is 0.68 m2/g.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Experimental procedures, Figures S-1, S-2, S-3, S-4, S-5, S-6, S-7. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 42 publications.

    1. Jimin Jung, Sung Ho Yang. Diffusion-Controlled Crystallization of Fluorapatite Mesocrystals in a Hydrogel. Crystal Growth & Design 2023, 23 (12) , 8753-8760. https://doi.org/10.1021/acs.cgd.3c00895
    2. Min-kyung Jo, Yookyeong Oh, Hye Ji Kim, Hong Lyun Kim, Sung Ho Yang. Diffusion-Controlled Crystallization of Calcium Carbonate in a Hydrogel. Crystal Growth & Design 2020, 20 (2) , 560-567. https://doi.org/10.1021/acs.cgd.9b00614
    3. Kenshiro Kimura, Masanobu Kamitakahara, Taishi Yokoi, Koji Ioku. Formation Process of Hydroxyapatite Granules in Agarose Hydrogel by Electrophoresis. Crystal Growth & Design 2018, 18 (4) , 1961-1966. https://doi.org/10.1021/acs.cgd.7b01154
    4. Norio Wada, Naohiro Horiuchi, Makoto Nishio, Miho Nakamura, Kosuke Nozaki, Akiko Nagai, Kazuaki Hashimoto, and Kimihiro Yamashita . Crystallization of Calcium Phosphate in Agar Hydrogels in the Presence of Polyacrylic Acid under Double Diffusion Conditions. Crystal Growth & Design 2017, 17 (2) , 604-611. https://doi.org/10.1021/acs.cgd.6b01453
    5. Benjamin Kruppke, Christiane Heinemann, Anne Keroué, Jürgen Thomas, Sina Rößler, Hans-Peter Wiesmann, Thomas Gemming, Hartmut Worch, and Thomas Hanke . Calcite and Hydroxyapatite Gelatin Composites as Bone Substitution Material Made by the Double Migration Technique. Crystal Growth & Design 2017, 17 (2) , 738-745. https://doi.org/10.1021/acs.cgd.6b01595
    6. Jijun Huang, Gao Liu, Chengyu Song, Eduardo Saiz, and Antoni P. Tomsia . Role of Molecular Chemistry of Degradable pHEMA Hydrogels in Three-Dimensional Biomimetic Mineralization. Chemistry of Materials 2012, 24 (7) , 1331-1337. https://doi.org/10.1021/cm203764f
    7. Eddie Wang, Sang-Hyuk Lee, and Seung-Wuk Lee . Elastin-Like Polypeptide Based Hydroxyapatite Bionanocomposites. Biomacromolecules 2011, 12 (3) , 672-680. https://doi.org/10.1021/bm101322m
    8. Yan Qiao, Yiyang Lin, Zhiyi Yang, Huanfa Chen, Shaofei Zhang, Yun Yan and Jianbin Huang. Unique Temperature-Dependent Supramolecular Self-Assembly: From Hierarchical 1D Nanostructures to Super Hydrogel. The Journal of Physical Chemistry B 2010, 114 (36) , 11725-11730. https://doi.org/10.1021/jp1047369
    9. Runqi Chen, Yukun Yan, Guodong Wen, Dawei Zhang, Yangtao Zhou, Chenjuan Xiao, Chengling Yang, Duo Na, Jinsong Zhang. Controllable synthesis of Mn3O4 nanoparticles through in situ reduction reaction via PVA hydrogel template for Fenton-like degradation. Journal of Materials Science 2022, 57 (40) , 18770-18786. https://doi.org/10.1007/s10853-022-07772-x
    10. Gabriela de Souza Balbinot, Fabrício Mezzomo Collares, Tiago Luis Herpich, Fernanda Visioli, Susana Maria Werner Samuel, Vicente Castelo Branco Leitune. Niobium containing bioactive glasses as remineralizing filler for adhesive resins. Dental Materials 2020, 36 (2) , 221-228. https://doi.org/10.1016/j.dental.2019.11.014
    11. Xun Liu, Kangxin Li, Chaoqun Wu, Zhaoqian Li, Bo Wu, Xiaohui Duan, Yong Zhou, Chonghua Pei. Biomimetic assembly of multilevel hydroxyapatite using bacterial cellulose hydrogel as a reactor. CrystEngComm 2019, 21 (33) , 4859-4863. https://doi.org/10.1039/C9CE01086F
    12. Qian Xue, Qiang Zhang. Agar Hydrogel Template Synthesis of Mn3O4 Nanoparticles through an Ion Diffusion Method Controlled by Ion Exchange Membrane and Electrochemical Performance. Nanomaterials 2019, 9 (4) , 503. https://doi.org/10.3390/nano9040503
    13. Yun Cui, Helen Cui, Xiu-Mei Wang. Preparation and Characterization of Biomimetic Mineralized Collagen. 2019, 23-60. https://doi.org/10.1016/B978-0-08-102717-2.00002-3
    14. Xiaomin Ma, Zhe Sun, Wen Su, Zeng Yi, Xinxing Cui, Bo Guo, Xudong Li. Biologically inspired, catechol-coordinated, hierarchical organization of raspberry-like calcium phosphate nanospheres with high specific surface area. Journal of Materials Chemistry B 2018, 6 (22) , 3811-3819. https://doi.org/10.1039/C7TB03156D
    15. Ahmed Salama, Mohamed El-Sakhawy, Samir Kamel. Carboxymethyl cellulose based hybrid material for sustained release of protein drugs. International Journal of Biological Macromolecules 2016, 93 , 1647-1652. https://doi.org/10.1016/j.ijbiomac.2016.04.029
    16. Timothy E.L. Douglas. Biomimetic mineralization of hydrogels. 2016, 291-313. https://doi.org/10.1016/B978-1-78242-338-6.00010-7
    17. M. S. Simeonov, A. A. Apostolov, E. D. Vassileva. In situ calcium phosphate deposition in hydrogels of poly(acrylic acid)–polyacrylamide interpenetrating polymer networks. RSC Advances 2016, 6 (20) , 16274-16284. https://doi.org/10.1039/C5RA26066C
    18. Yue Sa, Man Wang, Hongbing Deng, Yining Wang, Tao Jiang. Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Advances 2015, 5 (110) , 91082-91092. https://doi.org/10.1039/C5RA15915F
    19. Ulrike G. K. Wegst, Hao Bai, Eduardo Saiz, Antoni P. Tomsia, Robert O. Ritchie. Bioinspired structural materials. Nature Materials 2015, 14 (1) , 23-36. https://doi.org/10.1038/nmat4089
    20. Jun Ma, Jianglin Wang, Xin Ai, Shengmin Zhang. Biomimetic self-assembly of apatite hybrid materials: From a single molecular template to bi-/multi-molecular templates. Biotechnology Advances 2014, 32 (4) , 744-760. https://doi.org/10.1016/j.biotechadv.2013.10.014
    21. Susanne Koburger, Alistair Bannerman, Liam M. Grover, Frank A. Müller, James Bowen, Jennifer Z. Paxton. A novel method for monitoring mineralisation in hydrogels at the engineered hard–soft tissue interface. Biomater. Sci. 2014, 2 (1) , 41-51. https://doi.org/10.1039/C3BM60102A
    22. Zhiyong Li, Tao Wen, Yunlan Su, Xiaoxiao Wei, Changcheng He, Dujin Wang. Hollow hydroxyapatite spheres fabrication with three-dimensional hydrogel template. CrystEngComm 2014, 16 (20) , 4202-4209. https://doi.org/10.1039/C3CE42517G
    23. Kirsten Parratt, Johnathan M. Yao, Gerald R. Poirier, Nan Yao. Plasma-Etching of the Organic Layer in Nacre. Soft Nanoscience Letters 2014, 04 (03) , 63-68. https://doi.org/10.4236/snl.2014.43009
    24. Lifeng Wang, Fajia Liu, Wentao Yang, Huanyu Zhao, Yingying Zheng, Xiaobo Chen, Wenjun Dong. Synthesis of multiple-shell porous CeO2 hollow spheres by a hydrogel template method. Materials Letters 2013, 107 , 42-45. https://doi.org/10.1016/j.matlet.2013.05.128
    25. Matilde Bongio, M. Reza Nejadnik, Z. Tahmasebi Birgani, Pamela Habibovic, Lucas A. Kinard, F. Kurtis Kasper, Antonios G. Mikos, John A. Jansen, Sander C. G. Leeuwenburgh, Jeroen J. J. P. van den Beucken. In Vitro and In Vivo Enzyme‐Mediated Biomineralization of Oligo(poly(ethylene glycol) Fumarate Hydrogels. Macromolecular Bioscience 2013, 13 (6) , 777-788. https://doi.org/10.1002/mabi.201200474
    26. D E Aston, J R Bow, D N Gangadean. Mechanical properties of selected nanostructured materials and complex bio-nano, hybrid and hierarchical systems. International Materials Reviews 2013, 58 (3) , 167-202. https://doi.org/10.1179/1743280412Y.0000000012
    27. Lidong Zhang, Song I. Song, Sudan Zheng, Seong Jae Yu, Kwang-Ho Kim, Hongsuk Suh, Il Kim. Nontoxic poly(ethylene oxide phosphonamidate) hydrogels as templates for biomimetic mineralization of calcium carbonate and hydroxyapatite architectures. Journal of Materials Science 2013, 48 (1) , 288-298. https://doi.org/10.1007/s10853-012-6744-0
    28. Eduardo Saiz, Elizabeth A. Zimmermann, Janice S. Lee, Ulrike G.K. Wegst, Antoni P. Tomsia. Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials 2013, 29 (1) , 103-115. https://doi.org/10.1016/j.dental.2012.08.001
    29. Zhiyong Li, Yunlan Su, Baoquan Xie, Huiliang Wang, Tao Wen, Changcheng He, Hong Shen, Decheng Wu, Dujin Wang. A tough hydrogel–hydroxyapatite bone-like composite fabricated in situ by the electrophoresis approach. Journal of Materials Chemistry B 2013, 1 (12) , 1755. https://doi.org/10.1039/c3tb00246b
    30. Chetan C. Hire, Andrew J. Oyer, Gina E. Macek, Jennifer L. Bento, Douglas H. Adamson. Directed formation of silica by a non-peptide block copolymer enzyme mimic. Journal of Materials Chemistry B 2013, 1 (14) , 1977. https://doi.org/10.1039/c3tb20065e
    31. Wen Tao Yang, Long Fei Zhang, Fa Jia Liu, Xiao Yun Li. Electrochemical Synthesis of Copper Sulfide Nanostructure with PAM Hydrogel Template. Applied Mechanics and Materials 2013, 275-277 , 1818-1821. https://doi.org/10.4028/www.scientific.net/AMM.275-277.1818
    32. Andrea C. Profeta, Francesco Mannocci, Richard M. Foxton, Ian Thompson, Timothy F. Watson, Salvatore Sauro. Bioactive effects of a calcium/sodium phosphosilicate on the resin–dentine interface: a microtensile bond strength, scanning electron microscopy, and confocal microscopy study. European Journal of Oral Sciences 2012, 120 (4) , 353-362. https://doi.org/10.1111/j.1600-0722.2012.00974.x
    33. Salvatore Sauro, Raquel Osorio, Timothy F. Watson, Manuel Toledano. Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface. Journal of Materials Science: Materials in Medicine 2012, 23 (6) , 1521-1532. https://doi.org/10.1007/s10856-012-4606-6
    34. Natasha H. Munro, Kathryn M. McGrath. Hydrogels as biomimetic mineralisation scaffolds. Bioinspired, Biomimetic and Nanobiomaterials 2012, 1 (1) , 26-37. https://doi.org/10.1680/bbn.11.00003
    35. Jason R. Dorvee, Adele L. Boskey, Lara A. Estroff. Rediscovering hydrogel-based double-diffusion systems for studying biomineralization. CrystEngComm 2012, 14 (18) , 5681. https://doi.org/10.1039/c2ce25289a
    36. Larisa C. Wu, Jiyuan Yang, Jindřich Kopeček. Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds. Biomaterials 2011, 32 (23) , 5341-5353. https://doi.org/10.1016/j.biomaterials.2011.04.014
    37. Shi Biao Xiang, Xu Xiang. Hierarchical Structures of Silicon Oxynitride Nanowires Formed by a Gallium-Catalyzed In Situ Reactive Technique. Advanced Materials Research 2011, 284-286 , 717-721. https://doi.org/10.4028/www.scientific.net/AMR.284-286.717
    38. Chaenyung Cha, Eun-Seok Kim, Il Won Kim, Hyunjoon Kong. Integrative design of a poly(ethylene glycol)-poly(propylene glycol)-alginate hydrogel to control three dimensional biomineralization. Biomaterials 2011, 32 (11) , 2695-2703. https://doi.org/10.1016/j.biomaterials.2010.12.038
    39. Daniel J. Hall, Olga V. Khutoryanskaya, Vitaliy V. Khutoryanskiy. Developing synthetic mucosa-mimetic hydrogels to replace animal experimentation in characterisation of mucoadhesive drug delivery systems. Soft Matter 2011, 7 (20) , 9620. https://doi.org/10.1039/c1sm05929g
    40. Ghanashyam Acharya, Matthew McDermott, Soo Jung Shin, Haesun Park, Kinam Park. Hydrogel Templates for the Fabrication of Homogeneous Polymer Microparticles. 2011, 179-185. https://doi.org/10.1007/978-1-61779-052-2_12
    41. Katerina Gkioni, Sander C.G. Leeuwenburgh, Timothy E.L. Douglas, Antonios G. Mikos, John A. Jansen. Mineralization of Hydrogels for Bone Regeneration. Tissue Engineering Part B: Reviews 2010, 16 (6) , 577-585. https://doi.org/10.1089/ten.teb.2010.0462
    42. J. Kim, L. Gu, L. Breschi, L. Tjäderhane, K.K. Choi, D.H. Pashley, F.R. Tay. Implication of Ethanol Wet-bonding in Hybrid Layer Remineralization. Journal of Dental Research 2010, 89 (6) , 575-580. https://doi.org/10.1177/0022034510363380

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect