Nucleophilicity and Nucleofugality of Phenylsulfinate (PhSO2−): A Key to Understanding its Ambident Reactivity
Abstract

Second-order rate constants for the reactions of the phenylsulfinate ion PhSO2− with benzhydrylium ions Ar2CH+ have been determined in DMSO, acetonitrile, and aqueous acetonitrile solution using laser-flash and stopped-flow techniques. The rate constants follow the correlation equation log k (20 °C) = s(N + E), which allows the determination of the nucleophile-specific parameters N and s for PhSO2− in different solvents. With N = 19.60, PhSO2− is a slightly weaker nucleophile than malonate and azide ions in DMSO. While PhSO2− reacts with highly stabilized benzhydrylium ions to give benzhydryl phenyl sulfones exclusively, highly reactive benzhydrylium ions give mixtures of sulfones Ar2CH−SO2Ph and sulfinates Ar2CH−OS(O)Ph; the latter rearrange to the thermodynamically more stable sulfones through an ionization recombination sequence. Sulfones generated from PhSO2− and stabilized amino-substituted benzhydrylium ions undergo heterolysis in aqueous acetonitrile and the rate of formation of the colored benzhydrylium ions was followed spectrophotometrically by stopped-flow techniques. The ranking of the electrofugalities of the benzhydrylium ions (i.e., the relative ionization rates of Ar2CH−SO2Ph) was not the inverse of the ranking of their electrophilicities (i.e., the relative reactivities of Ar2CH+ with nucleophiles), which was explained by differences in Marcus intrinsic barriers. While sulfones are thermodynamically more stable than the isomeric sulfinates, the intrinsic barriers for the attack of benzhydrylium ions at the oxygen of PhSO2− are significantly lower than the intrinsic barriers for S-attack, and the activation energies for the attack of carbocations at sulfur are only slightly smaller than those for attack at oxygen. Because reactions of PhSO2− with carbocations of an electrophilicity E > −2 (i.e., carbocations which are more reactive than Ph3C+) are diffusion-controlled, the regioselectivities of the reactions of PhSO2− with “ordinary” carbocations do not reflect relative activation energies.
Cited By
This article is cited by 61 publications.
- Seb Caille Brian S. Lucas . Discovery of AMG 232, a Small Molecule Disrupting the p53-MDM2 Protein–Protein Interaction and Development of a Validation-Ready Process for Its Manufacture. , 203-247. https://doi.org/10.1021/bk-2022-1423.ch005
- Takehiro Kato, Bumhee Lim, Yangyang Cheng, Anh-Tuan Pham, John Maynard, Dimitri Moreau, Amalia I. Poblador-Bahamonde, Naomi Sakai, Stefan Matile. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS Au 2022, 2 (4) , 839-852. https://doi.org/10.1021/jacsau.1c00573
- Divya Bhatt, Soyeon Chae, Hun Young Kim, Kyungsoo Oh. One-Pot Synthesis of N-Hydroxypyrroles via Soft α-Vinyl Enolization of (E)-β-Chlorovinyl Ketones: A Traceless Arylsulfinate Mediator Strategy. Organic Letters 2022, 24 (14) , 2636-2640. https://doi.org/10.1021/acs.orglett.2c00649
- Suhail A. Rather, Mohammad Yaqoob Bhat, Feroze Hussain, Qazi Naveed Ahmed. Sulfonyl-Promoted Michaelis–Arbuzov-Type Reaction: An Approach to S/Se–P Bonds. The Journal of Organic Chemistry 2021, 86 (19) , 13644-13663. https://doi.org/10.1021/acs.joc.1c01681
- Patrick M. Jüstel, Cedric D. Pignot, Armin R. Ofial. Nucleophilic Reactivities of Thiophenolates. The Journal of Organic Chemistry 2021, 86 (8) , 5965-5972. https://doi.org/10.1021/acs.joc.1c00025
- Manuel Orlandi, Margarita Escudero-Casao, Giulia Licini. Nucleophilicity Prediction via Multivariate Linear Regression Analysis. The Journal of Organic Chemistry 2021, 86 (4) , 3555-3564. https://doi.org/10.1021/acs.joc.0c02952
- Rajeev Shrestha, Hari Datta Khanal, Peter Yuosef M. Rubio, Sonaimuthu Mohandoss, Yong Rok Lee. Base-Mediated Denitrogenative Sulfonylation/Benzannulation of Conjugated N-Sulfonylhydrazones with 3-Formylchromones for the Construction of Polyfunctionalized Biaryl Sulfones. Organic Letters 2020, 22 (19) , 7531-7536. https://doi.org/10.1021/acs.orglett.0c02724
- Brian M. Cochran, Michael T. Corbett, Tiffany L. Correll, Yuan-Qing Fang, Tawnya G. Flick, Siân C. Jones, Maria V. Silva Elipe, Austin G. Smith, John L. Tucker, Filisaty Vounatsos, Greg Wells, David Yeung, Shawn D. Walker, Matthew M. Bio, Seb Caille. Development of a Commercial Process To Prepare AMG 232 Using a Green Ozonolysis–Pinnick Tandem Transformation. The Journal of Organic Chemistry 2019, 84 (8) , 4763-4779. https://doi.org/10.1021/acs.joc.8b02390
- Seb Caille, Sheng Cui, Margaret M. Faul, Steven M. Mennen, Jason S. Tedrow, Shawn D. Walker. Molecular Complexity as a Driver for Chemical Process Innovation in the Pharmaceutical Industry. The Journal of Organic Chemistry 2019, 84 (8) , 4583-4603. https://doi.org/10.1021/acs.joc.9b00735
- Patrick S. Fier, Kevin M. Maloney. NHC-Catalyzed Deamination of Primary Sulfonamides: A Platform for Late-Stage Functionalization. Journal of the American Chemical Society 2019, 141 (4) , 1441-1445. https://doi.org/10.1021/jacs.8b11800
- Teng Liu, Jianjun Liu, Shubiao Xia, Jie Meng, Xianfu Shen, Xiufang Zhu, Wenchang Chen, Chengke Sun, and Feixiang Cheng . Catalyst-Free 1,6-Conjugate Addition/Aromatization/Sulfonylation of para-Quinone Methides: Facile Access to Diarylmethyl Sulfones. ACS Omega 2018, 3 (2) , 1409-1415. https://doi.org/10.1021/acsomega.7b01745
- Peter A. Byrne, Konstantin Karaghiosoff, and Herbert Mayr . Ambident Reactivity of Acetyl- and Formyl-Stabilized Phosphonium Ylides. Journal of the American Chemical Society 2016, 138 (35) , 11272-11281. https://doi.org/10.1021/jacs.6b06264
- Jaimeen D. Majmudar, Aaron M. Konopko, Kristin J. Labby, Christopher T. M. B. Tom, John E. Crellin, Ashesh Prakash, and Brent R. Martin . Harnessing Redox Cross-Reactivity To Profile Distinct Cysteine Modifications. Journal of the American Chemical Society 2016, 138 (6) , 1852-1859. https://doi.org/10.1021/jacs.5b06806
- Hiroki Tanimoto, Keiichi Yokoyama, Yusuke Mizutani, Takashi Shitaoka, Tsumoru Morimoto, Yasuhiro Nishiyama, and Kiyomi Kakiuchi . Synthesis of α-Substituted Enoximes with Nucleophiles via Nitrosoallenes. The Journal of Organic Chemistry 2016, 81 (2) , 559-574. https://doi.org/10.1021/acs.joc.5b02364
- Ajaz A. Dar, Nagasuresh Enjamuri, Md. Shadab, Nahid Ali, and Abu T. Khan . Synthesis of Unsymmetrical Sulfides and Their Oxidation to Sulfones to Discover Potent Antileishmanial Agents. ACS Combinatorial Science 2015, 17 (11) , 671-681. https://doi.org/10.1021/acscombsci.5b00044
- Michael H. Haindl, Johnny Hioe, and Ruth M. Gschwind . The Proline Enamine Formation Pathway Revisited in Dimethyl Sulfoxide: Rate Constants Determined via NMR. Journal of the American Chemical Society 2015, 137 (40) , 12835-12842. https://doi.org/10.1021/jacs.5b03420
- Tobias A. Nigst, Johannes Ammer, and Herbert Mayr . Photogeneration of Benzhydryl Cations by Near-UV Laser Flash Photolysis of Pyridinium Salts. The Journal of Physical Chemistry A 2012, 116 (33) , 8494-8499. https://doi.org/10.1021/jp3049247
- Johannes Ammer, Christian F. Sailer, Eberhard Riedle, and Herbert Mayr . Photolytic Generation of Benzhydryl Cations and Radicals from Quaternary Phosphonium Salts: How Highly Reactive Carbocations Survive Their First Nanoseconds. Journal of the American Chemical Society 2012, 134 (28) , 11481-11494. https://doi.org/10.1021/ja3017522
- Christoph Nolte, Johannes Ammer, and Herbert Mayr . Nucleofugality and Nucleophilicity of Fluoride in Protic Solvents. The Journal of Organic Chemistry 2012, 77 (7) , 3325-3335. https://doi.org/10.1021/jo300141z
- Ross M. Denton, Jie An, Beatrice Adeniran, Alexander J. Blake, William Lewis, and Andrew M. Poulton . Catalytic Phosphorus(V)-Mediated Nucleophilic Substitution Reactions: Development of a Catalytic Appel Reaction. The Journal of Organic Chemistry 2011, 76 (16) , 6749-6767. https://doi.org/10.1021/jo201085r
- Benjamin J. Stokes, Sheng Liu, and Tom G. Driver . Rh2(II)-Catalyzed Nitro-Group Migration Reactions: Selective Synthesis of 3-Nitroindoles from β-Nitro Styryl Azides. Journal of the American Chemical Society 2011, 133 (13) , 4702-4705. https://doi.org/10.1021/ja111060q
- Rodrigo Ormazábal-Toledo, Paola R. Campodónico, and Renato Contreras . Are Electrophilicity and Electrofugality Related Concepts? A Density Functional Theory Study. Organic Letters 2011, 13 (4) , 822-824. https://doi.org/10.1021/ol103033j
- Martin Breugst and Herbert Mayr. Ambident Reactivities of Pyridone Anions. Journal of the American Chemical Society 2010, 132 (43) , 15380-15389. https://doi.org/10.1021/ja106962u
- Ádám Horváth, Balázs D. Lőrincz, Zoltán Benkő. Deciphering the Differences in Ambident Reactivity between the Cyanate, Thiocyanate Ions, and their P‐ and As‐Containing Analogues. Chemistry – A European Journal 2023, 29 (37) https://doi.org/10.1002/chem.202300611
- Meng‐Meng Guo, Gan‐Qi Qin, Xin‐Yu Jiang, Hao Xu, Mengtao Ma, Zhi‐Liang Shen, Xue‐Qiang Chu. Aerobic Coupling of Organophosphonium Salts with Alkenes: Catalyst‐Free C( sp 3 )−C( sp 2 ) Bond Formation. Advanced Synthesis & Catalysis 2023, 365 (11) , 1871-1876. https://doi.org/10.1002/adsc.202300259
- J. Caleb Hethcox, Heather C. Johnson, Jungchul Kim, Xiao Wang, Lili Cheng, Yang Cao, Melissa Tan, Daniel A. DiRocco, Yining Ji. Nickel‐Catalyzed Sulfonylation of Aryl Bromides Enabled by Potassium Metabisulfite as a Uniquely Effective SO 2 Surrogate. Angewandte Chemie 2023, 135 (19) https://doi.org/10.1002/ange.202217623
- J. Caleb Hethcox, Heather C. Johnson, Jungchul Kim, Xiao Wang, Lili Cheng, Yang Cao, Melissa Tan, Daniel A. DiRocco, Yining Ji. Nickel‐Catalyzed Sulfonylation of Aryl Bromides Enabled by Potassium Metabisulfite as a Uniquely Effective SO 2 Surrogate. Angewandte Chemie International Edition 2023, 62 (19) https://doi.org/10.1002/anie.202217623
- Adrian L. Schwan, Eric A. Nicol, Andrew G. Durant. Proximal interactions can direct selective sulfenate alkylation chemistry. Phosphorus, Sulfur, and Silicon and the Related Elements 2023, , 1-6. https://doi.org/10.1080/10426507.2023.2172409
- Christopher M. Poteat, Yujin Jang, Myunggi Jung, J. Drake Johnson, Rachel G. Williams, Vincent N. G. Lindsay. Enantioselective Synthesis of Cyclopropanone Equivalents and Application to the Formation of Chiral β‐Lactams. Angewandte Chemie 2020, 132 (42) , 18814-18820. https://doi.org/10.1002/ange.202006786
- Christopher M. Poteat, Yujin Jang, Myunggi Jung, J. Drake Johnson, Rachel G. Williams, Vincent N. G. Lindsay. Enantioselective Synthesis of Cyclopropanone Equivalents and Application to the Formation of Chiral β‐Lactams. Angewandte Chemie International Edition 2020, 59 (42) , 18655-18661. https://doi.org/10.1002/anie.202006786
- Tom Bettens, Mercedes Alonso, Frank De Proft, Trevor A. Hamlin, F. Matthias Bickelhaupt. Ambident Nucleophilic Substitution: Understanding Non‐HSAB Behavior through Activation Strain and Conceptual DFT Analyses. Chemistry – A European Journal 2020, 26 (17) , 3884-3893. https://doi.org/10.1002/chem.202000272
- Shagun Goyal, Meenakshi Budhiraja, Debasish Mandal, Vikas Tyagi. Experimental and Computational Insights into the Water‐Mediated Decomposition of N ‐Sulfonylhydrazones: A Catalyst‐Free Synthesis of γ‐Keto/Nitrile Sulfones. Asian Journal of Organic Chemistry 2020, 9 (2) , 251-258. https://doi.org/10.1002/ajoc.201900728
- Li Zhou, Yu Xia, Yu-Zhao Wang, Jun-Dan Fang, Xue-Yuan Liu. Mn(III)-promoted synthesis of spiroannular tricyclic scaffolds via sulfonylation/dearomatization of biaryl ynones. Tetrahedron 2019, 75 (9) , 1267-1274. https://doi.org/10.1016/j.tet.2019.01.041
- Yuan‐Zhao Ji, Hui‐Jing Li, Jin‐Yu Zhang, Yan‐Chao Wu. Sodium Arenesulfinates‐Involved Sulfinate Synthesis Revisited: Improved Synthesis and Revised Reaction Mechanism. European Journal of Organic Chemistry 2019, 2019 (8) , 1846-1855. https://doi.org/10.1002/ejoc.201900097
- Xingxing Wu, Liejin Zhou, Rakesh Maiti, Chengli Mou, Lutai Pan, Yonggui Robin Chi. Sulfinate and Carbene Co‐catalyzed Rauhut–Currier Reaction for Enantioselective Access to Azepino[1,2‐ a ]indoles. Angewandte Chemie International Edition 2019, 58 (2) , 477-481. https://doi.org/10.1002/anie.201810879
- Xingxing Wu, Liejin Zhou, Rakesh Maiti, Chengli Mou, Lutai Pan, Yonggui Robin Chi. Sulfinate and Carbene Co‐catalyzed Rauhut–Currier Reaction for Enantioselective Access to Azepino[1,2‐ a ]indoles. Angewandte Chemie 2019, 131 (2) , 487-491. https://doi.org/10.1002/ange.201810879
- Ken‐ichi Yamashita, Kazuyuki Kataoka, Hang Pham Qui Van, Takuji Ogawa, Ken‐ichi Sugiura. Versatile and Catalyst‐Free Methods for the Introduction of Group‐16 Elements at the meso ‐Positions of Diarylporphyrins. Asian Journal of Organic Chemistry 2018, 7 (12) , 2468-2478. https://doi.org/10.1002/ajoc.201800538
- Thomas Martzel, Jean‐François Lohier, Annie‐Claude Gaumont, Jean‐François Brière, Stéphane Perrio. Sulfinate‐Organocatalyzed (3+2) Annulation Reaction of Propargyl or Allenyl Sulfones with Activated Imines. European Journal of Organic Chemistry 2018, 2018 (36) , 5069-5073. https://doi.org/10.1002/ejoc.201800749
- Naresh Pogaku, Palakodety Radha Krishna, Y. Lakshmi Prapurna. Substrate- and temperature-controlled divergence in reactions of alcohols with TosMIC catalyzed by BF 3 · Et 2 O: Facile access to sulfinates and sulfones. Synthetic Communications 2017, 47 (13) , 1239-1249. https://doi.org/10.1080/00397911.2017.1321128
- Dilyana Zvezdova, Stoyanka Stoeva, Dimitar Aleksiev. Structural Features of Certain p -substituted Phenyl 2-nitrovinyl Sulfones. Journal of the Chinese Chemical Society 2016, 63 (3) , 247-253. https://doi.org/10.1002/jccs.201500408
- Hee‐Jung Kim, Sura Ha, Hee Yoon Lee, Kong‐Joo Lee. ROSics: Chemistry and proteomics of cysteine modifications in redox biology. Mass Spectrometry Reviews 2015, 34 (2) , 184-208. https://doi.org/10.1002/mas.21430
- J. Armando Lujan-Montelongo, Angel Ojeda Estevez, Fraser F. Fleming. Alkyl Sulfinates: Formal Nucleophiles for Synthesizing TosMIC Analogs. European Journal of Organic Chemistry 2015, 2015 (7) , 1602-1605. https://doi.org/10.1002/ejoc.201403615
- James S.M. Anderson, Paul W. Ayers. Resolving the nature of the reactive sites of phenylsulfinate ( PhSO 2 - ) with a single general-purpose reactivity indicator. Computational and Theoretical Chemistry 2014, 1043 , 1-4. https://doi.org/10.1016/j.comptc.2014.04.032
- Rodrigo Ormazábal-Toledo, Renato Contreras. Philicity and Fugality Scales for Organic Reactions. Advances in Chemistry 2014, 2014 , 1-13. https://doi.org/10.1155/2014/541547
- P.R. Blakemore. 1.15 Olefination of Carbonyl Compounds by Main-Group Element Mediators. 2014, 516-608. https://doi.org/10.1016/B978-0-08-097742-3.00120-8
- Ying Fu, Wenbo Zhu, Xingling Zhao, Helmut Hügel, Zhouqiang Wu, Yuhu Su, Zhengyin Du, Danfeng Huang, Yulai Hu. CuI catalyzed sulfonylation of organozinc reagents with sulfonyl halides. Org. Biomol. Chem. 2014, 12 (25) , 4295-4299. https://doi.org/10.1039/C4OB00638K
- Johannes Ammer, Herbert Mayr. Photogeneration of carbocations: applications in physical organic chemistry and the design of suitable precursors. Journal of Physical Organic Chemistry 2013, 26 (12) , 956-969. https://doi.org/10.1002/poc.3132
- Dominik S. Allgäuer, Herbert Mayr. One-Pot Two-Step Synthesis of 1-(Ethoxycarbonyl)indolizines via Pyridinium Ylides. European Journal of Organic Chemistry 2013, 2013 (28) , 6379-6388. https://doi.org/10.1002/ejoc.201300784
- Biswajit Saha, Brendan Frett, Yuanxiang Wang, Hong-yu Li. A p-toluenesulfinic acid-catalyzed three-component Ugi-type reaction and its application for the synthesis of α-amino amides and amidines. Tetrahedron Letters 2013, 54 (19) , 2340-2343. https://doi.org/10.1016/j.tetlet.2013.02.055
- Hai Dong, Martin Rahm, Niranjan Thota, Lingquan Deng, Tore Brinck, Olof Ramström. Control of the ambident reactivity of the nitrite ion. Org. Biomol. Chem. 2013, 11 (4) , 648-653. https://doi.org/10.1039/C2OB26980E
- Mauro Lo Conte, Kate S. Carroll. The Chemistry of Thiol Oxidation and Detection. 2013, 1-42. https://doi.org/10.1007/978-94-007-5787-5_1
- R. A. McClelland. Carbocations. 2012, 213-228. https://doi.org/10.1002/9781119941910.ch7
- K. C. Westaway. Nucleophilic Aliphatic Substitution. 2012, 229-264. https://doi.org/10.1002/9781119941910.ch8
- Mauro Lo Conte, Kate S. Carroll. Chemoselective Ligation of Sulfinic Acids with Aryl-Nitroso Compounds. Angewandte Chemie 2012, 124 (26) , 6608-6611. https://doi.org/10.1002/ange.201201812
- Mauro Lo Conte, Kate S. Carroll. Chemoselective Ligation of Sulfinic Acids with Aryl-Nitroso Compounds. Angewandte Chemie International Edition 2012, 51 (26) , 6502-6505. https://doi.org/10.1002/anie.201201812
- Sami Lakhdar, Johannes Ammer, Herbert Mayr. Laserblitzphotolytische Erzeugung α,β-ungesättigter Iminium-Ionen. Angewandte Chemie 2011, 123 (42) , 10127-10130. https://doi.org/10.1002/ange.201103683
- Sami Lakhdar, Johannes Ammer, Herbert Mayr. Generation of α,β-Unsaturated Iminium Ions by Laser Flash Photolysis. Angewandte Chemie International Edition 2011, 50 (42) , 9953-9956. https://doi.org/10.1002/anie.201103683
- Herbert Mayr, Martin Breugst, Armin R. Ofial. Farewell to the HSAB Treatment of Ambident Reactivity. Angewandte Chemie International Edition 2011, 50 (29) , 6470-6505. https://doi.org/10.1002/anie.201007100
- Xin-Hua Duan, Biplab Maji, Herbert Mayr. Characterization of the nucleophilic reactivities of thiocarboxylate, dithiocarbonate and dithiocarbamate anions. Organic & Biomolecular Chemistry 2011, 9 (23) , 8046. https://doi.org/10.1039/c1ob06245j
- Martin Breugst, Hendrik Zipse, J. Peter Guthrie, Herbert Mayr. Marcus-Analyse ambidenter Reaktivität. Angewandte Chemie 2010, 122 (30) , 5291-5295. https://doi.org/10.1002/ange.201001574
- Martin Breugst, Hendrik Zipse, J. Peter Guthrie, Herbert Mayr. Marcus Analysis of Ambident Reactivity. Angewandte Chemie International Edition 2010, 49 (30) , 5165-5169. https://doi.org/10.1002/anie.201001574