ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Retro-Diels−Alder Femtosecond Reaction Dynamics

View Author Information
Arthur Amos Noyes Laboratory of Chemical Physics California Institute of Technology Pasadena, California 91125
Cite this: J. Am. Chem. Soc. 1996, 118, 36, 8755–8756
Publication Date (Web):September 11, 1996
https://doi.org/10.1021/ja9620696
Copyright © 1996 American Chemical Society

    Article Views

    1334

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (93 KB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 90 publications.

    1. Jyothish Joy, Daniel H. Ess. Direct Dynamics Trajectories Demonstrate Dynamic Matching and Nonstatistical Radical Pair Intermediates during Fe-Oxo-Mediated C–H Functionalization Reactions. Journal of the American Chemical Society 2023, 145 (13) , 7628-7637. https://doi.org/10.1021/jacs.3c01196
    2. Ghislain Deslongchamps, Pierre Deslongchamps. Bent Bond/Antiperiplanar Hypothesis and the Chemical Reactivity of Annulenes. The Journal of Organic Chemistry 2020, 85 (13) , 8645-8655. https://doi.org/10.1021/acs.joc.0c01069
    3. Li-Li Pan, Lin Frank Song, Yipu Miao, Yue Yang, and Kenneth M. Merz, Jr. . Mechanism of Formation of the Nonstandard Product in the Prenyltransferase Reaction of the G115T Mutant of FtmPT1: A Case of Reaction Dynamics Calling the Shots?. Biochemistry 2017, 56 (24) , 2995-3007. https://doi.org/10.1021/acs.biochem.7b00248
    4. Sara H. Gardiner, M. Laura Lipciuc, and Claire Vallance . Gas-Phase Retro-Diels–Alder Reactions of Cyclohexene, 1-Methylcyclohexene, and 4-Methylcyclohexene following Photoexcitation at 193 nm: A Velocity-Map Imaging Study. The Journal of Physical Chemistry A 2015, 119 (50) , 12218-12223. https://doi.org/10.1021/acs.jpca.5b06185
    5. Beier Lyu, Wenli Cha, Tingting Mao, Yuanzi Wu, Hujun Qian, Yitian Zhou, Xiuli Chen, Shen Zhang, Lanying Liu, Guang Yang, Zhongyuan Lu, Qiang Zhu, and Hongwei Ma . Surface Confined Retro Diels–Alder Reaction Driven by the Swelling of Weak Polyelectrolytes. ACS Applied Materials & Interfaces 2015, 7 (11) , 6254-6259. https://doi.org/10.1021/acsami.5b00538
    6. Jeffrey J. McDowell, Isabel Schick, Alastair Price, Daniel Faulkner, and Geoffrey Ozin . Pure Blue Emitting Poly(3,6-dimethoxy-9,9-dialkylsilafluorenes) Prepared via Nickel-Catalyzed Cross-Coupling of Diarylmagnesate Monomers. Macromolecules 2013, 46 (17) , 6794-6805. https://doi.org/10.1021/ma401346y
    7. Satoru Sato, Yutaka Maeda, Jing-Dong Guo, Michio Yamada, Naomi Mizorogi, Shigeru Nagase, and Takeshi Akasaka . Mechanistic Study of the Diels–Alder Reaction of Paramagnetic Endohedral Metallofullerene: Reaction of La@C82 with 1,2,3,4,5-Pentamethylcyclopentadiene. Journal of the American Chemical Society 2013, 135 (15) , 5582-5587. https://doi.org/10.1021/ja309763f
    8. Mei Chia, M. Ali Haider, Gerald Pollock, III, George A. Kraus, Matthew Neurock, and James A. Dumesic . Mechanistic Insights into Ring-Opening and Decarboxylation of 2-Pyrones in Liquid Water and Tetrahydrofuran. Journal of the American Chemical Society 2013, 135 (15) , 5699-5708. https://doi.org/10.1021/ja312075r
    9. J. Grant Hill, David L. Cooper and Peter B. Karadakov. Spin-Coupled Description of Aromaticity in the Retro Diels−Alder Reaction of Norbornene. The Journal of Physical Chemistry A 2008, 112 (50) , 12823-12828. https://doi.org/10.1021/jp800969k
    10. Victor Polo,, Luis R. Domingo, and, Juan Andrés. Better Understanding of the Ring-Cleavage Process of Cyanocyclopropyl Anionic Derivatives. A Theoretical Study Based on the Electron Localization Function. The Journal of Organic Chemistry 2006, 71 (2) , 754-762. https://doi.org/10.1021/jo052117h
    11. Shunichi Fukuzumi,, Junpei Yuasa,, Toshio Miyagawa, and, Tomoyoshi Suenobu. Mechanism of Scandium Ion Catalyzed Diels−Alder Reaction of Anthracenes with Methyl Vinyl Ketone. The Journal of Physical Chemistry A 2005, 109 (14) , 3174-3181. https://doi.org/10.1021/jp050347u
    12. Elfi Kraka,, Anan Wu, and, Dieter Cremer. Mechanism of the Diels−Alder Reaction Studied with the United Reaction Valley Approach:  Mechanistic Differences between Symmetry-Allowed and Symmetry-Forbidden Reactions. The Journal of Physical Chemistry A 2003, 107 (42) , 9008-9021. https://doi.org/10.1021/jp030882z
    13. Shunichi Fukuzumi,, Kei Ohkubo, and, Toshihiko Okamoto. Metal Ion-Catalyzed Diels−Alder and Hydride Transfer Reactions. Catalysis of Metal Ions in the Electron-Transfer Step. Journal of the American Chemical Society 2002, 124 (47) , 14147-14155. https://doi.org/10.1021/ja026417h
    14. T. C. Dinadayalane,, R. Vijaya,, A. Smitha, and, G. Narahari Sastry. Diels−Alder Reactivity of Butadiene and Cyclic Five-Membered Dienes ((CH)4X, X = CH2, SiH2, O, NH, PH, and S) with Ethylene:  A Benchmark Study. The Journal of Physical Chemistry A 2002, 106 (8) , 1627-1633. https://doi.org/10.1021/jp013910r
    15. W. Fuss,, K. K. Pushpa,, W. E. Schmid, and, S. A. Trushin. Ultrafast Rearrangement of Norbornene Excited at 200 nm. The Journal of Physical Chemistry A 2001, 105 (47) , 10640-10645. https://doi.org/10.1021/jp011843v
    16. Alexander Z. Bradley,, Martin G. Kociolek, and, Richard P. Johnson. Conformational Selectivity in the Diels−Alder Cycloaddition:  Predictions for Reactions of s-trans-1,3-Butadiene. The Journal of Organic Chemistry 2000, 65 (21) , 7134-7138. https://doi.org/10.1021/jo000916o
    17. Manabu Abe,, Kiyotada Fujimoto, and, Masatomo Nojima. Notable Sulfur Atom Effects on the Regio- and Stereoselective Formation of Oxetanes in Paternò−Büchi Photocycloaddition of Aromatic Aldehydes with Silyl O,S-Ketene Acetals. Journal of the American Chemical Society 2000, 122 (17) , 4005-4010. https://doi.org/10.1021/ja993997i
    18. Brett R. Beno,, Sarah Wilsey, and, K. N. Houk. The C7H10 Potential Energy Landscape:  Concerted Transition States and Diradical Intermediates for the Retro-Diels−Alder Reaction and [1,3] Sigmatropic Shifts of Norbornene. Journal of the American Chemical Society 1999, 121 (20) , 4816-4826. https://doi.org/10.1021/ja9818250
    19. Jing Tian and, K. N. Houk, , F. G. Klärner. Substituent Effect on Stereospecificity and Energy of Concert of the Retro-Diels−Alder Reaction of Isopropylidenenorbornene. The Journal of Physical Chemistry A 1998, 102 (39) , 7662-7667. https://doi.org/10.1021/jp9823953
    20. Eric W.-G. Diau,, Osama K. Abou-Zied,, Alfred A. Scala, and, Ahmed H. Zewail. Femtosecond Dynamics of Transition States and the Concept of Concertedness:  Nitrogen Extrusion of Azomethane Reactions. Journal of the American Chemical Society 1998, 120 (13) , 3245-3246. https://doi.org/10.1021/ja9743553
    21. Kalyani Maitra,, Vincent J. Catalano, and, John H. Nelson. Intramolecular [4+2] Diels−Alder Cycloaddition of a 2H-Phosphole to Coordinated Unsaturated Phosphines, Phospholes, and an Arsine. Journal of the American Chemical Society 1997, 119 (51) , 12560-12567. https://doi.org/10.1021/ja9724654
    22. F. Matthias Bickelhaupt,, Roald Hoffmann, and, Raphael D. Levine. “Forbidden” Four-Center Reactions:  Molecular Orbital Considerations for N2 + N2 and N2 + N2+. The Journal of Physical Chemistry A 1997, 101 (44) , 8255-8263. https://doi.org/10.1021/jp971005u
    23. David A. Hrovat,, Shu Fang, and, Weston Thatcher Borden, , Barry K. Carpenter. Investigation of Cyclopropane Stereomutation by Quasiclassical Trajectories on an Analytical Potential Energy Surface. Journal of the American Chemical Society 1997, 119 (22) , 5253-5254. https://doi.org/10.1021/ja964238s
    24. Manuel Cardosa-Gutierrez, Guillaume De Bo, Anne-Sophie Duwez, Francoise Remacle. Bond breaking of furan–maleimide adducts via a diradical sequential mechanism under an external mechanical force. Chemical Science 2023, 14 (5) , 1263-1271. https://doi.org/10.1039/D2SC05051J
    25. Viktoria Kreuzer, Klaus Bretterbauer, Gerhard Buchinger, Lisa Kaiser, Lukas Roiser, Clemens Schwarzinger. Spectroscopic studies on the formation of different diastereomers in polyesters based on nadic acid. International Journal of Polymer Analysis and Characterization 2022, 27 (8) , 515-529. https://doi.org/10.1080/1023666X.2022.2112642
    26. Pierre Deslongchamps. A new mechanism for the thermal and photochemical Diels-Alder cycloaddition based on the bent bond / antiperiplanar hypothesis orbital model. Journal of Molecular Structure 2022, 1264 , 133288. https://doi.org/10.1016/j.molstruc.2022.133288
    27. Martin Blavier, R. D. Levine, F. Remacle. Time evolution of entanglement of electrons and nuclei and partial traces in ultrafast photochemistry. Physical Chemistry Chemical Physics 2022, 24 (29) , 17516-17525. https://doi.org/10.1039/D2CP01440H
    28. Pierre Vogel, Kendall N. Houk. Organic Chemistry and Synthesis Rely More and More upon Catalysts. Catalysts 2022, 12 (7) , 758. https://doi.org/10.3390/catal12070758
    29. Priyanka Pandey, Shibabrat Naik, Srihari Keshavamurthy. Influence of low frequency modes on dynamical concertedness in double proton transfer dynamics. Communications in Nonlinear Science and Numerical Simulation 2022, 109 , 106326. https://doi.org/10.1016/j.cnsns.2022.106326
    30. Shuai Li, Bethany Jochim, James E. Jackson, Marcos Dantus. Femtosecond dynamics and coherence of ionic retro-Diels–Alder reactions. The Journal of Chemical Physics 2021, 155 (4) https://doi.org/10.1063/5.0048380
    31. Uxía Rivero, Haydar Taylan Turan, Markus Meuwly, Stefan Willitsch. Reactive atomistic simulations of Diels-Alder-type reactions: conformational and dynamic effects in the polar cycloaddition of 2,3-dibromobutadiene radical ions with maleic anhydride. Molecular Physics 2021, 119 (1-2) , e1825852. https://doi.org/10.1080/00268976.2020.1825852
    32. Dipak K. Mandal. Perturbation theory and organic reactions. 2021, 215-246. https://doi.org/10.1016/B978-0-12-824092-2.00004-6
    33. Alessio Valentini, Stephan van den Wildenberg, F. Remacle. Selective bond formation triggered by short optical pulses: quantum dynamics of a four-center ring closure. Physical Chemistry Chemical Physics 2020, 22 (39) , 22302-22313. https://doi.org/10.1039/D0CP03435E
    34. Abderrahmane Semmeq, Antonio Monari, Michael Badawi, Said Ouaskit. Ab Initio Study of the Stepwise versus Concerted Fragmentation Pathways in Microhydrated Thymine Radical Cations. Chemistry – A European Journal 2019, 25 (68) , 15525-15534. https://doi.org/10.1002/chem.201902462
    35. Uxía Rivero, Oliver T. Unke, Markus Meuwly, Stefan Willitsch. Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations. The Journal of Chemical Physics 2019, 151 (10) https://doi.org/10.1063/1.5114981
    36. Diana Yepes, Joel Valenzuela, Jorge I. Martínez-Araya, Patricia Pérez, Pablo Jaque. Effect of the exchange–correlation functional on the synchronicity/nonsynchronicity in bond formation in Diels–Alder reactions: a reaction force constant analysis. Physical Chemistry Chemical Physics 2019, 21 (14) , 7412-7428. https://doi.org/10.1039/C8CP02284D
    37. Zhongyue Yang, Cooper S. Jamieson, Xiao-Song Xue, Marc Garcia-Borràs, Tyler Benton, Xiaofei Dong, Fang Liu, K.N. Houk. Mechanisms and Dynamics of Reactions Involving Entropic Intermediates. Trends in Chemistry 2019, 1 (1) , 22-34. https://doi.org/10.1016/j.trechm.2019.01.009
    38. Zhongyue Yang, Luyi Zou, Yanmin Yu, Fengjiao Liu, Xiaofei Dong, K.N. Houk. Molecular dynamics of the two-stage mechanism of cyclopentadiene dimerization: concerted or stepwise?. Chemical Physics 2018, 514 , 120-125. https://doi.org/10.1016/j.chemphys.2018.02.020
    39. Zhongyue Yang, K. N. Houk. The Dynamics of Chemical Reactions: Atomistic Visualizations of Organic Reactions, and Homage to van ’t Hoff. Chemistry – A European Journal 2018, 24 (16) , 3916-3924. https://doi.org/10.1002/chem.201706032
    40. Sebastián Martínez, Gonzalo Carrau, David Gonzalez, Nicolás Veiga. Diels‐Alder Reaction of Levoglucosenone with a Protected cis ‐Cyclohexadienediol: Structural and Electronic Basis behind the Unexpected Stereoselectivity. ChemistrySelect 2017, 2 (34) , 11223-11230. https://doi.org/10.1002/slct.201702442
    41. . Addition Reactions. 2017, 389-507. https://doi.org/10.1002/9781119390541.ch6
    42. Uxía Rivero, Markus Meuwly, Stefan Willitsch. A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride. Chemical Physics Letters 2017, 683 , 598-605. https://doi.org/10.1016/j.cplett.2017.03.063
    43. Majed Chergui, John Meurig Thomas. From structure to structural dynamics: Ahmed Zewail's legacy. Structural Dynamics 2017, 4 (4) https://doi.org/10.1063/1.4998243
    44. Gregory D. Scholes, Graham R. Fleming, Lin X. Chen, Alán Aspuru-Guzik, Andreas Buchleitner, David F. Coker, Gregory S. Engel, Rienk van Grondelle, Akihito Ishizaki, David M. Jonas, Jeff S. Lundeen, James K. McCusker, Shaul Mukamel, Jennifer P. Ogilvie, Alexandra Olaya-Castro, Mark A. Ratner, Frank C. Spano, K. Birgitta Whaley, Xiaoyang Zhu. Using coherence to enhance function in chemical and biophysical systems. Nature 2017, 543 (7647) , 647-656. https://doi.org/10.1038/nature21425
    45. Seyyed Amir Siadati. Beyond the Alternatives that Switch the Mechanism of the 1,3-Dipolar CyCloadditions from Concerted to Stepwise or Vice Versa: A Literature Review. Progress in Reaction Kinetics and Mechanism 2016, 41 (4) , 331-344. https://doi.org/10.3184/146867816X14719552202168
    46. Grant Fisher. Diagnostics in computational organic chemistry. Foundations of Chemistry 2016, 18 (3) , 241-262. https://doi.org/10.1007/s10698-016-9253-4
    47. Miguel A. F. de Souza, Elizete Ventura, Silmar A. do Monte, José M. Riveros, Ricardo L. Longo. Revisiting the concept of the (a)synchronicity of diels-alder reactions based on the dynamics of quasiclassical trajectories. Journal of Computational Chemistry 2016, 37 (8) , 701-711. https://doi.org/10.1002/jcc.24245
    48. Vladimir D. Kiselev, Dmitry A. Kornilov, Ilzida I. Lekomtseva, Alexander I. Konovalov. Reactivity of 4-Phenyl-1,2,4-triazoline-3,5-dione and Diethylazocarboxylate in [4+2]-Cycloaddition and Ene Reactions: Solvent, Temperature, and High-Pressure Influence on the Reaction Rate. International Journal of Chemical Kinetics 2015, 47 (5) , 289-301. https://doi.org/10.1002/kin.20908
    49. Miguel A. F. de Souza , Elizete Ventura, Silmar A. do Monte, José M. Riveros , Ricardo L. Longo. Dynamic Effects Dictate the Mechanism and Selectivity of Dehydration–Rearrangement Reactions of Protonated Alcohols [Me 2 (R)CCH(OH 2 )Me] + (R=Me, Et, i Pr) in the Gas Phase. Chemistry – A European Journal 2014, 20 (42) , 13742-13754. https://doi.org/10.1002/chem.201402617
    50. Cheng-Xing Cui, Ya-Jun Liu. A thorough understanding of the Diels-Alder reaction of 1,3-butadiene and ethylene. Journal of Physical Organic Chemistry 2014, 27 (8) , 652-660. https://doi.org/10.1002/poc.3313
    51. Brantley A. West, Brian P. Molesky, Paul G. Giokas, Andrew M. Moran. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV. Chemical Physics 2013, 423 , 92-104. https://doi.org/10.1016/j.chemphys.2013.06.027
    52. Raymond A. Firestone. The Low Energy of Concert in Many Symmetry-Allowed Cycloadditions Supports a Stepwise-Diradical Mechanism. International Journal of Chemical Kinetics 2013, 45 (7) , 415-428. https://doi.org/10.1002/kin.20776
    53. Ghislain Deslongchamps, Pierre Deslongchamps. Bent bonds and the antiperiplanar hypothesis as a simple model to predict Diels–Alder reactivity: retrospective or perspective?. Tetrahedron 2013, 69 (30) , 6022-6033. https://doi.org/10.1016/j.tet.2013.05.008
    54. Tapas Goswami, Dipak K. Das, Debabrata Goswami. Controlling the femtosecond laser-driven transformation of dicyclopentadiene into cyclopentadiene. Chemical Physics Letters 2013, 558 , 1-7. https://doi.org/10.1016/j.cplett.2012.10.054
    55. Nima Nikbin, Phuong T. Do, Stavros Caratzoulas, Raul F. Lobo, Paul J. Dauenhauer, Dionisios G. Vlachos. A DFT study of the acid-catalyzed conversion of 2,5-dimethylfuran and ethylene to p-xylene. Journal of Catalysis 2013, 297 , 35-43. https://doi.org/10.1016/j.jcat.2012.09.017
    56. Kersey Black, Peng Liu, Lai Xu, Charles Doubleday, Kendall N. Houk. Dynamics, transition states, and timing of bond formation in Diels–Alder reactions. Proceedings of the National Academy of Sciences 2012, 109 (32) , 12860-12865. https://doi.org/10.1073/pnas.1209316109
    57. Nasr Y.M. Omar, Noorsaadah A. Rahman, Sharifuddin MD Zain. Enantioselective organocatalytic diels-Alder reactions: A density functional theory and kinetic isotope effects study. Journal of Computational Chemistry 2011, 32 (9) , 1813-1823. https://doi.org/10.1002/jcc.21763
    58. . Retro‐Diels‐Alder Reaction. 2010, 2367-2372. https://doi.org/10.1002/9780470638859.conrr533
    59. Dietmar Kuck, Michael Mormann. Mass Spectrometry and Gas‐Phase Ion Chemistry of Dienes and Polyenes. 2009https://doi.org/10.1002/9780470682531.pat0222
    60. John E. Baldwin. Organic chemical reaction mechanisms clarified for deuterium‐ and carbon‐13‐labeled hydrocarbons. Journal of Labelled Compounds and Radiopharmaceuticals 2007, 50 (11-12) , 947-960. https://doi.org/10.1002/jlcr.1389
    61. Ewa Janus, Izabela Goc-Maciejewska, Marek Łożyński, Juliusz Pernak. Diels–Alder reaction in protic ionic liquids. Tetrahedron Letters 2006, 47 (24) , 4079-4083. https://doi.org/10.1016/j.tetlet.2006.03.172
    62. I V Hertel, W Radloff. Ultrafast dynamics in isolated molecules and molecular clusters. Reports on Progress in Physics 2006, 69 (6) , 1897-2003. https://doi.org/10.1088/0034-4885/69/6/R06
    63. Mahendra P. Patil, Raghavan B. Sunoj. Density functional theory and atoms-in-molecule study on the role of two-electron stabilizing interactions in retro Diels–Alder reaction of cycloadducts derived from substituted cyclopentadiene and p-benzoquinone. Org. Biomol. Chem. 2006, 4 (21) , 3923-3930. https://doi.org/10.1039/B610972A
    64. B. Lasorne, G. Dive, M. Desouter-Lecomte. Wave packets in a bifurcating region of an energy landscape: Diels-Alder dimerization of cyclopentadiene. The Journal of Chemical Physics 2005, 122 (18) https://doi.org/10.1063/1.1891726
    65. Henning Hopf. Reactive Intermediates. 2003, 250-262. https://doi.org/10.1002/9783527620784.ch40b
    66. Smiljko Ašperger. Chemical Kinetics and Reaction Mechanisms. 2003, 3-103. https://doi.org/10.1007/978-1-4419-9276-5_2
    67. R Vijaya, G.Narahari Sastry. A theoretical study of intramolecular Diels–Alder reactions, diene–(CH2)n–dienophile (n=1, 2, 3 and 4). Journal of Molecular Structure: THEOCHEM 2002, 618 (3) , 201-208. https://doi.org/10.1016/S0166-1280(02)00405-0
    68. R Vijaya, T.C Dinadayalane, G Narahari Sastry. Diels–Alder reactions between cyclic five-membered dienes and acetylene. Journal of Molecular Structure: THEOCHEM 2002, 589-590 , 291-299. https://doi.org/10.1016/S0166-1280(02)00284-1
    69. Werner Fuß, Kumbil Kuttan Pushpa, Wolfram E. Schmid, Sergei A. Trushin. Ultrafast [2 + 2]-cycloaddition in norbornadiene. Photochemical & Photobiological Sciences 2002, 1 (1) , 60-66. https://doi.org/10.1039/b107442c
    70. Daniel A. Singleton, Brian E. Schulmeier, Chao Hang, Allen A. Thomas, Shun-Wang Leung, Steven R. Merrigan. Isotope effects and the distinction between synchronous, asynchronous, and stepwise Diels–Alder reactions. Tetrahedron 2001, 57 (24) , 5149-5160. https://doi.org/10.1016/S0040-4020(01)00354-4
    71. Shunichi Fukuzumi, Dirk M. Guldi. Electron‐Transfer Chemistry of Fullerenes. 2001, 270-337. https://doi.org/10.1002/9783527618248.ch19
    72. Ahmed H. Zewail. Femtochemie: Studium der Dynamik der chemischen Bindung auf atomarer Skala mit Hilfe ultrakurzer Laserpulse (Nobel-Aufsatz). Angewandte Chemie 2000, 112 (15) , 2688-2738. https://doi.org/10.1002/1521-3757(20000804)112:15<2688::AID-ANGE2688>3.0.CO;2-2
    73. Eric W.-G. Diau, Steven De Feyter, Ahmed H. Zewail. Femtosecond dynamics of retro Diels–Alder reactions: the concept of concertedness. Chemical Physics Letters 1999, 304 (3-4) , 134-144. https://doi.org/10.1016/S0009-2614(99)00315-2
    74. Sason Shaik, Avital Shurki. Valenzbindungsdiagramme – eine Hilfe zum Verständnis chemischer Reaktivität. Angewandte Chemie 1999, 111 (5) , 616-657. https://doi.org/10.1002/(SICI)1521-3757(19990301)111:5<616::AID-ANGE616>3.0.CO;2-J
    75. Branko S. Jursic. The inertia principle and implementation in the cycloaddition reaction with aromatic heterocycles performed with AM1 semiempirical and density functional theory study. Journal of Molecular Structure: THEOCHEM 1999, 459 (1-3) , 215-220. https://doi.org/10.1016/S0166-1280(98)00302-9
    76. Barry K. Carpenter. Dynamisches Verhalten von organischen reaktiven Intermediaten. Angewandte Chemie 1998, 110 (24) , 3532-3543. https://doi.org/10.1002/(SICI)1521-3757(19981217)110:24<3532::AID-ANGE3532>3.0.CO;2-4
    77. Juan Bertran, Vicenç Branchadell, Antonio Oliva, Mariona Sodupe. Pericyclic Reactions: The D iels– A lder Reaction. 1998https://doi.org/10.1002/0470845015.cpa004m
    78. Henning Hopf. Reactive Intermediates. 1998, 250-262. https://doi.org/10.1002/9783527619962.ch40
    79. W Fuß, S Lochbrunner, A.M Müller, T Schikarski, W.E Schmid, S.A Trushin. Pathway approach to ultrafast photochemistry: potential surfaces, conical intersections and isomerizations of small polyenes. Chemical Physics 1998, 232 (1-2) , 161-174. https://doi.org/10.1016/S0301-0104(98)00114-1
    80. A. A. Scala, E. W.-G. Diau, Z. H. Kim, A. H. Zewail. Femtosecond β-cleavage dynamics: Observation of the diradical intermediate in the nonconcerted reactions of cyclic ethers. The Journal of Chemical Physics 1998, 108 (19) , 7933-7936. https://doi.org/10.1063/1.476409
    81. Franck Purseigle, Didier Dubreuil, Anne Marchand, Jean Paul Pradère, Martin Goli, Loic Toupet. Synthesis and reactivity of N-selenoacylamidines precursors of selenoheterocycles. Tetrahedron 1998, 54 (11) , 2545-2562. https://doi.org/10.1016/S0040-4020(97)10440-9
    82. Shigeru Yamago, Masaharu Nakamura, Xiao Qun Wang, Masao Yanagawa, Shuzo Tokumitsu, Eiichi Nakamura. Thermal Hetero [3 + 2] Cycloaddition of Dipolar Trimethylenemethane to O -Alkyloximes. Straightforward Synthetic Routes to Substituted Pyrrolidines and Prolines. The Journal of Organic Chemistry 1998, 63 (5) , 1694-1703. https://doi.org/10.1021/jo972302y
    83. Paul Rademacher. Fragmentations of Five-Membered Rings. 1998, 361-412. https://doi.org/10.1016/S0065-2725(08)60319-0
    84. John C. Gilbert, Everett G. McKinley, Duen-Ren Hou. The Nature of Cyclopentyne from Different Precursors. Tetrahedron 1997, 53 (29) , 9891-9902. https://doi.org/10.1016/S0040-4020(97)00334-7
    85. K.N. Houk, Brett R. Beno, Maja Nendel, Kersey Black, Hi Young Yoo, Sarah Wilsey, Jeehiun K. Lee. Exploration of pericyclic reaction transition structures by quantum mechanical methods: competing concerted and stepwise mechanisms. Journal of Molecular Structure: THEOCHEM 1997, 398-399 , 169-179. https://doi.org/10.1016/S0166-1280(96)04970-6
    86. Werner Fuß, Peter Hering, Karl L. Kompa, Stefan Lochbrunner, Thomas Schikarski, Wolfram E. Schmid, Sergei A. Trushin. Ultrafast photochemical pericyclic reactions and isomerizations of small polyenes. Berichte der Bunsengesellschaft für physikalische Chemie 1997, 101 (3) , 500-509. https://doi.org/10.1002/bbpc.19971010324
    87. Katrin Schroeter, Christoph A. Schalley, Ralf Wesendrup, Detlef Schröder, Helmut Schwarz. Covalent Assistance in Metal-Mediated [4 + 2] Cycloadditions of Butadiene and Acetylene in the Gas Phase. Organometallics 1997, 16 (5) , 986-994. https://doi.org/10.1021/om9609372
    88. I. D. Cunningham. Chapter 3. Reaction Mechanisms . Part (i) Pericyclic mechanisms. Annual Reports Section "B" (Organic Chemistry) 1997, 93 , 27. https://doi.org/10.1039/oc093027
    89. A.H Zewail. Femtochemistry: Chemical Reaction Dynamics and their Control. 1997, 3-46. https://doi.org/10.1002/9780470141601.ch1
    90. Pierre Mison, Bernard Sillion. Thermosetting Oligomers Containing Maleimides and Nadimides End-Groups. , 137-179. https://doi.org/10.1007/3-540-49815-X_5

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect