ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Design of a Unique Protein Scaffold for Maquettes

View Author Information
The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania Philadelphia, Pennsylvania 19104 Departments of Chemistry, Biological Sciences, and Biophysical Sciences and Center for Structural Biology State University of New York Buffalo, New York 14260−3000
Cite this: J. Am. Chem. Soc. 1997, 119, 9, 2323–2324
Publication Date (Web):March 5, 1997
https://doi.org/10.1021/ja963561s
Copyright © 1997 American Chemical Society

    Article Views

    447

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Aromatic-amide proton region one-dimensional NMR spectra for H10H24, H10H24-L13F, H10H24-L6I, and H10H24-L6I,L13F; 1H−1H NOESY NMR spectra in the aromatic-amide proton region of the double variant H10H24-L6I,L13F; heme binding titration for H10H24-L6I,L13F; electron paramagnetic resonance spectrum of holo-H10H24-L6I,L13F (5 pages). See any current masthead page for ordering and Internet access instructions.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 74 publications.

    1. Ian W. Hamley. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021, 22 (5) , 1835-1855. https://doi.org/10.1021/acs.biomac.1c00240
    2. George A. Sutherland, Daniel Polak, David J. K. Swainsbury, Shuangqing Wang, Frank C. Spano, Dirk B. Auman, David G. Bossanyi, James P. Pidgeon, Andrew Hitchcock, Andrew J. Musser, John E. Anthony, P. Leslie Dutton, Jenny Clark, C. Neil Hunter. A Thermostable Protein Matrix for Spectroscopic Analysis of Organic Semiconductors. Journal of the American Chemical Society 2020, 142 (32) , 13898-13907. https://doi.org/10.1021/jacs.0c05477
    3. Jing Liu, Saumen Chakraborty, Parisa Hosseinzadeh, Yang Yu, Shiliang Tian, Igor Petrik, Ambika Bhagi, and Yi Lu . Metalloproteins Containing Cytochrome, Iron–Sulfur, or Copper Redox Centers. Chemical Reviews 2014, 114 (8) , 4366-4469. https://doi.org/10.1021/cr400479b
    4. H. Christopher Fry, Jamie M. Garcia, Matthew J. Medina, Ulises M. Ricoy, David J. Gosztola, Maxim P. Nikiforov, Liam C. Palmer, and Samuel I. Stupp . Self-Assembly of Highly Ordered Peptide Amphiphile Metalloporphyrin Arrays. Journal of the American Chemical Society 2012, 134 (36) , 14646-14649. https://doi.org/10.1021/ja304674d
    5. Cynthia V. Pagba and Bridgette A. Barry . Redox-Induced Conformational Switching in Photosystem-II-Inspired Biomimetic Peptides: A UV Resonance Raman Study. The Journal of Physical Chemistry B 2012, 116 (35) , 10590-10599. https://doi.org/10.1021/jp303607b
    6. Robin S. Sibert, Mira Josowicz, and Bridgette A. Barry . Control of Proton and Electron Transfer in de Novo Designed, Biomimetic β Hairpins. ACS Chemical Biology 2010, 5 (12) , 1157-1168. https://doi.org/10.1021/cb100138m
    7. Jose J. Pastor,, Giovanna Granados,, Natàlia Carulla,, Francesc Rabanal, and, Ernest Giralt. Redesign of Protein Domains Using One-Bead-One-Compound Combinatorial Chemistry. Journal of the American Chemical Society 2007, 129 (48) , 14922-14932. https://doi.org/10.1021/ja073969x
    8. Estelle Delort,, Nhat-Quang Nguyen-Trung,, Tamis Darbre, and, Jean-Louis Reymond. Synthesis and Activity of Histidine-Containing Catalytic Peptide Dendrimers. The Journal of Organic Chemistry 2006, 71 (12) , 4468-4480. https://doi.org/10.1021/jo060273y
    9. Debdip Ghosh and, Vincent L. Pecoraro. Understanding Metalloprotein Folding Using a de Novo Design Strategy. Inorganic Chemistry 2004, 43 (25) , 7902-7915. https://doi.org/10.1021/ic048939z
    10. Charles J. Reedy and, Brian R. Gibney. Heme Protein Assemblies. Chemical Reviews 2004, 104 (2) , 617-650. https://doi.org/10.1021/cr0206115
    11. Shixin Ye,, Joseph Strzalka,, Xiaoxi Chen,, Christopher C. Moser,, P. Leslie Dutton, and, J. Kent Blasie. Assembly of a Vectorially Oriented Four-Helix Bundle at the Air/Water Interface via Directed Electrostatic Interactions. Langmuir 2003, 19 (5) , 1515-1521. https://doi.org/10.1021/la026258f
    12. Gavin A. Manderson and, Jonas S. Johansson. Role of Aromatic Side Chains in the Binding of Volatile General Anesthetics to a Four-α-Helix Bundle. Biochemistry 2002, 41 (12) , 4080-4087. https://doi.org/10.1021/bi0160718
    13. Angela Lombardi,, Flavia Nastri, and, Vincenzo Pavone. Peptide-Based Heme−Protein Models. Chemical Reviews 2001, 101 (10) , 3165-3190. https://doi.org/10.1021/cr000055j
    14. Catalina E. Laplaza and, R. H. Holm. Helix−Loop−Helix Peptides as Scaffolds for the Construction of Bridged Metal Assemblies in Proteins:  The Spectroscopic A-Cluster Structure in Carbon Monoxide Dehydrogenase. Journal of the American Chemical Society 2001, 123 (42) , 10255-10264. https://doi.org/10.1021/ja010851m
    15. Brian R. Gibney,, Steve S. Huang,, Jack J. Skalicky,, Ernesto J. Fuentes,, A. Joshua Wand, and, P. Leslie Dutton. Hydrophobic Modulation of Heme Properties in Heme Protein Maquettes. Biochemistry 2001, 40 (35) , 10550-10561. https://doi.org/10.1021/bi002806h
    16. Adam R. Mezo,, Richard P. Cheng, and, Barbara Imperiali*. Oligomerization of Uniquely Folded Mini-Protein Motifs:  Development of a Homotrimeric ββα Peptide. Journal of the American Chemical Society 2001, 123 (17) , 3885-3891. https://doi.org/10.1021/ja004292f
    17. Joseph Strzalka,, Xiaoxi Chen,, Christopher C. Moser,, P. Leslie Dutton,, John C. Bean, and, J. Kent Blasie. X-ray Scattering Studies of Maquette Peptide Monolayers. 2. Interferometry at the Vapor/Solid Interface. Langmuir 2001, 17 (4) , 1193-1199. https://doi.org/10.1021/la0009285
    18. Joseph Strzalka,, Xiaoxi Chen,, Christopher C. Moser,, P. Leslie Dutton,, Benjamin M. Ocko, and, J. Kent Blasie. X-ray Scattering Studies of Maquette Peptide Monolayers. 1. Reflectivity and Grazing Incidence Diffraction at the Air/Water Interface. Langmuir 2000, 16 (26) , 10404-10418. https://doi.org/10.1021/la000264z
    19. R. Blake Hill,, Daniel P. Raleigh,, Angela Lombardi, and, William F. DeGrado. De Novo Design of Helical Bundles as Models for Understanding Protein Folding and Function. Accounts of Chemical Research 2000, 33 (11) , 745-754. https://doi.org/10.1021/ar970004h
    20. Brian R. Gibney,, Yasuhiro Isogai,, Francesc Rabanal,, Konda S. Reddy,, Anne M. Grosset,, Christopher C. Moser, and, P. Leslie Dutton. Self-Assembly of Heme A and Heme B in a Designed Four-Helix Bundle:  Implications for a Cytochrome c Oxidase Maquette. Biochemistry 2000, 39 (36) , 11041-11049. https://doi.org/10.1021/bi000925r
    21. Masaki Ihara,, Satoshi Takahashi,, Koichiro Ishimori, and, Isao Morishima. Functions of Fluctuation in the Heme-Binding Loops of Cytochrome b5 Revealed in the Process of Heme Incorporation. Biochemistry 2000, 39 (20) , 5961-5970. https://doi.org/10.1021/bi9922289
    22. R. Blake Hill,, Jae-Kyoung Hong, and, William F. DeGrado. Hydrogen Bonded Cluster Can Specify the Native State of a Protein. Journal of the American Chemical Society 2000, 122 (4) , 746-747. https://doi.org/10.1021/ja9919332
    23. Adam R. Mezo and, John C. Sherman. Cavitands Are Effective Templates for Inducing Stability and Nativelike Structure in de Novo Four-Helix Bundles. Journal of the American Chemical Society 1999, 121 (39) , 8983-8994. https://doi.org/10.1021/ja990487f
    24. Yasuhiro Isogai,, Motonori Ota,, Tetsuro Fujisawa,, Hiroyuki Izuno,, Masahiro Mukai,, Hiro Nakamura,, Tetsutaro Iizuka, and, Ken Nishikawa. Design and Synthesis of a Globin Fold. Biochemistry 1999, 38 (23) , 7431-7443. https://doi.org/10.1021/bi983006y
    25. Jack J. Skalicky,, Brian R. Gibney,, Francesc Rabanal,, Ramona J. Bieber Urbauer,, P. Leslie Dutton, and, A. Joshua Wand. Solution Structure of a Designed Four-α-Helix Bundle Maquette Scaffold. Journal of the American Chemical Society 1999, 121 (21) , 4941-4951. https://doi.org/10.1021/ja983309f
    26. Brian R. Gibney,, Francesc Rabanal,, Jack J. Skalicky,, A. Joshua Wand, and, P. Leslie Dutton. Iterative Protein Redesign. Journal of the American Chemical Society 1999, 121 (21) , 4952-4960. https://doi.org/10.1021/ja9833117
    27. Stephen E. Mulholland,, Brian R. Gibney,, Francesc Rabanal, and, P. Leslie Dutton. Characterization of the Fundamental Protein Ligand Requirements of [4Fe-4S]2+/+ Clusters with Sixteen Amino Acid Maquettes. Journal of the American Chemical Society 1998, 120 (40) , 10296-10302. https://doi.org/10.1021/ja981279a
    28. Xiaoxi Chen,, Christopher C. Moser,, Denis L. Pilloud, and, P. Leslie Dutton. Molecular Orientation of Langmuir−Blodgett Films of Designed Heme Protein and Lipoprotein Maquettes. The Journal of Physical Chemistry B 1998, 102 (33) , 6425-6432. https://doi.org/10.1021/jp981855p
    29. R. Eryl Sharp,, James R. Diers,, David F. Bocian, and, P. Leslie Dutton. Differential Binding of Iron(III) and Zinc(II) Protoporphyrin IX to Synthetic Four-Helix Bundles. Journal of the American Chemical Society 1998, 120 (28) , 7103-7104. https://doi.org/10.1021/ja980432y
    30. Miriam Royo,, Miquel Àngel Contreras,, Ernest Giralt,, Fernando Albericio, and, Miquel Pons. An Easy Entry to a New High-Symmetry, Large Molecular Framework for Molecular Recognition Studies and de Novo Protein Design. Solvent Modulation of the Spontaneous Formation of a Cyclic Monomer, Dimer, or Trimer from a Bis-cysteine Peptide. Journal of the American Chemical Society 1998, 120 (27) , 6639-6650. https://doi.org/10.1021/ja9725514
    31. Jonas S. Johansson,, Brian R. Gibney,, Jack J. Skalicky,, A. Joshua Wand, and, P. Leslie Dutton. A Native-Like Three-α-Helix Bundle Protein from Structure-Based Redesign:  A Novel Maquette Scaffold. Journal of the American Chemical Society 1998, 120 (16) , 3881-3886. https://doi.org/10.1021/ja973538m
    32. Brian R. Gibney,, Francesc Rabanal,, Konda S. Reddy, and, P. Leslie Dutton. Effect of Four Helix Bundle Topology on Heme Binding and Redox Properties. Biochemistry 1998, 37 (13) , 4635-4643. https://doi.org/10.1021/bi971856s
    33. Denis L. Pilloud,, Francesc Rabanal,, Brian R. Gibney,, Ramy S. Farid,, P. Leslie Dutton, and, Christopher C. Moser. Self-Assembled Monolayers of Synthetic Hemoproteins on Silanized Quartz. The Journal of Physical Chemistry B 1998, 102 (11) , 1926-1937. https://doi.org/10.1021/jp973348y
    34. Jonas S. Johansson,, Brian R. Gibney,, Francesc Rabanal,, Konda S. Reddy, and, P. Leslie Dutton. A Designed Cavity in the Hydrophobic Core of a Four-α-Helix Bundle Improves Volatile Anesthetic Binding Affinity. Biochemistry 1998, 37 (5) , 1421-1429. https://doi.org/10.1021/bi9721290
    35. Tripti Raghavendra, Sarita G. Bhat. Enzyme immobilized nanomaterials. 2022, 17-65. https://doi.org/10.1016/B978-0-12-824436-4.00007-1
    36. Christopher J. Hobbs, Nicholas Roach, Pawel Wagner, Holly van der Salm, Jonathan E. Barnsley, Keith C. Gordon, Goutham Kodali, Christopher C. Moser, P. Leslie Dutton, Klaudia Wagner, David L. Officer. Emulating photosynthetic processes with light harvesting synthetic protein (maquette) assemblies on titanium dioxide. Materials Advances 2020, 1 (6) , 1877-1885. https://doi.org/10.1039/D0MA00427H
    37. Katie J Grayson, JL Ross Anderson. The ascent of man(made oxidoreductases). Current Opinion in Structural Biology 2018, 51 , 149-155. https://doi.org/10.1016/j.sbi.2018.04.008
    38. Daniel W. Watkins, Craig T. Armstrong, Joseph L. Beesley, Jane E. Marsh, Jonathan M.X. Jenkins, Richard B. Sessions, Stephen Mann, J.L. Ross Anderson. A suite of de novo c -type cytochromes for functional oxidoreductase engineering. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2016, 1857 (5) , 493-502. https://doi.org/10.1016/j.bbabio.2015.11.003
    39. Andrew C. Mutter, Jessica A. Norman, Michael T. Tiedemann, Sunaina Singh, Sha Sha, Sara Morsi, Ismail Ahmed, Martin J. Stillman, Ronald L. Koder. Rational design of a zinc phthalocyanine binding protein. Journal of Structural Biology 2014, 185 (2) , 178-185. https://doi.org/10.1016/j.jsb.2013.06.009
    40. Gert Kiss, Nihan Çelebi‐Ölçüm, Rocco Moretti, David Baker, K. N. Houk. Computerbasiertes Enzymdesign. Angewandte Chemie 2013, 125 (22) , 5810-5836. https://doi.org/10.1002/ange.201204077
    41. Gert Kiss, Nihan Çelebi‐Ölçüm, Rocco Moretti, David Baker, K. N. Houk. Computational Enzyme Design. Angewandte Chemie International Edition 2013, 52 (22) , 5700-5725. https://doi.org/10.1002/anie.201204077
    42. James Murray. Redox Active Protein Maquettes: Multi-functional “Green Enzymes”. 2011, 408-425. https://doi.org/10.1039/9781849733038-00408
    43. Vikas Nanda, Ronald L. Koder. Designing artificial enzymes by intuition and computation. Nature Chemistry 2010, 2 (1) , 15-24. https://doi.org/10.1038/nchem.473
    44. Melissa S. Koay, Mikhail L. Antonkine, Wolfgang Gärtner, Wolfgang Lubitz. Modelling Low‐Potential [Fe 4 S 4 ] Clusters in Proteins. Chemistry & Biodiversity 2008, 5 (8) , 1571-1587. https://doi.org/10.1002/cbdv.200890145
    45. Heidi E. K. Huttunen‐Hennelly, John C. Sherman. An investigation into the native‐like properties of de novo designed cavitand‐based four‐helix bundle proteins. Peptide Science 2008, 90 (1) , 37-50. https://doi.org/10.1002/bip.20883
    46. Jon O. Freeman, Diana Wallhorn, John C. Sherman. Four‐helix bundle cavitein reveals middle leucine as linchpin. Peptide Science 2007, 88 (5) , 725-732. https://doi.org/10.1002/bip.20718
    47. Kristina Westerlund, Bruce W. Berry, Heidi K. Privett, Cecilia Tommos. Exploring amino-acid radical chemistry: protein engineering and de novo design. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2005, 1707 (1) , 103-116. https://doi.org/10.1016/j.bbabio.2004.02.013
    48. Brian R. Gibney, Cecilia Tommos. De Novo Protein Design in Respiration and Photosynthesis. 2005, 729-751. https://doi.org/10.1007/1-4020-4254-X_34
    49. Gavin A. Manderson, Jonas S. Johansson. Towards a three‐α‐helix bundle protein that binds volatile general anesthetics. Biopolymers 2004, 75 (4) , 338-354. https://doi.org/10.1002/bip.20138
    50. Steve S. Huang, Ronald L. Koder, Mitchell Lewis, A. Joshua Wand, P. Leslie Dutton. The HP-1 maquette: From an apoprotein structure to a structured hemoprotein designed to promote redox-coupled proton exchange. Proceedings of the National Academy of Sciences 2004, 101 (15) , 5536-5541. https://doi.org/10.1073/pnas.0306676101
    51. Paul D Barker. Designing redox metalloproteins from bottom-up and top-down perspectives. Current Opinion in Structural Biology 2003, 13 (4) , 490-499. https://doi.org/10.1016/S0959-440X(03)00108-8
    52. Steve S. Huang, Brian R. Gibney, Steven E. Stayrook, P. Leslie Dutton, Mitchell Lewis. X-ray Structure of a Maquette Scaffold. Journal of Molecular Biology 2003, 326 (4) , 1219-1225. https://doi.org/10.1016/S0022-2836(02)01441-9
    53. Jonas S. Johansson, Ken Solt, Konda S. Reddy. Binding of the General Anesthetics Chloroform and 2,2,2-Trichloroethanol to the Hydrophobic Core of a Four-α-Helix Bundle Protein¶. Photochemistry and Photobiology 2003, 77 (1) , 89-95. https://doi.org/10.1562/0031-8655(2003)0770089BOTGAC2.0.CO2
    54. Jonas S. Johansson, Ken Solt, Konda S. Reddy. Binding of the General Anesthetics Chloroform and 2,2,2-Trichloroethanol to the Hydrophobic Core of a Four–α-Helix Bundle Protein¶. Photochemistry and Photobiology 2003, 77 (1) , 89. https://doi.org/10.1562/0031-8655(2003)077<0089:BOTGAC>2.0.CO;2
    55. Ruiai Chu, Jiro Takei, J.Randolph Knowlton, Michelle Andrykovitch, Wuhong Pei, Andrey V. Kajava, Peter J. Steinbach, Xinhua Ji, Yawen Bai. Redesign of a Four-helix Bundle Protein by Phage Display Coupled with Proteolysis and Structural Characterization by NMR and X-ray Crystallography. Journal of Molecular Biology 2002, 323 (2) , 253-262. https://doi.org/10.1016/S0022-2836(02)00884-7
    56. Alex Chapeaurouge, Jonas S. Johansson, Sérgio T. Ferreira. Folding of a de Novo Designed Native-like Four-helix Bundle Protein. Journal of Biological Chemistry 2002, 277 (19) , 16478-16483. https://doi.org/10.1074/jbc.M105232200
    57. Zhijin Xu, Ramy S. Farid. Design, synthesis, and characterization of a novel hemoprotein. Protein Science 2001, 10 (2) , 236-249. https://doi.org/10.1110/ps.30801
    58. Lowri A. Davies, Qingfeng Zhong, Michael L. Klein, Daphna Scharf. Molecular dynamics simulation of four‐α‐helix bundles that bind the anesthetic halothane. FEBS Letters 2000, 478 (1-2) , 61-66. https://doi.org/10.1016/S0014-5793(00)01792-0
    59. Jonas S. Johansson, Daphna Scharf, Lowri A. Davies, Konda S. Reddy, Roderic G. Eckenhoff. A Designed Four-α-Helix Bundle That Binds the Volatile General Anesthetic Halothane with High Affinity. Biophysical Journal 2000, 78 (2) , 982-993. https://doi.org/10.1016/S0006-3495(00)76656-2
    60. Brian R. Gibney, P.Leslie Dutton. De novo design and synthesis of heme proteins. 2000, 409-456. https://doi.org/10.1016/S0898-8838(00)51008-3
    61. Cynthia Micklatcher, Jean Chmielewski. Helical peptide and protein design. Current Opinion in Chemical Biology 1999, 3 (6) , 724-729. https://doi.org/10.1016/S1367-5931(99)00031-9
    62. William F. DeGrado, Christopher M. Summa, Vincenzo Pavone, Flavia Nastri, Angela Lombardi. De Novo Design and Structural Characterization of Proteins and Metalloproteins. Annual Review of Biochemistry 1999, 68 (1) , 779-819. https://doi.org/10.1146/annurev.biochem.68.1.779
    63. Lars Baltzer. Functionalization and Properties of Designed Folded Polypeptides. 1999, 39-76. https://doi.org/10.1007/3-540-48990-8_2
    64. Brian R. Gibney, P. Leslie Dutton. Histidine placement in de novo–designed heme proteins. Protein Science 1999, 8 (9) , 1888-1898. https://doi.org/10.1110/ps.8.9.1888
    65. R. Eryl Sharp, Christopher C. Moser, Francesc Rabanal, P. Leslie Dutton. Design, synthesis, and characterization of a photoactivatable flavocytochrome molecular maquette. Proceedings of the National Academy of Sciences 1998, 95 (18) , 10465-10470. https://doi.org/10.1073/pnas.95.18.10465
    66. Lars Baltzer. Functionalization of designed folded polypeptides. Current Opinion in Structural Biology 1998, 8 (4) , 466-470. https://doi.org/10.1016/S0959-440X(98)80124-3
    67. Homme W Hellinga. The construction of metal centers in proteins by rational design. Folding and Design 1998, 3 (1) , R1-R8. https://doi.org/10.1016/S1359-0278(98)00001-7
    68. Michael H. Hecht, Kathleen M. Vogel, Thomas G. Spiro, Nina R. L. Rojas, Satwik Kamtekar, Cyrena T. Simons, Jeremy E. Mclean, Ramy S. Farid. De novo heme proteins from designed combinatorial libraries. Protein Science 1997, 6 (12) , 2512-2524. https://doi.org/10.1002/pro.5560061204
    69. Brian R Gibney, Francesc Rabanal, P Leslie Dutton. Synthesis of novel proteins. Current Opinion in Chemical Biology 1997, 1 (4) , 537-542. https://doi.org/10.1016/S1367-5931(97)80050-6
    70. J.S. Johansson, B.R. Gibney, F. Rabanal, K.S. Reddy, P.L. Dutton. A288 Initial Characterization of the Structural Features of Volatile Anesthetic Binding Sites Using Synthetic Peptides. Anesthesiology 1997, 87 (Supplement) , 288A. https://doi.org/10.1097/00000542-199709001-00288
    71. Yi Lu, Joan S Valentine. Engineering metal-binding sites in proteins. Current Opinion in Structural Biology 1997, 7 (4) , 495-500. https://doi.org/10.1016/S0959-440X(97)80112-1
    72. S. Sakamoto, A. Ueno, H. Mihara. Design, synthesis and characterization of heme-conjugated two-β-helix peptides. , 107-109. https://doi.org/10.1007/0-306-46864-6_33
    73. I. Obataya, S. Sakamoto, A. Ueno, H. Mihara. Self-assembly of heme-conjugated two-β-helix peptides. , 110-112. https://doi.org/10.1007/0-306-46864-6_34
    74. Dror Noy, Christopher C. Moser, P. Leslie Dutton. Bacteriochlorophyll Protein Maquettes. , 349-363. https://doi.org/10.1007/1-4020-4516-6_24

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect