ACS Publications. Most Trusted. Most Cited. Most Read
Electronic and Geometric Structure of the CuA Site Studied by 1H NMR in a Soluble Domain of Cytochrome c Oxidase from Paracoccus denitrificans
My Activity

Figure 1Loading Img
    Article

    Electronic and Geometric Structure of the CuA Site Studied by 1H NMR in a Soluble Domain of Cytochrome c Oxidase from Paracoccus denitrificans
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Chemistry, University of Florence, Via Gino Capponi 7, 50121 Florence, Italy, Department of Soil Science and Plant Nutrition, University of Florence, P.le delle Cascine 28, 50144 Florence, Italy, European Molecular Biology Laboratory, 69012 Heidelberg, Germany, and Department of Biochemistry and Biophysics, Göteborg University, Göteborg, Sweden
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1997, 119, 45, 11023–11027
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja9715399
    Published November 12, 1997
    Copyright © 1997 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    An extensive assignment of the 1H NMR spectra of a CuA domain from the cytochrome c oxidase of Paracoccus denitrificans has been obtained on the basis of dipolar connectivities coupled to the available structural information. The assignment has been extended with the aid of 2H NMR spectra on a protein sample with cysteines selectively labeled at the β position. The spectra have been compared to those published earlier for a similar CuA fragment from the Thermus thermophilus oxidase and for a CuA construct in a blue copper protein, amicyanin. The shifts and their temperature dependence are discussed in terms of molecular orbital descriptions available for these systems. The mechanisms for the fast electron relaxation, which make the obtainment of relatively sharp NMR signals possible, are discussed. It is shown that the proton shifts of one histidine are variable from one system to the other, possibly reflecting changes in its interaction with the Cu2S2 diamond structure. Large electron delocalization onto the S atoms is confirmed. This is reflected in the large shifts experienced by the cysteine β-CH2 protons, and these shifts are in turn tuned by the Cu−S−C−H torsion angles. It is suggested that the electronic structure of CuA is ideal for its function in electron transfer.

    Copyright © 1997 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Department of Soil Science and Plant Nutrition, University of Florence.

     Department of Chemistry, University of Florence.

    §

     European Molecular Biology Laboratory.

     Göteborg University.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Abstract published in Advance ACS Abstracts, October 1, 1997.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 41 publications.

    1. Eduardo M. Sproviero . Opsin Effect on the Electronic Structure of the Retinylidene Chromophore in Rhodopsin. Journal of Chemical Theory and Computation 2015, 11 (3) , 1206-1219. https://doi.org/10.1021/ct500612n
    2. Luciano A. Abriata, Gabriela N. Ledesma, Roberta Pierattelli and Alejandro J. Vila. Electronic Structure of the Ground and Excited States of the CuA Site by NMR Spectroscopy. Journal of the American Chemical Society 2009, 131 (5) , 1939-1946. https://doi.org/10.1021/ja8079669
    3. Hee Jung Hwang,, Nandini Nagraj, and, Yi Lu. Spectroscopic Characterizations of Bridging Cysteine Ligand Variants of an Engineered Cu2(SCys)2 CuA Azurin. Inorganic Chemistry 2006, 45 (1) , 102-107. https://doi.org/10.1021/ic051375u
    4. Wolfgang Bermel,, Ivano Bertini,, Isabella C. Felli,, Rainer Kümmerle, and, Roberta Pierattelli. 13C Direct Detection Experiments on the Paramagnetic Oxidized Monomeric Copper, Zinc Superoxide Dismutase. Journal of the American Chemical Society 2003, 125 (52) , 16423-16429. https://doi.org/10.1021/ja037676p
    5. Boris Epel,, Claire S. Slutter,, Frank Neese,, Peter M. H. Kroneck,, Walter G. Zumft,, Israel Pecht,, Ole Farver,, Yi Lu, and, Daniella Goldfarb. Electron-Mediating CuA Centers in Proteins:  A Comparative High Field 1H ENDOR Study. Journal of the American Chemical Society 2002, 124 (27) , 8152-8162. https://doi.org/10.1021/ja012514j
    6. Claudio O. Fernández,, Julia A. Cricco,, Claire E. Slutter,, John H. Richards,, Harry B. Gray, and, Alejandro J. Vila. Axial Ligand Modulation of the Electronic Structures of Binuclear Copper Sites:  Analysis of Paramagnetic 1H NMR Spectra of Met160Gln CuA. Journal of the American Chemical Society 2001, 123 (47) , 11678-11685. https://doi.org/10.1021/ja0162515
    7. Sayan Gupta,, Antony Warne,, Matti Saraste, and, Shyamalava Mazumdar. pH-Induced Conformational Transition in the Soluble CuA Domain of Paracoccus denitrificans Cytochrome Oxidase. Biochemistry 2001, 40 (20) , 6180-6189. https://doi.org/10.1021/bi002212e
    8. Hanno Käss,, Fraser MacMillan,, Bernd Ludwig, and, Thomas F. Prisner. Investigation of the Mn Binding Site in Cytochrome c Oxidase from Paracoccus denitrificans by High-Frequency EPR. The Journal of Physical Chemistry B 2000, 104 (22) , 5362-5371. https://doi.org/10.1021/jp993133j
    9. Richard C. Holz,, Marcela L. Alvarez,, Walter G. Zumft, and, David M. Dooley. 1H NMR Studies on the CuA Center of Nitrous Oxide Reductase from Pseudomonas stutzeri. Biochemistry 1999, 38 (34) , 11164-11171. https://doi.org/10.1021/bi990595e
    10. Xiaotang Wang,, Steven M. Berry,, Yaomin Xia, and, Yi Lu. The Role of Histidine Ligands in the Structure of Purple CuA Azurin. Journal of the American Chemical Society 1999, 121 (32) , 7449-7450. https://doi.org/10.1021/ja991304s
    11. Howard Robinson,, Marjorie C. Ang,, Yi-Gui Gao,, Michael T. Hay,, Yi Lu, and, Andrew H.-J. Wang. Structural Basis of Electron Transfer Modulation in the Purple CuA Center. Biochemistry 1999, 38 (18) , 5677-5683. https://doi.org/10.1021/bi9901634
    12. Xiaotang Wang,, Marjorie C. Ang, and, Yi Lu. Kinetics of Copper Incorporation into an Engineered Purple Azurin. Journal of the American Chemical Society 1999, 121 (12) , 2947-2948. https://doi.org/10.1021/ja982636k
    13. Ivano Bertini,, Stefano Ciurli,, Alexander Dikiy,, Ralphreed Gasanov,, Claudio Luchinat,, Giacomo Martini, and, Niaz Safarov. High-Field NMR Studies of Oxidized Blue Copper Proteins:  The Case of Spinach Plastocyanin. Journal of the American Chemical Society 1999, 121 (10) , 2037-2046. https://doi.org/10.1021/ja983833m
    14. Valeria Clementi and, Claudio Luchinat. NMR and Spin Relaxation in Dimers. Accounts of Chemical Research 1998, 31 (6) , 351-361. https://doi.org/10.1021/ar960159+
    15. Leonardo Querci, Letizia Fiorucci, Enrico Ravera, Mario Piccioli. Paramagnetic Nuclear Magnetic Resonance: The Toolkit. Inorganics 2024, 12 (1) , 15. https://doi.org/10.3390/inorganics12010015
    16. Peter M. H. Kroneck. Walking the seven lines: binuclear copper A in cytochrome c oxidase and nitrous oxide reductase. JBIC Journal of Biological Inorganic Chemistry 2018, 23 (1) , 27-39. https://doi.org/10.1007/s00775-017-1510-z
    17. Masha G. Savelieff, Yi Lu. CuA centers and their biosynthetic models in azurin. JBIC Journal of Biological Inorganic Chemistry 2010, 15 (4) , 461-483. https://doi.org/10.1007/s00775-010-0625-2
    18. Masha G. Savelieff, Yi Lu. pH dependent copper binding properties of a CuA azurin variant with both bridging cysteines replaced with serines. Inorganica Chimica Acta 2008, 361 (4) , 1087-1094. https://doi.org/10.1016/j.ica.2007.08.007
    19. Walter G. Zumft, Peter M.H. Kroneck. Respiratory Transformation of Nitrous Oxide (N2O) to Dinitrogen by Bacteria and Archaea. 2006, 107-227. https://doi.org/10.1016/S0065-2911(06)52003-X
    20. Christopher Dennison. Investigating the structure and function of cupredoxins. Coordination Chemistry Reviews 2005, 249 (24) , 3025-3054. https://doi.org/10.1016/j.ccr.2005.04.021
    21. David M. Dooley, Jeannine M. Chan. Copper Enzymes in Denitrification. 2005https://doi.org/10.1002/0470862106.ia295
    22. David M. Dooley, Jeannine M. Chan. Copper Enzymes in Denitrification. 2005https://doi.org/10.1002/9781119951438.eibc0275
    23. Peter MH Kroneck. Binuclear Copper A. 2004https://doi.org/10.1002/0470028637.met197
    24. Peter MH Kroneck. Binuclear Copper A. 2004https://doi.org/10.1002/9781119951438.eibc0624
    25. Y. Lu. Electron Transfer: Cupredoxins. 2003, 91-122. https://doi.org/10.1016/B0-08-043748-6/08172-X
    26. Yi Lu. Classic Perspectives - Electron Transfer: Cupredoxins. 2003, 53-76. https://doi.org/10.1016/B978-0-08-102688-5.08172-1
    27. Dapeng Sun, Xiaotang Wang, Victor L Davidson. Redox properties of an engineered purple CuA azurin. Archives of Biochemistry and Biophysics 2002, 404 (1) , 158-162. https://doi.org/10.1016/S0003-9861(02)00282-5
    28. Dmitriy Lukoyanov, Steven M. Berry, Yi Lu, William E. Antholine, Charles P. Scholes. Role of the Coordinating Histidine in Altering the Mixed Valency of CuA: An Electron Nuclear Double Resonance-Electron Paramagnetic Resonance Investigation. Biophysical Journal 2002, 82 (5) , 2758-2766. https://doi.org/10.1016/S0006-3495(02)75616-6
    29. Lucia Banci, Roberta Pierattelli, Alejandro J. Vila. Nuclear magnetic resonance spectroscopy studies on copper proteins. 2002, 397-449. https://doi.org/10.1016/S0065-3233(02)60058-0
    30. B. Epel, P. Manikandan, P. M. H. Kroneck, D. Goldfarb. High-field ENDOR and the sign of the hyperfine coupling. Applied Magnetic Resonance 2001, 21 (3-4) , 287-297. https://doi.org/10.1007/BF03162408
    31. Bo G. Malmström. Respiration: Cytochrome Oxidase. 2001, 39-55. https://doi.org/10.1002/9783527618248.ch35
    32. David E. Metzler, Carol M. Metzler, David J. Sauke. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. 2001, 1013-1086. https://doi.org/10.1016/B978-012492543-4/50021-0
    33. John M. Charnock, Andreas Dreusch, Heinz Körner, Frank Neese, Jane Nelson, Aimo Kannt, Hartmut Michel, C. David Garner, Peter M. H. Kroneck, Walter G. Zumft. Structural investigations of the Cu A centre of nitrous oxide reductase from Pseudomonas stutzeri by site‐directed mutagenesis and X‐ray absorption spectroscopy. European Journal of Biochemistry 2000, 267 (5) , 1368-1381. https://doi.org/10.1046/j.1432-1327.2000.01131.x
    34. Steven M Berry, Xiaotang Wang, Yi Lu. Ligand replacement study at the His120 site of purple CuA azurin. Journal of Inorganic Biochemistry 2000, 78 (1) , 89-95. https://doi.org/10.1016/S0162-0134(99)00214-7
    35. Bo G. Malmström, Pernilla Wittung-Stafshede. Effects of protein folding on metalloprotein redox-active sites: electron-transfer properties of blue and purple copper proteins. Coordination Chemistry Reviews 1999, 185-186 , 127-140. https://doi.org/10.1016/S0010-8545(98)00257-4
    36. Ivano Bertini, Claudio Luchinat. New applications of paramagnetic NMR in chemical biology. Current Opinion in Chemical Biology 1999, 3 (2) , 145-151. https://doi.org/10.1016/S1367-5931(99)80026-X
    37. Ole Farver, Yi Lu, Majorie C. Ang, Israel Pecht. Enhanced rate of intramolecular electron transfer in an engineered purple Cu A azurin. Proceedings of the National Academy of Sciences 1999, 96 (3) , 899-902. https://doi.org/10.1073/pnas.96.3.899
    38. Urszula Kolczak, Jes�s Salgado, Gregg Siegal, Matti Saraste, Gerard W. Canters. Paramagnetic NMR studies of blue and purple copper proteins. Biospectroscopy 1999, 5 (S5) , S19-S32. https://doi.org/10.1002/(SICI)1520-6343(1999)5:5+<S19::AID-BSPY3>3.0.CO;2-H
    39. Bo G Malmström, Johan Leckner. The chemical biology of copper. Current Opinion in Chemical Biology 1998, 2 (2) , 286-292. https://doi.org/10.1016/S1367-5931(98)80071-9
    40. D. W. Smith. Chapter 16. Copper. Annual Reports Section "A" (Inorganic Chemistry) 1998, 94 , 233. https://doi.org/10.1039/ic094233
    41. J. D. Crane. Chapter 29. Bioinorganic chemistry. Annual Reports Section "A" (Inorganic Chemistry) 1998, 94 , 587. https://doi.org/10.1039/ic094587

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1997, 119, 45, 11023–11027
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja9715399
    Published November 12, 1997
    Copyright © 1997 American Chemical Society

    Article Views

    146

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.