ACS Publications. Most Trusted. Most Cited. Most Read
Preparation of Specifically Deuterated and 13C-Labeled RNA for NMR Studies Using Enzymatic Synthesis
My Activity

Figure 1Loading Img
    Article

    Preparation of Specifically Deuterated and 13C-Labeled RNA for NMR Studies Using Enzymatic Synthesis
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1997, 119, 50, 12100–12108
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja9725054
    Published December 17, 1997
    Copyright © 1997 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The enzymatic conversion of glucose into ATP, GTP, UTP, and CTP with several different isotopic labeling patterns is described. Enzymes of the pentose phosphate pathway and enzyme-catalyzed hydrogen exchange were used to convert three types of isotopically labeled glucose into [1‘,2‘,3‘,4‘,5‘,5‘-2H6]NTPs (14), [3‘,4‘,5‘,5‘-2H4]UTP (5), [1‘,2‘,3‘,4‘,5‘-13C5]NTPs (69), and [3‘,4‘,5‘,5‘-2H4-1‘,2‘,3‘,4‘,5‘-13C5]NTPs (1013), which were then used to synthesize a 30 nucleotide HIV TAR RNA. Representative NOESY and HSQC spectra were acquired to demonstrate the utility of the new labeling patterns. The spectral editing afforded by 2H and 13C labeling dramatically simplifies the crowded NOESY and HSQC spectra of RNA molecules. The synthetic methods described here will permit the preparation of several specifically deuterated and/or 13C-labeled forms of RNA which should be useful in NMR structural studies of large RNAs.

    Copyright © 1997 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     Abbreviations used:  NTP, nucleoside triphosphate; NOE, nuclear Overhauser effect; PRPP, 5-phospho-d-ribosyl α-1-pyrophosphate; PEP, phosphoenolpyruvate; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; calcd, calculated; PCR, polymerase chain reaction; IPTG, isopropyl β-d-thiogalactopyranoside; LB medium, Luria−Bertani medium; OD, optical density; UPRT, uracil phosphoribosyltransferase; APRT, adenine phosphoribosyltransferase; XGPRT, xanthine−guanine phosphoribosyltransferase; TEABC, triethylammonium bicarbonate; 3PGA, 3-phosphoglycerate; PPi, inorganic pyrophosphate; DTT, dithiothreitol; Glu, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; 6PG, 6-phosphogluconate; Ru5P, ribulose-5-phosphate; R5P, ribose-5-phosphate; d6-NTPs, [1‘,2‘,3‘,4‘,5‘,5‘-2H4]NTPs; d4-NTPs, [3‘,4‘,5‘,5‘-2H4]NTPs; 13C5-ribose-NTPs, [1‘,2‘,3‘,4‘,5‘-13C5]NTPs; d4-13C5-ribose-NTPs, [3‘,4‘,5‘,5‘-2H4-1‘,2‘,3‘,4‘,5‘-13C5]NTPs; d6-RNA, RNA prepared from d6-NTPs (14); d4/d6-RNA, RNA prepared from d4-UTP (5) and d6-NTPs (1, 2, 4); 13C5-ribose-RNA, RNA prepared from 13C5-ribose-NTPs (69); d4-13C5-ribose-RNA, RNA prepared from d4-13C5-ribose-NTPs (1013).

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Abstract published in Advance ACS Abstracts, November 15, 1997.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 44 publications.

    1. Anders Michael Bernth Giessing, Lincoln Greyson Scott, Finn Kirpekar. A Nano-Chip-LC/MSn Based Strategy for Characterization of Modified Nucleosides Using Reduced Porous Graphitic Carbon as a Stationary Phase. Journal of the American Society for Mass Spectrometry 2011, 22 (7) https://doi.org/10.1007/s13361-011-0126-8
    2. Heather L. Schultheisz, Blair R. Szymczyna, Lincoln G. Scott, and James R. Williamson . Enzymatic De Novo Pyrimidine Nucleotide Synthesis. Journal of the American Chemical Society 2011, 133 (2) , 297-304. https://doi.org/10.1021/ja1059685
    3. Heather L. Schultheisz, Blair R. Szymczyna, Lincoln G. Scott and James R. Williamson . Pathway Engineered Enzymatic de Novo Purine Nucleotide Synthesis. ACS Chemical Biology 2008, 3 (8) , 499-511. https://doi.org/10.1021/cb800066p
    4. James M. Hart, Scott D. Kennedy, David H. Mathews and Douglas H. Turner . NMR-Assisted Prediction of RNA Secondary Structure: Identification of a Probable Pseudoknot in the Coding Region of an R2 Retrotransposon. Journal of the American Chemical Society 2008, 130 (31) , 10233-10239. https://doi.org/10.1021/ja8026696
    5. Bob van Sluijs, Tao Zhou, Britta Helwig, Mathieu G. Baltussen, Frank H. T. Nelissen, Hans A. Heus, Wilhelm T. S. Huck. Iterative design of training data to control intricate enzymatic reaction networks. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45886-9
    6. Ying Zhu, Bhawna Chaubey, Gregory L. Olsen, Gabriele Varani. Structure of Essential RNA Regulatory Elements in the West Nile Virus 3′-Terminal Stem Loop. Journal of Molecular Biology 2024, 436 (22) , 168767. https://doi.org/10.1016/j.jmb.2024.168767
    7. Philipp Innig Aguion, Alexander Marchanka. Strategies for RNA Resonance Assignment by 13C/15N- and 1H-Detected Solid-State NMR Spectroscopy. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.743181
    8. Lukasz T. Olenginski, Kehinde M. Taiwo, Regan M. LeBlanc, Theodore K. Dayie. Isotope-Labeled RNA Building Blocks for NMR Structure and Dynamics Studies. Molecules 2021, 26 (18) , 5581. https://doi.org/10.3390/molecules26185581
    9. A Katharina Weickhmann, Heiko Keller, Jan P Wurm, Elisabeth Strebitzer, Michael A Juen, Johannes Kremser, Zasha Weinberg, Christoph Kreutz, Elke Duchardt-Ferner, Jens Wöhnert. The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Research 2019, 47 (5) , 2654-2665. https://doi.org/10.1093/nar/gky1283
    10. Alexander Marchanka, Christoph Kreutz, Teresa Carlomagno. Isotope labeling for studying RNA by solid-state NMR spectroscopy. Journal of Biomolecular NMR 2018, 71 (3) , 151-164. https://doi.org/10.1007/s10858-018-0180-7
    11. Wenhui Zhang, Toby Turney, Ivana Surjancev, Anthony S. Serianni. Enzymatic synthesis of ribo- and 2′-deoxyribonucleosides from glycofuranosyl phosphates: An approach to facilitate isotopic labeling. Carbohydrate Research 2017, 449 , 125-133. https://doi.org/10.1016/j.carres.2017.07.006
    12. Ravi P. Barnwal, Fan Yang, Gabriele Varani. Applications of NMR to structure determination of RNAs large and small. Archives of Biochemistry and Biophysics 2017, 628 , 42-56. https://doi.org/10.1016/j.abb.2017.06.003
    13. Govardhan R. Veerareddygari, Eugene G. Mueller. Kinetic Isotope Effect Studies to Elucidate the Reaction Mechanism of RNA-Modifying Enzymes. 2017, 523-546. https://doi.org/10.1016/bs.mie.2017.07.018
    14. Frank H.T. Nelissen, Marco Tessari, Sybren S. Wijmenga, Hans A. Heus. Stable isotope labeling methods for DNA. Progress in Nuclear Magnetic Resonance Spectroscopy 2016, 96 , 89-108. https://doi.org/10.1016/j.pnmrs.2016.06.001
    15. Andrew P. Longhini, Regan M. LeBlanc, T. Kwaku Dayie. Chemo-enzymatic labeling for rapid assignment of RNA molecules. Methods 2016, 103 , 11-17. https://doi.org/10.1016/j.ymeth.2016.03.015
    16. Andrew P. Longhini, Regan M. LeBlanc, Owen Becette, Carolina Salguero, Christoph H. Wunderlich, Bruce A. Johnson, Victoria M. D'Souza, Christoph Kreutz, T. Kwaku Dayie. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations. Nucleic Acids Research 2016, 44 (6) , e52-e52. https://doi.org/10.1093/nar/gkv1333
    17. Lincoln G. Scott, Mirko Hennig. 19F-Site-Specific-Labeled Nucleotides for Nucleic Acid Structural Analysis by NMR. 2016, 59-87. https://doi.org/10.1016/bs.mie.2015.05.015
    18. Robert N. Azad, Shakti Ingle, Thomas D. Tullius. Deuterated nucleotides as chemical probes of RNA structure: a detailed protocol for the enzymatic synthesis of a complete set of nucleotides specifically deuterated at ribose carbons. ScienceOpen Research , Article ASAP.
    19. Thomas Aeschbacher, Elena Schmidt, Markus Blatter, Christophe Maris, Olivier Duss, Frédéric H.-T. Allain, Peter Güntert, Mario Schubert. Automated and assisted RNA resonance assignment using NMR chemical shift statistics. Nucleic Acids Research 2013, 41 (18) , e172-e172. https://doi.org/10.1093/nar/gkt665
    20. Olivier Duss, Peter J. Lukavsky, Frédéric H.-T. Allain. Isotope Labeling and Segmental Labeling of Larger RNAs for NMR Structural Studies. 2012, 121-144. https://doi.org/10.1007/978-94-007-4954-2_7
    21. Patrick K. Arthur, Luigi J. Alvarado, T. Kwaku Dayie. Expression, purification and analysis of the activity of enzymes from the pentose phosphate pathway. Protein Expression and Purification 2011, 76 (2) , 229-237. https://doi.org/10.1016/j.pep.2010.11.008
    22. Cyril Dominguez, Mario Schubert, Olivier Duss, Sapna Ravindranathan, Frédéric H.-T. Allain. Structure determination and dynamics of protein–RNA complexes by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 2011, 58 (1-2) , 1-61. https://doi.org/10.1016/j.pnmrs.2010.10.001
    23. T. Kwaku Dayie, Chandar S. Thakur. Site-specific labeling of nucleotides for making RNA for high resolution NMR studies using an E. coli strain disabled in the oxidative pentose phosphate pathway. Journal of Biomolecular NMR 2010, 47 (1) , 19-31. https://doi.org/10.1007/s10858-010-9405-0
    24. Frank H. T. Nelissen, Frederic C. Girard, Marco Tessari, Hans A. Heus, Sybren S. Wijmenga. Preparation of selective and segmentally labeled single-stranded DNA for NMR by self-primed PCR and asymmetrical endonuclease double digestion. Nucleic Acids Research 2009, 37 (17) , e114-e114. https://doi.org/10.1093/nar/gkp540
    25. Kwaku T. Dayie. Key Labeling Technologies to Tackle Sizeable Problems in RNA Structural Biology. International Journal of Molecular Sciences 2008, 9 (7) , 1214-1240. https://doi.org/10.3390/ijms9071214
    26. F. H. T. Nelissen, A. J. van Gammeren, M. Tessari, F. C. Girard, H. A. Heus, S. S. Wijmenga. Multiple segmental and selective isotope labeling of large RNA for NMR structural studies. Nucleic Acids Research 2008, 36 (14) , e89-e89. https://doi.org/10.1093/nar/gkn397
    27. Radovan Fiala, Vladimír Sklenář. 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases. Journal of Biomolecular NMR 2007, 39 (2) , 153-163. https://doi.org/10.1007/s10858-007-9184-4
    28. Sara Flodell, Michael Petersen, Frederic Girard, Janusz Zdunek, Karin Kidd-Ljunggren, Jürgen Schleucher, Sybren Wijmenga. Solution structure of the apical stem–loop of the human hepatitis B virus encapsidation signal. Nucleic Acids Research 2006, 34 (16) , 4449-4457. https://doi.org/10.1093/nar/gkl582
    29. Jeremy Flinders, Thorsten Dieckmann. NMR spectroscopy of ribonucleic acids. Progress in Nuclear Magnetic Resonance Spectroscopy 2006, 48 (2-3) , 137-159. https://doi.org/10.1016/j.pnmrs.2006.03.001
    30. Haihong Wu, L.David Finger, Juli Feigon. Structure Determination of Protein⧸RNA Complexes by NMR. 2005, 525-545. https://doi.org/10.1016/S0076-6879(05)94022-6
    31. András Földesi, Jyoti Chattopadhyaya. Studies Towards the Large Scale Chemical Synthesis of the Precursors of Ribonucleosides-3′,4′,5′,5″- 2 H 4 and -2′,3′,4′,5′,5″- 2 H 5 . Nucleosides, Nucleotides and Nucleic Acids 2003, 22 (12) , 2093-2104. https://doi.org/10.1081/NCN-120026632
    32. Jan Milecki. Specific labelling of nucleosides and nucleotides with 13 C and 15 N. Journal of Labelled Compounds and Radiopharmaceuticals 2002, 45 (4) , 307-337. https://doi.org/10.1002/jlcr.553
    33. Steven C. DeFina, Thorsten Dieckmann. Synthesis of selectively 15 N‐ or 13 C‐labelled malachite green. Journal of Labelled Compounds and Radiopharmaceuticals 2002, 45 (3) , 241-248. https://doi.org/10.1002/jlcr.554
    34. Sara Flodell, Jenny Cromsigt, Jürgen Schleucher, Karin Kidd-Ljunggren, Sybren Wijmenga. Structure Elucidation of the Hepatitis B Virus Encapsidation Signal by NMR on Selectively Labeled RNAs. Journal of Biomolecular Structure and Dynamics 2002, 19 (4) , 627-636. https://doi.org/10.1080/07391102.2002.10506769
    35. Edward P. Nikonowicz. Preparation and Use of 2H-Labeled RNA Oligonucleotides in Nuclear Magnetic Resonance Studies. 2002, 320-341. https://doi.org/10.1016/S0076-6879(02)38227-2
    36. Jenny Cromsigt, Bernd Van Buuren, Jürgen Schleucher, Sybren Wijmenga. Resonance Assignment and Structure Determination for RNA. 2002, 371-399. https://doi.org/10.1016/S0076-6879(02)38229-6
    37. Michael P Hayes, Paul J Hatala, Brian A Sherer, Xiaohong Tong, Nilo Zanatta, Philip N Borer, James Kallmerten. Regioselective synthesis of 13C1-labeled 2-deoxyribonolactones. Tetrahedron 2001, 57 (8) , 1515-1524. https://doi.org/10.1016/S0040-4020(00)01148-0
    38. András Földesi, Anna Trifonova, Mrinal K. Kundu, Jyoti Chattopadhyaya. The Synthesis of Deuterionucleosides. Nucleosides, Nucleotides and Nucleic Acids 2000, 19 (10-12) , 1615-1656. https://doi.org/10.1080/15257770008045450
    39. Alexander L. Breeze. Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Progress in Nuclear Magnetic Resonance Spectroscopy 2000, 36 (4) , 323-372. https://doi.org/10.1016/S0079-6565(00)00020-0
    40. Jenny A.M.T.C Cromsigt, Jürgen Schleucher, Karin Kidd-Ljunggren, Sybren S. Wijmenga. Synthesis of Specifically Deuterated Nucleotides for NMR Studies on RNA. Journal of Biomolecular Structure and Dynamics 2000, 17 (sup1) , 211-219. https://doi.org/10.1080/07391102.2000.10506624
    41. Jan Milecki, Edouard Zamaratski, Tatiana V. Maltseva, András Földesi, Ryszard W. Adamiak, Jyoti Chattopadhyaya. The first example of sequence-specific non-uniformly 13C5 labelled RNA: Synthesis of the 29mer HIV-1 TAR RNA with 13C Relaxation Window. Tetrahedron 1999, 55 (21) , 6603-6622. https://doi.org/10.1016/S0040-4020(99)00294-X
    42. Anna Trifonova, András Földesi, Zoltán Dinya, Jyoti Chattopadhyaya. Diastereospecific chemical synthesis of ribonucleosides-3′,4′,5′,5″ -d4. Tetrahedron 1999, 55 (15) , 4747-4762. https://doi.org/10.1016/S0040-4020(99)00147-7
    43. T. V. Maltseva, A. Földesi, J. Chattopadhyaya. Measurement of the deuterium relaxation times in double-labeled (13C/2H) thymidine and 2′-deoxyadenosine and in the selectively labeled DNA duplex5′d(1C2G3A4T5T6A7A8T9C10G)23′. Magnetic Resonance in Chemistry 1999, 37 (3) , 203-213. https://doi.org/10.1002/(SICI)1097-458X(199903)37:3<203::AID-MRC433>3.0.CO;2-V
    44. Tatiana V. Maltseva, András Földesi, Jyoti Chattopadhyaya. Partially-deuterated oligo-DNA reduces overcrowding, enhances resolution and sensitivity and provide improved NMR constraints for structure elucidation of oligo-DNA. Tetrahedron 1998, 54 (48) , 14515-14528. https://doi.org/10.1016/S0040-4020(98)00906-5

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1997, 119, 50, 12100–12108
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja9725054
    Published December 17, 1997
    Copyright © 1997 American Chemical Society

    Article Views

    685

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.