ACS Publications. Most Trusted. Most Cited. Most Read
Flash Photolysis Studies of the Ruthenium(II) Porphyrins Ru(P)(NO)(ONO). Multiple Pathways Involving Reactions of Intermediates with Nitric Oxide1
My Activity

Figure 1Loading Img
    Article

    Flash Photolysis Studies of the Ruthenium(II) Porphyrins Ru(P)(NO)(ONO). Multiple Pathways Involving Reactions of Intermediates with Nitric Oxide1
    Click to copy article linkArticle link copied!

    View Author Information
    Contribution from the Department of Chemistry, University of California, Santa Barbara, California 93106, and Bioscience/Biotechnology Group (CST-4), Chemical Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1998, 120, 45, 11674–11683
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja981907o
    Published November 3, 1998
    Copyright © 1998 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    Described are the spectra and kinetics of transients formed by laser flash photolysis of the ruthenium nitrosyl nitrito complexes Ru(P)(NO)(ONO), P = TPP (meso-tetraphenylporphyrin), OEP (octaethylporphyrin), TmTP (tetra(m-tolyl)porphyrin), and FTTP (tetra(m-trifluoromethylphenyl)porphyrin) in benzene solutions. Two transient decay processes are seen on the time frame (<1 ms) of the flash photolysis experiment, and a residual difference spectrum, which decays to baseline on a longer time frame, is noted as well. The accumulated evidence points to the formation of two primary photoproducts, Ru(P)(ONO) (A) formed by NO photolabilization and Ru(P)(NO) (B) formed by NO2 photolabilization. Both decay by NO dependent pathways, the reaction of A with NO to re-form Ru(P)(NO)(ONO) being substantially faster (2.4−5.5 × 108 M-1 s-1 in ambient temperature benzene) than the reaction of B with NO (2.4−10 × 107 M-1 s-1). The product of the latter reaction is apparently the dinitrosyl complex Ru(P)(NO)2, which undergoes a much slower thermal reaction with excess NO to give again Ru(P)(NO)(ONO). The possibility of B being the oxo complex ORu(P)(NO) formed by NO loss from coordinated nitrite was considered but concluded to be a minor pathway at best. Isotopic exchange reactions using either labeled complex or labeled NO in cyclohexane demonstrate photochemical exchange of NO into both the nitrosyl and nitrito complexes, and time-resolved infrared experiments are consistent with formation of a long-lived nitrosyl-containing intermediate. Flash photolysis studies of the respective nitrosyl chloro complexes Ru(TPP)(NO)Cl and Ru(OEP)(NO)Cl indicate that only a single transient species, presumably Ru(P)Cl, is formed in each case, and this decays by a single NO dependent pathway back to starting material.

    Copyright © 1998 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     University of California.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     Los Alamos National Laboratory.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 85 publications.

    1. Katrina M. Miranda, Lisa A. Ridnour, Christopher L. McGinity, Dana Bhattacharyya, David A. Wink. Nitric Oxide and Cancer: When to Give and When to Take Away?. Inorganic Chemistry 2021, 60 (21) , 15941-15947. https://doi.org/10.1021/acs.inorgchem.1c02434
    2. Roy Weinstain, Tomáš Slanina, Dnyaneshwar Kand, Petr Klán. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chemical Reviews 2020, 120 (24) , 13135-13272. https://doi.org/10.1021/acs.chemrev.0c00663
    3. Arsen S. Azizyan, Tigran S. Kurtikyan, Garik G. Martirosyan, and Peter C. Ford . Tracking Reactive Intermediates by FTIR Monitoring of Reactions in Low-Temperature Sublimed Solids: Nitric Oxide Disproportionation Mediated by Ruthenium(II) Carbonyl Porphyrin Ru(TPP)(CO). Inorganic Chemistry 2013, 52 (9) , 5201-5205. https://doi.org/10.1021/ic400102q
    4. Apurba Kalita, Pankaj Kumar, Ramesh C. Deka, and Biplab Mondal . Role of Ligand to Control the Mechanism of Nitric Oxide Reduction of Copper(II) Complexes and Ligand Nitrosation. Inorganic Chemistry 2011, 50 (23) , 11868-11876. https://doi.org/10.1021/ic201582w
    5. Peter C. Ford. Polychromophoric Metal Complexes for Generating the Bioregulatory Agent Nitric Oxide by Single- and Two-Photon Excitation. Accounts of Chemical Research 2008, 41 (2) , 190-200. https://doi.org/10.1021/ar700128y
    6. Giovanni F. Caramori and, Gernot Frenking. The Nature of the Ru−NO Bond in Ruthenium Tetraammine Nitrosyl Complexes. Organometallics 2007, 26 (24) , 5815-5825. https://doi.org/10.1021/om700271r
    7. Chosu Khin,, Mark D. Lim,, Kiyoshi Tsuge,, Alexei Iretskii,, Guang Wu, and, Peter C. Ford. Amine Nitrosation via NO Reduction of the Polyamine Copper(II) Complex Cu(DAC)2+. Inorganic Chemistry 2007, 46 (22) , 9323-9331. https://doi.org/10.1021/ic7015929
    8. Stephen R. Wecksler,, Alexander Mikhailovsky,, Dmitry Korystov,, Fabian Buller,, Ramamurthi Kannan,, Loon-Seng Tan, and, Peter C. Ford. Single- and Two-Photon Properties of a Dye-Derivatized Roussin's Red Salt Ester (Fe2(μ-RS)2(NO)4) with a Large TPA Cross Section. Inorganic Chemistry 2007, 46 (2) , 395-402. https://doi.org/10.1021/ic0607336
    9. Daniel A. Freedman,, Seth Kruger,, Christina Roosa, and, Chandra Wymer. Synthesis, Characterization, and Reactivity of [Ru(bpy)(CH3CN)3(NO2)]PF6, a Synthon for [Ru(bpy)(L3)NO2] Complexes. Inorganic Chemistry 2006, 45 (23) , 9558-9568. https://doi.org/10.1021/ic061039t
    10. Rhett C. Smith,, Andrew G. Tennyson,, Annie C. Won, and, Stephen J. Lippard. Conjugated Metallopolymers for Fluorescent Turn-On Detection of Nitric Oxide. Inorganic Chemistry 2006, 45 (23) , 9367-9373. https://doi.org/10.1021/ic061099z
    11. Crisjoe A. Joseph,, Matthew S. Lee,, Alexei V. Iretskii,, Guang Wu, and, Peter C. Ford. Substituent Effects on Nitrosyl Iron Corrole Complexes Fe(Ar3C)(NO). Inorganic Chemistry 2006, 45 (5) , 2075-2082. https://doi.org/10.1021/ic051956j
    12. Stephen R. Wecksler,, Alexander Mikhailovsky,, Dmitry Korystov, and, Peter C. Ford. A Two-Photon Antenna for Photochemical Delivery of Nitric Oxide from a Water-Soluble, Dye-Derivatized Iron Nitrosyl Complex Using NIR Light. Journal of the American Chemical Society 2006, 128 (11) , 3831-3837. https://doi.org/10.1021/ja057977u
    13. Stephen R. Wecksler,, Jordan Hutchinson, and, Peter C. Ford. Toward Development of Water Soluble Dye Derivatized Nitrosyl Compounds for Photochemical Delivery of NO. Inorganic Chemistry 2006, 45 (3) , 1192-1200. https://doi.org/10.1021/ic051723s
    14. Marília Gama Sauaia,, Renata Galvão de Lima,, Antonio Claudio Tedesco, and, Roberto Santana da Silva. Nitric Oxide Production by Visible Light Irradiation of Aqueous Solution of Nitrosyl Ruthenium Complexes. Inorganic Chemistry 2005, 44 (26) , 9946-9951. https://doi.org/10.1021/ic051346j
    15. Erin Shammel Baker,, John E. Bushnell,, Stephen R. Wecksler,, Mark D. Lim,, Manuel J. Manard,, Nicholas F. Dupuis,, Peter C. Ford, and, Michael T. Bowers. Probing Shapes of Bichromophoric Metal−Organic Complexes Using Ion Mobility Mass Spectrometry. Journal of the American Chemical Society 2005, 127 (51) , 18222-18228. https://doi.org/10.1021/ja0553699
    16. Konrad Szaciłowski,, Wojciech Macyk,, Agnieszka Drzewiecka-Matuszek,, Małgorzata Brindell, and, Grażyna Stochel. Bioinorganic Photochemistry:  Frontiers and Mechanisms. Chemical Reviews 2005, 105 (6) , 2647-2694. https://doi.org/10.1021/cr030707e
    17. Frank DeRosa,, Xianhui Bu, and, Peter C. Ford. Chromium(III) Complexes for Photochemical Nitric Oxide Generation from Coordinated Nitrite:  Synthesis and Photochemistry of Macrocyclic Complexes with Pendant Chromophores, trans-[Cr(L)(ONO)2]BF4. Inorganic Chemistry 2005, 44 (12) , 4157-4165. https://doi.org/10.1021/ic048311o
    18. Frank DeRosa,, Xianhui Bu,, Kristina Pohaku, and, Peter C. Ford. Synthesis and Luminescence Properties of Cr(III) Complexes with Cyclam-Type Ligands Having Pendant Chromophores, trans-[Cr(L)Cl2]Cl1. Inorganic Chemistry 2005, 44 (12) , 4166-4174. https://doi.org/10.1021/ic048312g
    19. Crisjoe A. Joseph and, Peter C. Ford. The Remarkable Axial Lability of Iron(III) Corrole Complexes. Journal of the American Chemical Society 2005, 127 (18) , 6737-6743. https://doi.org/10.1021/ja044090+
    20. Mi Hee Lim and, Stephen J. Lippard. Fluorescence-Based Nitric Oxide Detection by Ruthenium Porphyrin Fluorophore Complexes. Inorganic Chemistry 2004, 43 (20) , 6366-6370. https://doi.org/10.1021/ic035418n
    21. Bernadette O. Fernandez,, Ivan M. Lorkovic, and, Peter C. Ford. Mechanisms of Ferriheme Reduction by Nitric Oxide:  Nitrite and General Base Catalysis1. Inorganic Chemistry 2004, 43 (17) , 5393-5402. https://doi.org/10.1021/ic049532x
    22. Marilia G. Sauaia,, Renata G. de Lima,, Antonio C. Tedesco, and, Roberto S. da Silva. Photoinduced NO Release by Visible Light Irradiation from Pyrazine-Bridged Nitrosyl Ruthenium Complexes. Journal of the American Chemical Society 2003, 125 (48) , 14718-14719. https://doi.org/10.1021/ja0376801
    23. James C. Patterson,, Ivan M. Lorković, and, Peter C. Ford. Spectroscopic and Density Functional Studies of the Dinitrosyl Metalloporphyrin Complexes Fe(P)(NO)2 and Ru(P)(NO)2. Inorganic Chemistry 2003, 42 (16) , 4902-4908. https://doi.org/10.1021/ic034079v
    24. Frank DeRosa,, Xianhui Bu, and, Peter C. Ford. Synthesis and Photophysical Properties of New Chromium(III) Complexes of N-Derivatized 1,4,8,11-Tetraazacyclotetradecane Ligands cis-[Cr(1,8-R2cyclam)Cl2]Cl, Where R Is a Pendant Chromophore. Exclusive Formation of the cis Isomer. Inorganic Chemistry 2003, 42 (13) , 4171-4178. https://doi.org/10.1021/ic0300870
    25. Christa L. Conrado,, James L. Bourassa,, Christian Egler,, Stephen Wecksler, and, Peter C. Ford. Photochemical Investigation of Roussin's Red Salt Esters:  Fe2(μ-SR)2(NO)4. Inorganic Chemistry 2003, 42 (7) , 2288-2293. https://doi.org/10.1021/ic020309e
    26. Hirotaka Nagao,, Toshiyuki Hirano,, Naotoshi Tsuboya,, Soni Shiota,, Masao Mukaida,, Takao Oi, and, Mikio Yamasaki. Reactions of Acetonitrile Coordinated to a Nitrosylruthenium Complex with H2O or CH3OH under Mild Conditions:  Structural Characterization of Imido-Type Complexes. Inorganic Chemistry 2002, 41 (24) , 6267-6273. https://doi.org/10.1021/ic011241q
    27. Jeane Bordini,, David L. Hughes,, Joaquim Delphino Da Motta Neto, and, Carlos Jorge da Cunha. Nitric Oxide Photorelease from Ruthenium Salen Complexes in Aqueous and Organic Solutions. Inorganic Chemistry 2002, 41 (21) , 5410-5416. https://doi.org/10.1021/ic011273d
    28. Mark D. Lim,, Ivan M. Lorkovic,, Katrin Wedeking,, Andrew W. Zanella,, Carmen F. Works,, Steve M. Massick, and, Peter C. Ford. Reactions of Nitrogen Oxides with Heme Models. Characterization of NO and NO2 Dissociation from Fe(TPP)(NO2)(NO) by Flash Photolysis and Rapid Dilution Techniques:  Fe(TPP)(NO2) as an Unstable Intermediate. Journal of the American Chemical Society 2002, 124 (33) , 9737-9743. https://doi.org/10.1021/ja020653a
    29. Carmen F. Works,, Christoph J. Jocher,, Gwen D. Bart,, Xianhui Bu, and, Peter C. Ford. Photochemical Nitric Oxide Precursors:  Synthesis, Photochemistry, and Ligand Substitution Kinetics of Ruthenium Salen Nitrosyl and Ruthenium Salophen Nitrosyl Complexes1. Inorganic Chemistry 2002, 41 (14) , 3728-3739. https://doi.org/10.1021/ic020248k
    30. Daniel A. Freedman,, Daron E. Janzen,, Jennifer L. Vreeland,, Hannah M. Tully, and, Kent R. Mann. Ligand Substitution, pH Dependent Deoxygenation, and Linkage Isomerization Reactions of the 2,2‘-Bipyridinetetranitroruthenate Dianion. Inorganic Chemistry 2002, 41 (15) , 3820-3829. https://doi.org/10.1021/ic0255205
    31. Peter C. Ford and, Ivan M. Lorkovic. Mechanistic Aspects of the Reactions of Nitric Oxide with Transition-Metal Complexes. Chemical Reviews 2002, 102 (4) , 993-1018. https://doi.org/10.1021/cr0000271
    32. Peng George Wang,, Ming Xian,, Xiaoping Tang,, Xuejun Wu,, Zhong Wen,, Tingwei Cai, and, Adam J. Janczuk. Nitric Oxide Donors:  Chemical Activities and Biological Applications. Chemical Reviews 2002, 102 (4) , 1091-1134. https://doi.org/10.1021/cr000040l
    33. Donald V. Scaltrito,, H. Christopher Fry,, Brett M. Showalter,, David W. Thompson,, Hong-Chang Liang,, Christiana Xin Zhang,, Ryan M. Kretzer,, Eun-il Kim,, John P. Toscano,, Kenneth D. Karlin, and, Gerald J. Meyer. Reversible Carbon Monoxide Photodissociation from Cu(I) Coordination Compounds. Inorganic Chemistry 2001, 40 (18) , 4514-4515. https://doi.org/10.1021/ic010684r
    34. George B. Richter-Addo,, Ralph A. Wheeler,, Christopher Adam Hixson,, Li Chen,, Masood A. Khan,, Mary K. Ellison,, Charles E. Schulz, and, W. Robert Scheidt. Unexpected Nitrosyl-Group Bending in Six-Coordinate {M(NO)}6 σ-Bonded Aryl(iron) and -(ruthenium) Porphyrins. Journal of the American Chemical Society 2001, 123 (26) , 6314-6326. https://doi.org/10.1021/ja010276m
    35. Jon S. Bridgewater,, Thomas L. Netzel,, Jon R. Schoonover,, Steven M. Massick, and, Peter C. Ford. Time-Resolved Optical and Infrared Spectral Studies of Intermediates Generated by Photolysis of trans-RhCl(CO)(PR3)2. Roles Played in the Photocatalytic Activation of Hydrocarbons1. Inorganic Chemistry 2001, 40 (7) , 1466-1476. https://doi.org/10.1021/ic001298x
    36. Rong Lin and, Patrick J. Farmer. O Atom Transfer from Nitric Oxide Catalyzed by Fe(TPP). Journal of the American Chemical Society 2001, 123 (6) , 1143-1150. https://doi.org/10.1021/ja993643r
    37. Carmen F. Works and, Peter C. Ford. Photoreactivity of the Ruthenium Nitrosyl Complex, Ru(salen)(Cl)(NO). Solvent Effects on the Back Reaction of NO with the Lewis Acid RuIII(salen)(Cl)1. Journal of the American Chemical Society 2000, 122 (31) , 7592-7593. https://doi.org/10.1021/ja000137p
    38. Ivan M. Lorković and, Peter C. Ford. Reactivity of the Iron Porphyrin Fe(TPP)(NO) with Excess NO. Formation of Fe(TPP)(NO)(NO2) Occurs via Reaction with Trace NO2. Inorganic Chemistry 2000, 39 (4) , 632-633. https://doi.org/10.1021/ic9910413
    39. Ivan M. Lorković and, Peter C. Ford. Kinetics and Mechanism of Nitric Oxide Disproportionation upon Reaction with Ruthenium(II) Porphyrin Carbonyls:  Evidence for Dinitrosyl Intermediates1. Inorganic Chemistry 1999, 38 (7) , 1467-1473. https://doi.org/10.1021/ic981121r
    40. Malcolm De Leo and, Peter C. Ford. Reversible Photolabilization of NO from Chromium(III)-Coordinated Nitrite. A New Strategy for Nitric Oxide Delivery. Journal of the American Chemical Society 1999, 121 (9) , 1980-1981. https://doi.org/10.1021/ja983875a
    41. Rintu Bhowmik, Mithun Roy. Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. European Journal of Medicinal Chemistry 2024, 268 , 116217. https://doi.org/10.1016/j.ejmech.2024.116217
    42. Matheus Torelli Martin, Amanda Blanque Becceneri, Peter C. Ford, Roberto Santana da Silva. Chemical approach for obtaining a porphyrin bonded to nitro-ruthenium derivative as a promising photosensitizer for enhancing light irradiation therapy. Inorganic Chemistry Communications 2024, 161 , 112138. https://doi.org/10.1016/j.inoche.2024.112138
    43. Peter C. Ford, John V. Garcia, Camilo Guzman, Sheila Kulkarni, Emily Wein. Photoactivated metal complexes for drug delivery. 2023, 254-297. https://doi.org/10.1016/B978-0-12-823144-9.00101-1
    44. Liniquer A. Fontana, Vitor H. Rigolin, Marcos A. Ribeiro, Wdeson P. Barros, Jackson D. Megiatto. A synthetic tactic to substitute axial ligands in sterically demanding Ru( ii )porphyrinates. Dalton Transactions 2022, 51 (26) , 9971-9977. https://doi.org/10.1039/D2DT01095J
    45. Peter C. Ford. Adventures in the photo-uncaging of small molecule bioregulators. 2022, 129-169. https://doi.org/10.1016/bs.adioch.2022.04.002
    46. Renata Galvão de Lima, Rafaella Rebecchi Rios, Antonio Eduardo da Hora Machado, Roberto Santana da Silva. Ruthenium phthalocyanines in nitric oxide modulation and singlet oxygen release: Selectivity and cytotoxic effect on cancer cell lines. 2022, 355-379. https://doi.org/10.1016/bs.adioch.2022.06.005
    47. José Guadalupe Hernández, Pandiyan Thangarasu. A critical evaluation of [ML(ONO)]+ (M = Fe, Ru, Os) as nitric oxide precursor influenced by spin multiplicity and geometrical parameters (M-O-NO and MO-N-O) for the NO release: A theoretical study. Inorganica Chimica Acta 2021, 527 , 120584. https://doi.org/10.1016/j.ica.2021.120584
    48. José Guadalupe Hernández, Jayanthi Narayanan, Elías Granados Hernández, Pandiyan Thangarasu. Understanding of [RuL(ONO)]n+ acting as nitric oxide precursor, a theoretical study of ruthenium complexes of 1,4,8,11-tetraazacyclo- tetradecane having different substituents: How spin multiplicity influences bond angle and bond lengths (Ru-O-NO) in releasing of NO. Journal of Inorganic Biochemistry 2021, 218 , 111406. https://doi.org/10.1016/j.jinorgbio.2021.111406
    49. A. A. Mikhailov, E. D. Stolyarova, G. A. Kostin. PHOTOCHEMISTRY OF RUTHENIUM NITROSYL COMPLEXES IN SOLIDS AND SOLUTIONS AND ITS POTENTIAL APPLICATIONS. Journal of Structural Chemistry 2021, 62 (4) , 497-516. https://doi.org/10.1134/S0022476621040016
    50. Artem A. Mikhailov, Darya V. Khantakova, Vladislav A. Nichiporenko, Evgeni M. Glebov, Vjacheslav P. Grivin, Victor F. Plyusnin, Vadim V. Yanshole, Daria V. Petrova, Gennadiy A. Kostin, Inga R. Grin. Photoinduced inhibition of DNA repair enzymes and the possible mechanism of photochemical transformations of the ruthenium nitrosyl complex [RuNO(β-Pic) 2 (NO 2 ) 2 OH]. Metallomics 2019, 11 (12) , 1999-2009. https://doi.org/10.1039/C9MT00153K
    51. M.I.F. Barbosa, G.G. Parra, R.S. Correa, R.N. Sampaio, L.N. Magno, R.C. Silva, A.C. Doriguetto, J. Ellena, N.M. Barbosa Neto, A.A. Batista, P.J. Gonçalves. Reactive nitrogen/oxygen species production by nitro/nitrosyl supramolecular ruthenium porphyrin complexes. Journal of Photochemistry and Photobiology A: Chemistry 2017, 338 , 152-160. https://doi.org/10.1016/j.jphotochem.2017.01.028
    52. Somnath Ghosh, Hemanta Deka, Yuvraj B. Dangat, Soumen Saha, Kuldeep Gogoi, Kumar Vanka, Biplab Mondal. Reductive nitrosylation of nickel( ii ) complex by nitric oxide followed by nitrous oxide release. Dalton Transactions 2016, 45 (25) , 10200-10208. https://doi.org/10.1039/C6DT00826G
    53. Peter C. Ford. From curiosity to applications. A personal perspective on inorganic photochemistry. Chemical Science 2016, 7 (5) , 2964-2986. https://doi.org/10.1039/C6SC00188B
    54. Agustin E. Pierri, Dayana A. Muizzi, Alexis D. Ostrowski, Peter C. Ford. Photo-Controlled Release of NO and CO with Inorganic and Organometallic Complexes. 2014, 1-45. https://doi.org/10.1007/430_2014_164
    55. Mona A. El-Attar, Nan Xu, Dennis Awasabisah, Douglas R. Powell, George B. Richter-Addo. Cyclic voltammetric and fiber-optic infrared spectroelectrochemical studies of six-coordinate (por)Ru(NO)Cl compounds (por=porphyrinato dianion). Polyhedron 2012, 40 (1) , 105-109. https://doi.org/10.1016/j.poly.2012.03.034
    56. Zumira Aparecida Carneiro, Juliana Cristina Biazzotto de Moraes, Fernando Postalli Rodrigues, Renata Galvão de Lima, Carlos Curti, Zênis Novaes da Rocha, Michele Paulo, Lusiane Maria Bendhack, Antonio Claudio Tedesco, André Luiz Barboza Formiga, Roberto Santana da Silva. Photocytotoxic activity of a nitrosyl phthalocyanine ruthenium complex — A system capable of producing nitric oxide and singlet oxygen. Journal of Inorganic Biochemistry 2011, 105 (8) , 1035-1043. https://doi.org/10.1016/j.jinorgbio.2011.04.011
    57. Alexis D. Ostrowski, Peter C. Ford. Metal complexes as photochemical nitric oxide precursors: Potential applications in the treatment of tumors. Dalton Transactions 2009, 9 (48) , 10660. https://doi.org/10.1039/b912898k
    58. Michael J. Rose, Pradip K. Mascharak. Photoactive ruthenium nitrosyls: Effects of light and potential application as NO donors. Coordination Chemistry Reviews 2008, 252 (18-20) , 2093-2114. https://doi.org/10.1016/j.ccr.2007.11.011
    59. Gabriella Tamasi, Matia Curci, Francesco Berrettini, Nicholas Justice, Alessandro Sega, Luisa Chiasserini, Renzo Cini. {RuII(NO+)}3+-core complexes with 4-methyl-pyrimidine and ethyl-isonicotinate: Synthesis, X-ray structure, spectroscopy, and computational and NO-release studies upon UVA irradiation. Journal of Inorganic Biochemistry 2008, 102 (10) , 1874-1884. https://doi.org/10.1016/j.jinorgbio.2008.06.011
    60. Giovanni F. Caramori, Gernot Frenking. Analysis of the metal–ligand bonds in [Mo(X)(NH2)3] (X = P, N, PO, and NO), [Mo(CO)5(NO)]+, and [Mo(CO)5(PO)]+. Theoretical Chemistry Accounts 2008, 120 (4-6) , 351-361. https://doi.org/10.1007/s00214-008-0435-6
    61. Wai-Man Cheung, Qian-Feng Zhang, Chui-Ying Lai, Ian D. Williams, Wa-Hung Leung. Ruthenium and rhodium nitrosyl complexes containing dichalcogenoimidodiphosphinate ligands. Polyhedron 2007, 26 (16) , 4631-4637. https://doi.org/10.1016/j.poly.2007.04.002
    62. Jon Marhenke, Crisjoe A. Joseph, Marlena Z. Corliss, Tim J. Dunn, Peter C. Ford. Thermal and photochemical reactivity of Os(HNO)(CO)Cl2(PPh3)2: Evidence for photochemical HNO generation. Polyhedron 2007, 26 (16) , 4638-4644. https://doi.org/10.1016/j.poly.2007.04.044
    63. M. Andreina Moreno, Matti Haukka, Mirja Kallinen, Tapani A. Pakkanen. Reactions of [Ru(CO) 3 Cl 2 ] 2 with aromatic nitrogen donor ligands in alcoholic media. Applied Organometallic Chemistry 2006, 20 (1) , 51-69. https://doi.org/10.1002/aoc.1010
    64. Peter. C. Ford, Stephen Wecksler. Photochemical reactions leading to NO and NOx generation. Coordination Chemistry Reviews 2005, 249 (13-14) , 1382-1395. https://doi.org/10.1016/j.ccr.2004.10.022
    65. Nan Xu, Jonghyuk Lee, Douglas R. Powell, George B. Richter-Addo. Synthesis, characterization, and redox behavior of six-coordinate (por)Ru(NO)Cl compounds (por=porphyrinato dianion). Inorganica Chimica Acta 2005, 358 (10) , 2855-2860. https://doi.org/10.1016/j.ica.2004.06.031
    66. Renata Galvão de Lima, Marília Gama Sauaia, Daniella Bonaventura, Antonio Cláudio Tedesco, Renata Fonseca Vianna Lopez, Lusiane M. Bendhack, Roberto Santana da Silva. Controlled nitric oxide photo-release from nitro ruthenium complexes: The vasodilator response produced by UV light irradiation. Inorganica Chimica Acta 2005, 358 (9) , 2643-2650. https://doi.org/10.1016/j.ica.2005.03.019
    67. Marı́lia Gama Sauaia, Fabiana de Souza Oliveira, Renata Galvão de Lima, Angélica de Lima Cacciari, Elia Tfouni, Roberto Santana da Silva. Syntheses, characterization and photochemical properties of new NO–ruthenium(II) complexes. Inorganic Chemistry Communications 2005, 8 (4) , 347-349. https://doi.org/10.1016/j.inoche.2005.01.012
    68. Peter C. Ford, Leroy E. Laverman. Reaction mechanisms relevant to the formation of iron and ruthenium nitric oxide complexes. Coordination Chemistry Reviews 2005, 249 (3-4) , 391-403. https://doi.org/10.1016/j.ccr.2004.04.006
    69. Hongfei Wang, Hiroshi Tomizawa, Eiichi Miki. Photoirradiation reactions and crystal structures of two geometrical isomers of [Ru(OAc)(2cqn)2NO] (H2cqn=2-chloro-8-quinolinol). Inorganica Chimica Acta 2004, 357 (14) , 4291-4296. https://doi.org/10.1016/j.ica.2003.09.003
    70. Marilia Gama Sauaia, Fabiana de Souza Oliveira, Antonio Claudio Tedesco, Roberto Santana da Silva. Control of NO release by light irradiation from nitrosyl–ruthenium complexes containing polypyridyl ligands. Inorganica Chimica Acta 2003, 355 , 191-196. https://doi.org/10.1016/S0020-1693(03)00271-8
    71. Biswajit Saha, Tatsuya Uchida, Tsutomu Katsuki. Asymmetric intramolecular cyclopropanation of diazo compounds with metallosalen complexes as catalyst: structural tuning of salen ligand. Tetrahedron: Asymmetry 2003, 14 (7) , 823-836. https://doi.org/10.1016/S0957-4166(03)00167-8
    72. Sarana Ka‐Yan Leung, Jie‐Sheng Huang, Jiang‐Lin Liang, Chi‐Ming Che, Zhong‐Yuan Zhou. Nitrido Ruthenium Porphyrins: Synthesis, Characterization, and Amination Reactions with Hydrocarbon or Silyl Enol Ethers. Angewandte Chemie 2003, 115 (3) , 354-357. https://doi.org/10.1002/ange.200390079
    73. Sarana Ka‐Yan Leung, Jie‐Sheng Huang, Jiang‐Lin Liang, Chi‐Ming Che, Zhong‐Yuan Zhou. Nitrido Ruthenium Porphyrins: Synthesis, Characterization, and Amination Reactions with Hydrocarbon or Silyl Enol Ethers. Angewandte Chemie International Edition 2003, 42 (3) , 340-343. https://doi.org/10.1002/anie.200390111
    74. Michael J. Clarke. Ruthenium metallopharmaceuticals. Coordination Chemistry Reviews 2003, 236 (1-2) , 209-233. https://doi.org/10.1016/S0010-8545(02)00312-0
    75. PETER C. FORD, LEROY E. LAVERMAN, IVAN M. LORKOVIC. REACTION MECHANISMS OF NITRIC OXIDE WITH BIOLOGICALLY RELEVANT METAL CENTERS. 2003, 203-257. https://doi.org/10.1016/S0898-8838(03)54004-1
    76. Michael J. Clarke. Ruthenium metallopharmaceuticals. Coordination Chemistry Reviews 2002, 232 (1-2) , 69-93. https://doi.org/10.1016/S0010-8545(02)00025-5
    77. Karl M. Kadish, Eric Van Caemelbecke. Electrochemistry of Metalloporphyrins in Nonaqueous Media. 2002https://doi.org/10.1002/9783527610426.bard090006
    78. A. Wanat, M. Wolak, Ł. Orzeł, M. Brindell, R. van Eldik, G. Stochel. Laser flash photolysis as tool in the elucidation of the nitric oxide binding mechanism to metallobiomolecules. Coordination Chemistry Reviews 2002, 229 (1-2) , 37-49. https://doi.org/10.1016/S0010-8545(02)00091-7
    79. Lars V. Andreasen, Ivan M. Lorkovic, George B. Richter-Addo, Peter C. Ford. Kinetics Studies of the Reaction of the Ruthenium Porphyrin Ru(OEP)(CO) with the S-Nitrosothiol N-Acetyl-1-amino-2-methylpropyl-2-thionitrite. Nitric Oxide 2002, 6 (2) , 228-235. https://doi.org/10.1006/niox.2001.0403
    80. Kenya Nakata, Tsuyoshi Takeda, Jun Mihara, Tetsuya Hamada,, Ryo Irie, Tsutomu Katsuki. Asymmetric Epoxidation with a Photoactivated [Ru(salen)] Complex. Chemistry - A European Journal 2001, 7 (17) , 3776-3782. https://doi.org/10.1002/1521-3765(20010903)7:17&lt;3776::AID-CHEM3776&gt;3.0.CO;2-M
    81. Vanessa Togniolo, Roberto Santana da Silva, Antonio Claudio Tedesco. Photo-induced nitric oxide release from chlorobis(2,2′-bipyridine)nitrosylruthenium(II) in aqueous solution. Inorganica Chimica Acta 2001, 316 (1-2) , 7-12. https://doi.org/10.1016/S0020-1693(01)00370-X
    82. Malcolm A DeLeo, Peter C Ford. Photoreactions of coordinated nitrite ion. Reversible nitric oxide labilization from the chromium(III) complex [ trans -Cr(cyclam)(ONO) 2 ] +. Coordination Chemistry Reviews 2000, 208 (1) , 47-59. https://doi.org/10.1016/S0010-8545(00)00271-X
    83. Tatsuya Uchida, Ryo Irie, Tsutomu Katsuki. cis- and Enantio-selective Cyclopropanation with Chiral (ON+)Ru–Salen Complex as a Catalyst. Tetrahedron 2000, 56 (22) , 3501-3509. https://doi.org/10.1016/S0040-4020(00)00273-8
    84. Malcolm A. De Leo, Xianhui Bu, Jason Bentow, Peter C. Ford. The synthesis, characterization and structures of the chromium(III) dinitrito complexes: trans-[Cr(L)(ONO)2]+ (L=1,4,8,11-tetraazacyclotetradecane or 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Inorganica Chimica Acta 2000, 300-302 , 944-950. https://doi.org/10.1016/S0020-1693(00)00027-X
    85. Mikio Hoshino, Leroy Laverman, Peter C. Ford. Nitric oxide complexes of metalloporphyrins: an overview of some mechanistic studies. Coordination Chemistry Reviews 1999, 187 (1) , 75-102. https://doi.org/10.1016/S0010-8545(98)00228-8

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 1998, 120, 45, 11674–11683
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja981907o
    Published November 3, 1998
    Copyright © 1998 American Chemical Society

    Article Views

    677

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.