ACS Publications. Most Trusted. Most Cited. Most Read
Crystal Structure of Epoxomicin:20S Proteasome Reveals a Molecular Basis for Selectivity of α‘,β‘-Epoxyketone Proteasome Inhibitors
My Activity

Figure 1Loading Img
    Communication

    Crystal Structure of Epoxomicin:20S Proteasome Reveals a Molecular Basis for Selectivity of α‘,β‘-Epoxyketone Proteasome Inhibitors
    Click to copy article linkArticle link copied!

    View Author Information
    Max Planck Institut für Biochemie D-82152 Martinsried, Germany Departments of Molecular, Cellular, and Developmental Biology and Pharmacology, Yale University 219 Prospect Street, New Haven, Connecticut 06520-8103
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2000, 122, 6, 1237–1238
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja993588m
    Published January 28, 2000
    Copyright © 2000 American Chemical Society
    Copyright © 2000 American Chemical Society

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

     To whom correspondence should be addressed. E-mail:  groll@trout. biochem.mpg.de, [email protected].

     Max Planck Institut für Biochemie.

     Department of Molecular, Cellular, and Developmental Biology, Yale University.

    §

     Department of Pharmacology, Yale University.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Crystallization and data collection details (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 282 publications.

    1. Sarah R. Messenger, David F. Ackerley, Mark J. Calcott. Heterologous Expression of Epoxomicin in Escherichia coli. ACS Synthetic Biology 2024, 13 (9) , 2702-2709. https://doi.org/10.1021/acssynbio.4c00430
    2. Marion G. Götz, Kacey Godwin, Rachel Price, Robert Dorn, Gabriel Merrill-Steskal, William Klemmer, Hunter Hansen, Gautam Produturi, Megan Rocha, Mathias Palmer, Lea Molacek, Zack Strater, Michael Groll. Macrocyclic Oxindole Peptide Epoxyketones─A Comparative Study of Macrocyclic Inhibitors of the 20S Proteasome. ACS Medicinal Chemistry Letters 2024, 15 (4) , 533-539. https://doi.org/10.1021/acsmedchemlett.4c00017
    3. Jon Uranga, Lukas Hasecke, Jonny Proppe, Jan Fingerhut, Ricardo A. Mata. Theoretical Studies of the Acid–Base Equilibria in a Model Active Site of the Human 20S Proteasome. Journal of Chemical Information and Modeling 2021, 61 (4) , 1942-1953. https://doi.org/10.1021/acs.jcim.0c01459
    4. Arjun Saha, Gabriel Oanca, Dibyendu Mondal, Arieh Warshel. Exploring the Proteolysis Mechanism of the Proteasomes. The Journal of Physical Chemistry B 2020, 124 (27) , 5626-5635. https://doi.org/10.1021/acs.jpcb.0c04435
    5. Bo-Tao Xin, Eva M. Huber, Gerjan de Bruin, Wolfgang Heinemeyer, Elmer Maurits, Christofer Espinal, Yimeng Du, Marissa Janssens, Emily S. Weyburne, Alexei F. Kisselev, Bogdan I. Florea, Christoph Driessen, Gijsbert A. van der Marel, Michael Groll, Herman S. Overkleeft. Structure-Based Design of Inhibitors Selective for Human Proteasome β2c or β2i Subunits. Journal of Medicinal Chemistry 2019, 62 (3) , 1626-1642. https://doi.org/10.1021/acs.jmedchem.8b01884
    6. Nicholas J. Porter and David W. Christianson . Binding of the Microbial Cyclic Tetrapeptide Trapoxin A to the Class I Histone Deacetylase HDAC8. ACS Chemical Biology 2017, 12 (9) , 2281-2286. https://doi.org/10.1021/acschembio.7b00330
    7. Philipp M. Cromm and Craig M. Crews . The Proteasome in Modern Drug Discovery: Second Life of a Highly Valuable Drug Target. ACS Central Science 2017, 3 (8) , 830-838. https://doi.org/10.1021/acscentsci.7b00252
    8. Gabriel Castro-Falcón, Dongyup Hahn, Daniela Reimer, and Chambers C. Hughes . Thiol Probes To Detect Electrophilic Natural Products Based on Their Mechanism of Action. ACS Chemical Biology 2016, 11 (8) , 2328-2336. https://doi.org/10.1021/acschembio.5b00924
    9. Daniel Zabala, Joshua W. Cartwright, Douglas M. Roberts, Brian J. C. Law, Lijiang Song, Markiyan Samborskyy, Peter F. Leadlay, Jason Micklefield, and Gregory L. Challis . A Flavin-Dependent Decarboxylase–Dehydrogenase–Monooxygenase Assembles the Warhead of α,β-Epoxyketone Proteasome Inhibitors. Journal of the American Chemical Society 2016, 138 (13) , 4342-4345. https://doi.org/10.1021/jacs.6b01619
    10. Jonathan B. Baell . Feeling Nature’s PAINS: Natural Products, Natural Product Drugs, and Pan Assay Interference Compounds (PAINS). Journal of Natural Products 2016, 79 (3) , 616-628. https://doi.org/10.1021/acs.jnatprod.5b00947
    11. Lena Keller, Alberto Plaza, Christian Dubiella, Michael Groll, Marcel Kaiser, and Rolf Müller . Macyranones: Structure, Biosynthesis, and Binding Mode of an Unprecedented Epoxyketone that Targets the 20S Proteasome. Journal of the American Chemical Society 2015, 137 (25) , 8121-8130. https://doi.org/10.1021/jacs.5b03833
    12. Eva M. Huber, Gerjan de Bruin, Wolfgang Heinemeyer, Guillem Paniagua Soriano, Herman S. Overkleeft, and Michael Groll . Systematic Analyses of Substrate Preferences of 20S Proteasomes Using Peptidic Epoxyketone Inhibitors. Journal of the American Chemical Society 2015, 137 (24) , 7835-7842. https://doi.org/10.1021/jacs.5b03688
    13. Darci J. Trader, Scott Simanski, and Thomas Kodadek . A Reversible and Highly Selective Inhibitor of the Proteasomal Ubiquitin Receptor Rpn13 Is Toxic to Multiple Myeloma Cells. Journal of the American Chemical Society 2015, 137 (19) , 6312-6319. https://doi.org/10.1021/jacs.5b02069
    14. Yuta Tsunematsu, Shinichi Nishimura, Akira Hattori, Shinya Oishi, Nobutaka Fujii, and Hideaki Kakeya . Isolation, Structure Elucidation, and Total Synthesis of Tryptopeptins A and B, New TGF-β Signaling Modulators from Streptomyces sp.. Organic Letters 2015, 17 (2) , 258-261. https://doi.org/10.1021/ol503340k
    15. Yu Liu, Xin Zhang, Yun Lei Tan, Gira Bhabha, Damian C. Ekiert, Yakov Kipnis, Sinisa Bjelic, David Baker, and Jeffery W. Kelly . De Novo-Designed Enzymes as Small-Molecule-Regulated Fluorescence Imaging Tags and Fluorescent Reporters. Journal of the American Chemical Society 2014, 136 (38) , 13102-13105. https://doi.org/10.1021/ja5056356
    16. Gerjan de Bruin, Eva M. Huber, Bo-Tao Xin, Eva J. van Rooden, Karol Al-Ayed, Kyung-Bo Kim, Alexei F. Kisselev, Christoph Driessen, Mario van der Stelt, Gijsbert A. van der Marel, Michael Groll, and Herman S. Overkleeft . Structure-Based Design of β1i or β5i Specific Inhibitors of Human Immunoproteasomes. Journal of Medicinal Chemistry 2014, 57 (14) , 6197-6209. https://doi.org/10.1021/jm500716s
    17. Lianne I. Willems, Herman S. Overkleeft, and Sander I. van Kasteren . Current Developments in Activity-Based Protein Profiling. Bioconjugate Chemistry 2014, 25 (7) , 1181-1191. https://doi.org/10.1021/bc500208y
    18. Michelle Schorn, Judith Zettler, Joseph P. Noel, Pieter C. Dorrestein, Bradley S. Moore, and Leonard Kaysser . Genetic Basis for the Biosynthesis of the Pharmaceutically Important Class of Epoxyketone Proteasome Inhibitors. ACS Chemical Biology 2014, 9 (1) , 301-309. https://doi.org/10.1021/cb400699p
    19. Donghui Wei, Lei Fang, Mingsheng Tang, and Chang-Guo Zhan . Fundamental Reaction Pathway for Peptide Metabolism by Proteasome: Insights from First-Principles Quantum Mechanical/Molecular Mechanical Free Energy Calculations. The Journal of Physical Chemistry B 2013, 117 (43) , 13418-13434. https://doi.org/10.1021/jp405337v
    20. Sevil Ozcan, Aslamuzzaman Kazi, Frank Marsilio, Bin Fang, Wayne C. Guida, John Koomen, Harshani R. Lawrence, and Saïd M. Sebti . Oxadiazole-isopropylamides as Potent and Noncovalent Proteasome Inhibitors. Journal of Medicinal Chemistry 2013, 56 (10) , 3783-3805. https://doi.org/10.1021/jm400221d
    21. Shuhei Kawamura, Yuka Unno, Anja List, Akirai Mizuno, Motohiro Tanaka, Takuma Sasaki, Mitsuhiro Arisawa, Akira Asai, Michael Groll, and Satoshi Shuto . Potent Proteasome Inhibitors Derived from the Unnatural cis-Cyclopropane Isomer of Belactosin A: Synthesis, Biological Activity, and Mode of Action. Journal of Medicinal Chemistry 2013, 56 (9) , 3689-3700. https://doi.org/10.1021/jm4002296
    22. Jonathan B. Baell . Broad Coverage of Commercially Available Lead-like Screening Space with Fewer than 350,000 Compounds. Journal of Chemical Information and Modeling 2013, 53 (1) , 39-55. https://doi.org/10.1021/ci300461a
    23. Reem Smoum, Abraham Rubinstein, Valery M. Dembitsky, and Morris Srebnik . Boron Containing Compounds as Protease Inhibitors. Chemical Reviews 2012, 112 (7) , 4156-4220. https://doi.org/10.1021/cr608202m
    24. Donghui Wei, Beilei Lei, Mingsheng Tang, and Chang-Guo Zhan . Fundamental Reaction Pathway and Free Energy Profile for Inhibition of Proteasome by Epoxomicin. Journal of the American Chemical Society 2012, 134 (25) , 10436-10450. https://doi.org/10.1021/ja3006463
    25. Yiyu Ge, Aslamuzzaman Kazi, Frank Marsilio, Yunting Luo, Sanjula Jain, Wesley Brooks, Kenyon G. Daniel, Wayne C. Guida, Saïd M. Sebti, and Harshani R. Lawrence . Discovery and Synthesis of Hydronaphthoquinones as Novel Proteasome Inhibitors. Journal of Medicinal Chemistry 2012, 55 (5) , 1978-1998. https://doi.org/10.1021/jm201118h
    26. Lloyd D. Fricker, Julia S. Gelman, Leandro M. Castro, Fabio C. Gozzo, and Emer S. Ferro . Peptidomic Analysis of HEK293T Cells: Effect of the Proteasome Inhibitor Epoxomicin on Intracellular Peptides. Journal of Proteome Research 2012, 11 (3) , 1981-1990. https://doi.org/10.1021/pr2012076
    27. Dennis L. Buckley, Timothy W. Corson, Nicholas Aberle, and Craig M. Crews . HIV Protease-Mediated Activation of Sterically Capped Proteasome Inhibitors and Substrates. Journal of the American Chemical Society 2011, 133 (4) , 698-700. https://doi.org/10.1021/ja109377p
    28. Beilei Lei, Mohamed Diwan M. Abdul Hameed, Adel Hamza, Marie Wehenkel, Jennifer L. Muzyka, Xiao-Jun Yao, Kyung-Bo Kim, and Chang-Guo Zhan . Molecular Basis of the Selectivity of the Immunoproteasome Catalytic Subunit LMP2-Specific Inhibitor Revealed by Molecular Modeling and Dynamics Simulations. The Journal of Physical Chemistry B 2010, 114 (38) , 12333-12339. https://doi.org/10.1021/jp1058098
    29. Patrícia Bezerra Gomes, Markus Nett, Hans-Martin Dahse, and Christian Hertweck. Pitucamycin: Structural Merger of a Phenoxazinone with an Epoxyquinone Antibiotic. Journal of Natural Products 2010, 73 (9) , 1461-1464. https://doi.org/10.1021/np100344u
    30. Anna Baldisserotto, Valeria Ferretti, Federica Destro, Christian Franceschini, Mauro Marastoni, Riccardo Gavioli and Roberto Tomatis . α,β-Unsaturated N-Acylpyrrole Peptidyl Derivatives: New Proteasome Inhibitors. Journal of Medicinal Chemistry 2010, 53 (17) , 6511-6515. https://doi.org/10.1021/jm100122e
    31. Praveen K. Madala, Joel D. A. Tyndall, Tessa Nall, and David P. Fairlie. Update 1 of: Proteases Universally Recognize Beta Strands In Their Active Sites. Chemical Reviews 2010, 110 (6) , PR1-PR31. https://doi.org/10.1021/cr900368a
    32. Han-Jie Zhou, Monette A. Aujay, Mark K. Bennett, Maya Dajee, Susan D. Demo, Ying Fang, Mark N. Ho, Jing Jiang, Christopher J. Kirk, Guy J. Laidig, Evan R. Lewis, Yan Lu, Tony Muchamuel, Francesco Parlati, Eileen Ring, Kevin D. Shenk, Jamie Shields, Peter J. Shwonek, Timothy Stanton, Congcong M. Sun, Catherine Sylvain, Tina M. Woo and Jinfu Yang. Design and Synthesis of an Orally Bioavailable and Selective Peptide Epoxyketone Proteasome Inhibitor (PR-047). Journal of Medicinal Chemistry 2009, 52 (9) , 3028-3038. https://doi.org/10.1021/jm801329v
    33. Matteo Mozzicafreddo, Massimiliano Cuccioloni, Valentina Cecarini, Anna Maria Eleuteri and Mauro Angeletti . Homology Modeling and Docking Analysis of the Interaction between Polyphenols and Mammalian 20S Proteasomes. Journal of Chemical Information and Modeling 2009, 49 (2) , 401-409. https://doi.org/10.1021/ci800235m
    34. Michael Groll, Emily P. Balskus and Eric N. Jacobsen . Structural Analysis of Spiro β-Lactone Proteasome Inhibitors. Journal of the American Chemical Society 2008, 130 (45) , 14981-14983. https://doi.org/10.1021/ja806059t
    35. Ljudmila Borissenko and, Michael Groll. 20S Proteasome and Its Inhibitors:  Crystallographic Knowledge for Drug Development. Chemical Reviews 2007, 107 (3) , 687-717. https://doi.org/10.1021/cr0502504
    36. Hilary Frase,, Jason Hudak, and, Irene Lee. Identification of the Proteasome Inhibitor MG262 as a Potent ATP-Dependent Inhibitor of the Salmonella enterica serovar Typhimurium Lon Protease. Biochemistry 2006, 45 (27) , 8264-8274. https://doi.org/10.1021/bi060542e
    37. Michael Groll,, Robert Huber, and, Barbara C. M. Potts. Crystal Structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in Complex with the 20S Proteasome Reveal Important Consequences of β-Lactone Ring Opening and a Mechanism for Irreversible Binding. Journal of the American Chemical Society 2006, 128 (15) , 5136-5141. https://doi.org/10.1021/ja058320b
    38. Joel D. A. Tyndall,, Tessa Nall, and, David P. Fairlie. Proteases Universally Recognize Beta Strands In Their Active Sites. Chemical Reviews 2005, 105 (3) , 973-1000. https://doi.org/10.1021/cr040669e
    39. Markus Kaiser,, Carlo Siciliano,, Irmgard Assfalg-Machleidt,, Michael Groll,, Alexander G. Milbradt, and, Luis Moroder. Synthesis of a TMC-95A Ketomethylene Analogue by Cyclization via Intramolecular Suzuki Coupling. Organic Letters 2003, 5 (19) , 3435-3437. https://doi.org/10.1021/ol035178f
    40. Brian K. Albrecht and, Robert M. Williams. A Concise Formal Total Synthesis of TMC-95A/B Proteasome Inhibitors. Organic Letters 2003, 5 (2) , 197-200. https://doi.org/10.1021/ol0272545
    41. James C. Powers,, Juliana L. Asgian,, Özlem Doǧan Ekici, and, Karen Ellis James. Irreversible Inhibitors of Serine, Cysteine, and Threonine Proteases. Chemical Reviews 2002, 102 (12) , 4639-4750. https://doi.org/10.1021/cr010182v
    42. Masayuki Inoue,, Hidetomo Furuyama,, Hayato Sakazaki, and, Masahiro Hirama. Stereocontrolled Synthesis of the Northern Part of Potent Proteasome Inhibitor TMC-95A. Organic Letters 2001, 3 (18) , 2863-2865. https://doi.org/10.1021/ol016303v
    43. Francesca Mancuso, Carla Di Chio, Francesca Di Matteo, Gerardina Smaldone, Nunzio Iraci, Salvatore Vincenzo Giofrè. Recent Advances in the Development of Immunoproteasome Inhibitors as Anti-Cancer Agents: The Past 5 Years. Molecules 2025, 30 (3) , 755. https://doi.org/10.3390/molecules30030755
    44. Yuki Hitora, Sachiko Tsukamoto. Modulators of the ubiquitin–proteasome system from natural products: chemical structures and their potential for drug discovery. Natural Product Reports 2025, 82 https://doi.org/10.1039/D5NP00004A
    45. Sahani Sandalima Uthumange, Angie Jun Hui Liew, Xavier Wezen Chee, Keng Yoon Yeong. Ringing medicinal chemistry: The importance of 3-membered rings in drug discovery. Bioorganic & Medicinal Chemistry 2024, 116 , 117980. https://doi.org/10.1016/j.bmc.2024.117980
    46. Leonard Präve, Wolfgang Kuttenlochner, Werner W.A. Tabak, Chiara Langer, Markus Kaiser, Michael Groll, Helge B. Bode. Bioengineering of syrbactin megasynthetases for immunoproteasome inhibitor production. Chem 2024, 10 (10) , 3212-3223. https://doi.org/10.1016/j.chempr.2024.07.013
    47. Sindoori R. Nair, Bhavani Shankar Chinta, Beeraiah Baire. A Domino One-Pot Approach to Functionalized Benzonitriles from 2-[(3-Hydroxy/acetoxy)propyn-1-yl]benzamides. Synthesis 2024, 56 (19) , 3001-3008. https://doi.org/10.1055/a-2356-8297
    48. Friedrich Johannes Ehinger, Christian Hertweck. Biosynthesis and recruitment of reactive amino acids in nonribosomal peptide assembly lines. Current Opinion in Chemical Biology 2024, 81 , 102494. https://doi.org/10.1016/j.cbpa.2024.102494
    49. Cody A. Loy, Darci J. Trader. Primed for Interactions: Investigating the Primed Substrate Channel of the Proteasome for Improved Molecular Engagement. Molecules 2024, 29 (14) , 3356. https://doi.org/10.3390/molecules29143356
    50. Giovanni Andrea Vitale, Christian Geibel, Vidit Minda, Mingxun Wang, Allegra T. Aron, Daniel Petras. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Natural Product Reports 2024, 41 (6) , 885-904. https://doi.org/10.1039/D3NP00050H
    51. Giorgia Gazzaroli, Andrea Angeli, Arianna Giacomini, Roberto Ronca. Proteasome inhibitors as anticancer agents. Expert Opinion on Therapeutic Patents 2023, 33 (11) , 775-796. https://doi.org/10.1080/13543776.2023.2272648
    52. Mariska de Munnik, Jasper Lithgow, Lennart Brewitz, Kirsten E. Christensen, Robert H. Bates, Beatriz Rodriguez-Miquel, Christopher J. Schofield. αβ,α′β′-Diepoxyketones are mechanism-based inhibitors of nucleophilic cysteine enzymes. Chemical Communications 2023, 59 (86) , 12859-12862. https://doi.org/10.1039/D3CC02932H
    53. Cody A. Loy, Christine S. Muli, Eslam M.H. Ali, Dan Xie, Mostafa H. Ahmed, Carol Beth Post, Darci J. Trader. Discovery of a non-covalent ligand for Rpn-13, a therapeutic target for hematological cancers. Bioorganic & Medicinal Chemistry Letters 2023, 95 , 129485. https://doi.org/10.1016/j.bmcl.2023.129485
    54. Nor Hayati Ismail, Ali Mussa, Mutaz Jamal Al-Khreisat, Shafini Mohamed Yusoff, Azlan Husin, Muhammad Farid Johan. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review. Diagnostics 2023, 13 (14) , 2328. https://doi.org/10.3390/diagnostics13142328
    55. Ashwin Chari, Holger Stark. Prospects and Limitations of High-Resolution Single-Particle Cryo-Electron Microscopy. Annual Review of Biophysics 2023, 52 (1) , 391-411. https://doi.org/10.1146/annurev-biophys-111622-091300
    56. Zhengping Wang, Jinfu Yang, Christopher Kirk. Kyprolis (carfilzomib) (approved): a covalent drug with high extrahepatic clearance via peptidase cleavage and epoxide hydrolysis. 2023, 269-282. https://doi.org/10.1016/B978-0-12-817134-9.00011-8
    57. Carmen Avendaño, J. Carlos Menéndez. Protein degradation-based cancer therapy. 2023, 637-679. https://doi.org/10.1016/B978-0-12-818549-0.00012-1
    58. Lydia Boike, Nathaniel J. Henning, Daniel K. Nomura. Advances in covalent drug discovery. Nature Reviews Drug Discovery 2022, 21 (12) , 881-898. https://doi.org/10.1038/s41573-022-00542-z
    59. Chakrabhavi Dhananjaya Mohan, Shobith Rangappa, S. Chandra Nayak, Ragi Jadimurthy, Lingzhi Wang, Gautam Sethi, Manoj Garg, Kanchugarakoppal S. Rangappa. Bacteria as a treasure house of secondary metabolites with anticancer potential. Seminars in Cancer Biology 2022, 86 , 998-1013. https://doi.org/10.1016/j.semcancer.2021.05.006
    60. Baljit Kaur, Palwinder Singh. Epoxides: Developability as active pharmaceutical ingredients and biochemical probes. Bioorganic Chemistry 2022, 125 , 105862. https://doi.org/10.1016/j.bioorg.2022.105862
    61. Bruna Domingues Vieira, Henrique Niero, Rafael de Felício, Luiz Fernando Giolo Alves, Cristina Freitas Bazzano, Renata Sigrist, Luciana Costa Furtado, Gabriela Felix Persinoti, Leticia Veras Costa-Lotufo, Daniela Barretto Barbosa Trivella. Production of Epoxyketone Peptide-Based Proteasome Inhibitors by Streptomyces sp. BRA-346: Regulation and Biosynthesis. Frontiers in Microbiology 2022, 13 https://doi.org/10.3389/fmicb.2022.786008
    62. Alexei F. Kisselev. Site-Specific Proteasome Inhibitors. Biomolecules 2022, 12 (1) , 54. https://doi.org/10.3390/biom12010054
    63. Puneet Labana, Mark H. Dornan, Matthew Lafrenière, Tomasz L. Czarny, Eric D. Brown, John P. Pezacki, Christopher N. Boddy. Armeniaspirols inhibit the AAA+ proteases ClpXP and ClpYQ leading to cell division arrest in Gram-positive bacteria. Cell Chemical Biology 2021, 28 (12) , 1703-1715.e11. https://doi.org/10.1016/j.chembiol.2021.07.001
    64. Shansa Pranami E. Jayaweera, Sacheela Prasadi Wanigasinghe Kanakanamge, Dharshika Rajalingam, Gayathri N. Silva. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Frontiers in Oncology 2021, 11 https://doi.org/10.3389/fonc.2021.740796
    65. Jinhai Wang, Ying Fang, R. Andrea Fan, Christopher J. Kirk. Proteasome Inhibitors and Their Pharmacokinetics, Pharmacodynamics, and Metabolism. International Journal of Molecular Sciences 2021, 22 (21) , 11595. https://doi.org/10.3390/ijms222111595
    66. Chambers C. Hughes. Chemical labeling strategies for small molecule natural product detection and isolation. Natural Product Reports 2021, 38 (9) , 1684-1705. https://doi.org/10.1039/D0NP00034E
    67. Eva M. Huber, Michael Groll. A Nut for Every Bolt: Subunit-Selective Inhibitors of the Immunoproteasome and Their Therapeutic Potential. Cells 2021, 10 (8) , 1929. https://doi.org/10.3390/cells10081929
    68. Oliver Plettenburg. Drug Discovery in Academia. 2021, 1-46. https://doi.org/10.1002/9783527826872.ch1
    69. Rui Ding, Daniel J. Wilson, Liqiang Chen. Synthesis of macrocyclic α-ketoamide as a selective and reversible immunoproteasome inhibitor. Medicinal Chemistry Research 2021, 30 (2) , 410-420. https://doi.org/10.1007/s00044-020-02678-2
    70. Rafael de Felício, Patricia Ballone, Cristina Freitas Bazzano, Luiz F. G. Alves, Renata Sigrist, Gina Polo Infante, Henrique Niero, Fernanda Rodrigues-Costa, Arthur Zanetti Nunes Fernandes, Luciane A. C. Tonon, Luciana S. Paradela, Renna Karoline Eloi Costa, Sandra Martha Gomes Dias, Andréa Dessen, Guilherme P. Telles, Marcus Adonai Castro da Silva, Andre Oliveira de Souza Lima, Daniela Barretto Barbosa Trivella. Chemical Elicitors Induce Rare Bioactive Secondary Metabolites in Deep-Sea Bacteria under Laboratory Conditions. Metabolites 2021, 11 (2) , 107. https://doi.org/10.3390/metabo11020107
    71. Michèle Reboud-Ravaux. Le protéasome, la seconde vie d’une cible thérapeutique validée : aspects structuraux et nouveaux inhibiteurs. Biologie Aujourd’hui 2021, 215 (1-2) , 1-23. https://doi.org/10.1051/jbio/2021005
    72. Grace E. Hubbell, Jetze J. Tepe. Natural product scaffolds as inspiration for the design and synthesis of 20S human proteasome inhibitors. RSC Chemical Biology 2020, 1 (5) , 305-332. https://doi.org/10.1039/D0CB00111B
    73. . Drug Targets. 2020, 1-96. https://doi.org/10.1002/9781119607311.ch1
    74. Lik Tong Tan, Ma Yadanar Phyo. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020, 25 (9) , 2197. https://doi.org/10.3390/molecules25092197
    75. Marjorie Bruder, Gina Polo, Daniela B. B. Trivella. Natural allosteric modulators and their biological targets: molecular signatures and mechanisms. Natural Product Reports 2020, 37 (4) , 488-514. https://doi.org/10.1039/C9NP00064J
    76. Anne C. Conibear, Alanca Schmid, Meder Kamalov, Christian F.W. Becker, Claudia Bello. Recent Advances in Peptide-Based Approaches for Cancer Treatment. Current Medicinal Chemistry 2020, 27 (8) , 1174-1205. https://doi.org/10.2174/0929867325666171123204851
    77. Graham L. Patrick. The Plasmodium falciparum proteasome as a drug target. 2020, 403-432. https://doi.org/10.1016/B978-0-08-101210-9.00011-1
    78. Leonard Kaysser. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Natural Product Reports 2019, 36 (12) , 1654-1686. https://doi.org/10.1039/C8NP00095F
    79. Daniel Stubba, Dennis Bensinger, Janika Steinbacher, Lilia Proskurjakov, Álvaro Salcedo Gómez, Uwe Schmidt, Stefan Roth, Katja Schmitz, Boris Schmidt. Cell‐Based Optimization of Covalent Reversible Ketoamide Inhibitors Bridging the Unprimed to the Primed Site of the Proteasome β5 Subunit. ChemMedChem 2019, 14 (23) , 2005-2022. https://doi.org/10.1002/cmdc.201900472
    80. Antony Kam, Shining Loo, Jing-Song Fan, Siu Kwan Sze, Daiwen Yang, James P. Tam. Roseltide rT7 is a disulfide-rich, anionic, and cell-penetrating peptide that inhibits proteasomal degradation. Journal of Biological Chemistry 2019, 294 (51) , 19604-19615. https://doi.org/10.1074/jbc.RA119.010796
    81. Hu Wang, Fanny Cheung, Anna C. Stoll, Patricia Rockwell, Maria E. Figueiredo-Pereira. Mitochondrial and calcium perturbations in rat CNS neurons induce calpain-cleavage of Parkin: Phosphatase inhibition stabilizes pSer65Parkin reducing its calpain-cleavage. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2019, 1865 (6) , 1436-1450. https://doi.org/10.1016/j.bbadis.2019.02.016
    82. Natalia Serrano-Aparicio, Katarzyna Świderek, Vicent Moliner. Theoretical study of the inhibition mechanism of human 20S proteasome by dihydroeponemycin. European Journal of Medicinal Chemistry 2019, 164 , 399-407. https://doi.org/10.1016/j.ejmech.2018.12.062
    83. Anil Vasudevan, Maria A. Argiriadi, Aleksandra Baranczak, Michael M. Friedman, Julia Gavrilyuk, Adrian D. Hobson, Jonathan J. Hulce, Sami Osman, Noel S. Wilson. Covalent binders in drug discovery. 2019, 1-62. https://doi.org/10.1016/bs.pmch.2018.12.002
    84. Geeta Rao, Gregory Nkepang, Jian Xu, Hooman Yari, Hailey Houson, Chengwen Teng, Vibhudutta Awasthi. Ubiquitin Receptor RPN13 Mediates the Inhibitory Interaction of Diphenyldihaloketones CLEFMA and EF24 With the 26S Proteasome. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00392
    85. Roberta Ettari, Maria Zappalà, Silvana Grasso, Caterina Musolino, Vanessa Innao, Alessandro Allegra. Immunoproteasome-selective and non-selective inhibitors: A promising approach for the treatment of multiple myeloma. Pharmacology & Therapeutics 2018, 182 , 176-192. https://doi.org/10.1016/j.pharmthera.2017.09.001
    86. Daniel K. Nomura, Thomas J. Maimone. Target Identification of Bioactive Covalently Acting Natural Products. 2018, 351-374. https://doi.org/10.1007/82_2018_121
    87. Adam L. Borne, Tao Huang, Rebecca L. McCloud, Boobalan Pachaiyappan, Timothy N. J. Bullock, Ku-Lung Hsu. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. 2018, 175-210. https://doi.org/10.1007/82_2018_124
    88. Ankita Punetha, Payel Sarkar, Siddharth Nimkar, Himanshu Sharma, Yoganand KNR, Siranjeevi Nagaraj. Structural Bioinformatics: Life Through The 3D Glasses. 2018, 191-253. https://doi.org/10.1007/978-981-13-1562-6_10
    89. Maria Gaczynska, Pawel A. Osmulski. Targeting Protein–Protein Interactions in the Ubiquitin–Proteasome Pathway. 2018, 123-165. https://doi.org/10.1016/bs.apcsb.2017.09.001
    90. Dominic G. Hoch, Daniel Abegg, Alexander Adibekian. Cysteine-reactive probes and their use in chemical proteomics. Chemical Communications 2018, 54 (36) , 4501-4512. https://doi.org/10.1039/C8CC01485J
    91. Adrian C.D. Fuchs, Lorena Maldoner, Katharina Hipp, Marcus D. Hartmann, Jörg Martin. Structural characterization of the bacterial proteasome homolog BPH reveals a tetradecameric double-ring complex with unique inner cavity properties. Journal of Biological Chemistry 2018, 293 (3) , 920-930. https://doi.org/10.1074/jbc.M117.815258
    92. Sandra Götze, Reinhard Saborowski, Oliviert Martínez-Cruz, Adriana Muhlia-Almazán, Arturo Sánchez-Paz. Proteasome properties of hemocytes differ between the whiteleg shrimp Penaeus vannamei and the brown shrimp Crangon crangon (Crustacea, Decapoda). Cell Stress and Chaperones 2017, 22 (6) , 879-891. https://doi.org/10.1007/s12192-017-0819-4
    93. Lik Tong Tan. Molecular Targets of Clinically Relevant Natural Products from Filamentous Marine Cyanobacteria. 2017, 19-43. https://doi.org/10.1002/9783527805921.ch2
    94. Robin Teufel. Flavin-catalyzed redox tailoring reactions in natural product biosynthesis. Archives of Biochemistry and Biophysics 2017, 632 , 20-27. https://doi.org/10.1016/j.abb.2017.06.008
    95. Adrian C.D. Fuchs, Vikram Alva, Lorena Maldoner, Reinhard Albrecht, Marcus D. Hartmann, Jörg Martin. The Architecture of the Anbu Complex Reflects an Evolutionary Intermediate at the Origin of the Proteasome System. Structure 2017, 25 (6) , 834-845.e5. https://doi.org/10.1016/j.str.2017.04.005
    96. David S. Hewings, John A. Flygare, Ingrid E. Wertz, Matthew Bogyo. Activity‐based probes for the multicatalytic proteasome. The FEBS Journal 2017, 284 (10) , 1540-1554. https://doi.org/10.1111/febs.14016
    97. Kirsten M. Phizackerley, Mouhannad Jumaa, Antonio Lopalco, Bradley H. Wolfe, Christopher D. Ablan, Valentino J. Stella. Mechanism of Degradation of an α-Keto-Epoxide, a Model for the Warhead for Various Proteasome Inhibitor Anticancer Agents. Journal of Pharmaceutical Sciences 2017, 106 (4) , 1051-1061. https://doi.org/10.1016/j.xphs.2016.12.006
    98. Ying Ge, Aibo Li, Jianwei Wu, Haiwei Feng, Letian Wang, Hongwu Liu, Yungen Xu, Qingxiang Xu, Li Zhao, Yuyan Li. Design, synthesis and biological evaluation of novel non-peptide boronic acid derivatives as proteasome inhibitors. European Journal of Medicinal Chemistry 2017, 128 , 180-191. https://doi.org/10.1016/j.ejmech.2017.01.034
    99. Hong Yao, Junkai Liu, Shengtao Xu, Zheying Zhu, Jinyi Xu. The structural modification of natural products for novel drug discovery. Expert Opinion on Drug Discovery 2017, 12 (2) , 121-140. https://doi.org/10.1080/17460441.2016.1272757
    100. A Elisa Pasqua, B. Wilding, M.D. Cheeseman, K. Jones. Targeting Protein Synthesis, Folding, and Degradation Pathways in Cancer. 2017, 202-280. https://doi.org/10.1016/B978-0-12-409547-2.12395-9
    Load more citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2000, 122, 6, 1237–1238
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja993588m
    Published January 28, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    3271

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.