ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Multifunctional Reagent Designed for the Site-Selective Amination of Pyridines

  • Patrick S. Fier*
    Patrick S. Fier
    Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
    *E-mail: [email protected]
  • Suhong Kim
    Suhong Kim
    Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
    More by Suhong Kim
  • , and 
  • Ryan D. Cohen
    Ryan D. Cohen
    Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
Cite this: J. Am. Chem. Soc. 2020, 142, 19, 8614–8618
Publication Date (Web):April 23, 2020
https://doi.org/10.1021/jacs.0c03537
Copyright © 2020 American Chemical Society

    Article Views

    9848

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (1 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    We report the development of a multifunctional reagent for the direct conversion of pyridines to Boc-protected 2-aminopyridines with exquisite site selectivity and chemoselectivity. The novel reagent was prepared on 200-g scale in a single step, reacts in the title reaction under mild conditions without precautions toward air or moisture, and is tolerant of nearly all common functionality. Experimental and in situ spectroscopic monitoring techniques provide detailed insights and unexpected findings for the unique reaction mechanism.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c03537.

    • Experimental details and characterization data for new compounds (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 29 publications.

    1. Miaomiao Mu, Saimei Liu, Yuru He, Jinjing Xu, Haijian Wu, Qiyuan Du, Manman Sun, Jianguo Yang, Zhiming Wang. Multicomponent Dearomative Difluoroalkylation of Isoquinolines with Difluorinated Silyl Enol Ethers: Divergent Synthesis of gem-Difluorinated Heterocycles. Organic Letters 2023, 25 (28) , 5366-5371. https://doi.org/10.1021/acs.orglett.3c01946
    2. Celena M. Josephitis, Hillary M. H. Nguyen, Andrew McNally. Late-Stage C–H Functionalization of Azines. Chemical Reviews 2023, 123 (12) , 7655-7691. https://doi.org/10.1021/acs.chemrev.2c00881
    3. Won Seok Ham, Hoonchul Choi, Jianbo Zhang, Dongwook Kim, Sukbok Chang. C2-Selective, Functional-Group-Divergent Amination of Pyrimidines by Enthalpy-Controlled Nucleophilic Functionalization. Journal of the American Chemical Society 2022, 144 (7) , 2885-2892. https://doi.org/10.1021/jacs.1c13373
    4. Danielle L. McConnell, Alisha M. Blades, Danielle Gomes Rodrigues, Phoebe V. Keyes, Justin C. Sonberg, Caitlin E. Anthony, Sofia Rachad, Olivia M. Simone, Caroline F. Sullivan, Jonathan D. Shapiro, Christopher C. Williams, Benjamin C. Schafer, Amy M. Glanzer, Holly L. Hutchinson, Ashley B. Thayaparan, Zoe A. Krevlin, Isabella C. Bote, Yasin A. Haffary, Sambat Bhandari, Jack A. Goodman, Max M. Majireck. Synthesis of Bench-Stable N-Quaternized Ketene N,O-Acetals and Preliminary Evaluation as Reagents in Organic Synthesis. The Journal of Organic Chemistry 2021, 86 (18) , 13025-13040. https://doi.org/10.1021/acs.joc.1c01764
    5. Jeffrey M. Lipshultz, Alexander T. Radosevich. Uniting Amide Synthesis and Activation by PIII/PV–Catalyzed Serial Condensation: Three-Component Assembly of 2-Amidopyridines. Journal of the American Chemical Society 2021, 143 (36) , 14487-14494. https://doi.org/10.1021/jacs.1c07608
    6. Jin Choi, Gabriele Laudadio, Edouard Godineau, Phil S. Baran. Practical and Regioselective Synthesis of C-4-Alkylated Pyridines. Journal of the American Chemical Society 2021, 143 (31) , 11927-11933. https://doi.org/10.1021/jacs.1c05278
    7. Dmitry I. Bugaenko, Marina A. Yurovskaya, Alexander V. Karchava. From Pyridine-N-oxides to 2-Functionalized Pyridines through Pyridyl Phosphonium Salts: An Umpolung Strategy. Organic Letters 2021, 23 (15) , 6099-6104. https://doi.org/10.1021/acs.orglett.1c02165
    8. Balu D. Dherange, Patrick Q. Kelly, Jordan P. Liles, Matthew S. Sigman, Mark D. Levin. Carbon Atom Insertion into Pyrroles and Indoles Promoted by Chlorodiazirines. Journal of the American Chemical Society 2021, 143 (30) , 11337-11344. https://doi.org/10.1021/jacs.1c06287
    9. Carla Obradors, Benjamin List. Azine Activation via Silylium Catalysis. Journal of the American Chemical Society 2021, 143 (18) , 6817-6822. https://doi.org/10.1021/jacs.1c03257
    10. Susmita Maity, Asish Bera, Ayantika Bhattacharjya, Pradip Maity. C–H functionalization of pyridines. Organic & Biomolecular Chemistry 2023, 21 (28) , 5671-5690. https://doi.org/10.1039/D3OB00799E
    11. Animesh Das, Biplab Maji. Direct C(3)5−H Polyfluoroarylation of 2‐Amino/alkoxy Pyridines Enabled by a Transient and Electron‐deficient Palladium Intermediate. Chemistry – A European Journal 2023, 8 https://doi.org/10.1002/chem.202301436
    12. Weidong Shang, Hongbao Sun, Wei Chen, Jie Liu. Diversification of pharmaceutical molecules via late-stage C(sp2)–H functionalization. Green Synthesis and Catalysis 2023, 4 (2) , 104-123. https://doi.org/10.1016/j.gresc.2022.12.007
    13. Mattia Failla, Giacomo W. Lombardo, Paolo Orlando, Daniele Fiorito, Elena Bombonato, Paolo Ronchi, Daniele Passarella, Valerio Fasano. Late‐Stage Functionalisation of Pyridine‐Containing Bioactive Molecules: Recent Strategies and Perspectives. European Journal of Organic Chemistry 2023, 26 (16) https://doi.org/10.1002/ejoc.202300074
    14. Mousa Soleymani, Saeedreza Emamian. A molecular electron density theory study on the Chichibabin reaction: The origin of regioselectivity. Journal of Molecular Graphics and Modelling 2022, 116 , 108240. https://doi.org/10.1016/j.jmgm.2022.108240
    15. Christopher B. Kelly, Rosaura Padilla‐Salinas. CH Functionalization via Chalcogen and Pnictogen Salts. 2022, 1-23. https://doi.org/10.1002/9783527834242.chf0211
    16. Valentina C. M. Gasser, Szabolcs Makai, Bill Morandi. The advent of electrophilic hydroxylamine-derived reagents for the direct preparation of unprotected amines. Chemical Communications 2022, 58 (72) , 9991-10003. https://doi.org/10.1039/D2CC02431D
    17. Dong Wang, Liqing Xu, Shixin Zheng, Xiaolong Yang. Transition‐Metal‐Free Regioselective Direct C2, C4 Difunctionalization and C2, C4, C6 Trifunctionalization of Pyridines. Advanced Synthesis & Catalysis 2022, 364 (16) , 2720-2728. https://doi.org/10.1002/adsc.202200261
    18. Gurjaspreet Singh, Diksha, Mohit, Suman, Sushma, Anita Devi, Sofia Gupta, Cristóbal Espinosa-Ruíz, María Angeles Esteban. Pyridine derived organosilatranes and their silica nanoparticles as “Turn-on” fluorescence sensor for selective detection of Zn2+ ions and their cytotoxicity evaluation. Inorganica Chimica Acta 2022, 537 , 120926. https://doi.org/10.1016/j.ica.2022.120926
    19. Yuzhou Wang, Yu Yu, Rongrong Xie, Ya-Nan Tian, Lingyu Huang, Shihai Lv, Xiaona Meng, Xiangfei Kong, Shiqing Li. Cu/Fe-mediated N (sp 2 )-arylation/alkenylation of pyridines with aryl-/alkenylboronic acids to yield versatile cationic materials. New Journal of Chemistry 2022, 46 (5) , 2320-2325. https://doi.org/10.1039/D1NJ05240C
    20. Byeongseok Kweon, Changha Kim, Seonyul Kim, Sungwoo Hong. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of O ‐Aryl Oxime Pyridinium Intermediates. Angewandte Chemie 2021, 133 (51) , 27017-27025. https://doi.org/10.1002/ange.202112364
    21. Byeongseok Kweon, Changha Kim, Seonyul Kim, Sungwoo Hong. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of O ‐Aryl Oxime Pyridinium Intermediates. Angewandte Chemie International Edition 2021, 60 (51) , 26813-26821. https://doi.org/10.1002/anie.202112364
    22. Peng-Ying Jiang, Kai-Fang Fan, Shaoyu Li, Shao-Hua Xiang, Bin Tan. Metal-free oxidative cross-coupling enabled practical synthesis of atropisomeric QUINOL and its derivatives. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22621-2
    23. Lucas Guillemard, Nikolaos Kaplaneris, Lutz Ackermann, Magnus J. Johansson. Late-stage C–H functionalization offers new opportunities in drug discovery. Nature Reviews Chemistry 2021, 5 (8) , 522-545. https://doi.org/10.1038/s41570-021-00300-6
    24. Myojeong Kim, Euna You, Seongjin Park, Sungwoo Hong. Divergent reactivity of sulfinates with pyridinium salts based on one- versus two-electron pathways. Chemical Science 2021, 12 (19) , 6629-6637. https://doi.org/10.1039/D1SC00776A
    25. Fei-Yu Zhou, Lei Jiao. Recent Developments in Transition-Metal-Free Functionalization and Derivatization Reactions of Pyridines. Synlett 2021, 32 (02) , 159-178. https://doi.org/10.1055/s-0040-1706552
    26. Jeanese C. Badenock. Six-membered ring systems: pyridines and benzo derivatives. 2021, 341-379. https://doi.org/10.1016/B978-0-323-98410-2.00012-6
    27. Dmitry I. Bugaenko, Marina A. Yurovskaya, Alexander V. Karchava. Reaction of Pyridine‐ N ‐Oxides with Tertiary sp 2 ‐ N ‐Nucleophiles: An Efficient Synthesis of Precursors for N ‐(Pyrid‐2‐yl)‐Substituted N ‐Heterocyclic Carbenes. Advanced Synthesis & Catalysis 2020, 362 (24) , 5777-5782. https://doi.org/10.1002/adsc.202001063
    28. Christopher B. Kelly, Rosaura Padilla-Salinas. Late stage C–H functionalization via chalcogen and pnictogen salts. Chemical Science 2020, 11 (37) , 10047-10060. https://doi.org/10.1039/D0SC03833D
    29. Johanna Heine, Alexander Hinz, Ullrich Jahn, Hajo Kries, Björn Meermann, Hatice Mutlu, Carl Christoph Tzschucke, Markus Zegke. Notizen aus der Chemie. Nachrichten aus der Chemie 2020, 68 (7-8) , 44-47. https://doi.org/10.1002/nadc.20204099048

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect