ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

FeO6 Octahedral Distortion Activates Lattice Oxygen in Perovskite Ferrite for Methane Partial Oxidation Coupled with CO2 Splitting

  • Xianhua Zhang
    Xianhua Zhang
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
  • Chunlei Pei
    Chunlei Pei
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
    More by Chunlei Pei
  • Xin Chang
    Xin Chang
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
    More by Xin Chang
  • Sai Chen
    Sai Chen
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
    More by Sai Chen
  • Rui Liu
    Rui Liu
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
    More by Rui Liu
  • Zhi-Jian Zhao
    Zhi-Jian Zhao
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
  • Rentao Mu
    Rentao Mu
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
    More by Rentao Mu
  • , and 
  • Jinlong Gong*
    Jinlong Gong
    Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City 350207, Fuzhou, P. R. China
    *[email protected]
    More by Jinlong Gong
Cite this: J. Am. Chem. Soc. 2020, 142, 26, 11540–11549
Publication Date (Web):June 3, 2020
https://doi.org/10.1021/jacs.0c04643
Copyright © 2020 American Chemical Society

    Article Views

    7598

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Modulating lattice oxygen in metal oxides that conducts partial oxidation of methane in balancing C–H activation and syngas selectivity remains challenging. This paper describes the discovery of distorting FeO6 octahedra in La1–xCexFeO3 (x = 0, 0.25 0.5, 0.75, 1) orthorhombic perovskites for the promotion of lattice oxygen activation. By combined electrical conductivity relaxation measurements and density functional theory calculations studies, this paper describes the enhancement of FeO6 octahedral distortion in La1–xCexFeO3 promoting their bulk oxygen mobility and surface oxygen exchange capability. Consequently, La0.5Ce0.5FeO3 with the highest FeO6 distortion achieves exceptional syngas productivity of ∼3 and 8 times higher than LaFeO3 and CeFeO3, respectively, in CH4 partial oxidation step with simultaneous high CO2 conversion (92%) in the CO2-splitting step at 850 °C. The results exemplify the feasibility to tailor the active lattice oxygen of perovskite by modulating the distortion of BO6 in ABO3, which ultimately influences their reaction performance in chemical looping processes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c04643.

    • Experimental details, computational details, and supporting data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 192 publications.

    1. Rongjiang Zhang, Gen Liu, Cunbao Huo, Jia Liu, Bo Zhang, Bolun Yang, Xiaoyong Tian, Zhiqiang Wu. Tailoring Catalytic and Oxygen Release Capability in LaFe1–xNixO3 to Intensify Chemical Looping Reactions at Medium Temperatures. ACS Catalysis 2024, 14 (10) , 7771-7787. https://doi.org/10.1021/acscatal.4c01386
    2. Yanhui Long, Xingzi Wang, Hai Zhang, Kaiyi Wang, Wee-Liat Ong, Annemie Bogaerts, Kongzhai Li, Chunqiang Lu, Xiaodong Li, Jianhua Yan, Xin Tu, Hao Zhang. Plasma Chemical Looping: Unlocking High-Efficiency CO2 Conversion to Clean CO at Mild Temperatures. JACS Au 2024, Article ASAP.
    3. Chunlei Pei, Sai Chen, Donglong Fu, Zhi-Jian Zhao, Jinlong Gong. Structured Catalysts and Catalytic Processes: Transport and Reaction Perspectives. Chemical Reviews 2024, 124 (6) , 2955-3012. https://doi.org/10.1021/acs.chemrev.3c00081
    4. Jong Won Baek, Il-Doo Kim. Advances in Perovskite Oxides for Chemiresistive Sensors. Accounts of Materials Research 2023, 4 (12) , 1108-1120. https://doi.org/10.1021/accountsmr.3c00206
    5. Chen Liu, Yan Ding, Yanxue Guan, Jilin Tang, Chunhuan Jiang, Han Gao, Jianan Xu, Jia Zhao, Lehui Lu. Combination of Rapid Intrinsic Activity Measurements and Machine Learning as a Screening Approach for Multicomponent Electrocatalysts. ACS Applied Materials & Interfaces 2023, 15 (36) , 42532-42540. https://doi.org/10.1021/acsami.3c07442
    6. Xiaojing Liu, Jiupai Ni, Chengsheng Ni. In Situ Generation of Pseudorutile Oxide as the Cathode for Direct Electrolysis of CO2. Inorganic Chemistry 2023, 62 (36) , 14748-14756. https://doi.org/10.1021/acs.inorgchem.3c02191
    7. Liuqing Yang, Zirui Zhao, Chenyi Cui, Junshe Zhang, Jinjia Wei. Effect of Nickel and Cobalt Doping on the Redox Performance of SrFeO3−δ toward Chemical Looping Dry Reforming of Methane. Energy & Fuels 2023, 37 (16) , 12045-12057. https://doi.org/10.1021/acs.energyfuels.3c01149
    8. Renyi Wang, Juping Zhang, Dongfang Li, Kongzhai Li, Hua Wang, Xing Zhu. Lattice Oxygen Regulation of Perovskites for Chemical Looping Oxidative Dehydrogenation of Ethylbenzene to Styrene. ACS Sustainable Chemistry & Engineering 2023, 11 (24) , 8948-8957. https://doi.org/10.1021/acssuschemeng.3c01141
    9. Rui Yang, Zhenghong Bao, Yifan Sun. Probing and Leveraging the Structural Heterogeneity of Nanomaterials for Enhanced Catalysis. ACS Nanoscience Au 2023, 3 (2) , 140-152. https://doi.org/10.1021/acsnanoscienceau.2c00057
    10. Steven Angel, Michael Braun, Baris Alkan, Joachim Landers, Soma Salamon, Heiko Wende, Corina Andronescu, Christof Schulz, Hartmut Wiggers. Spray-Flame Synthesis of LaFexCo1–xO3 (x = 0.2, 0.3) Perovskite Nanoparticles for Oxygen Evolution Reaction in Water Splitting: Effect of Precursor Chemistry (Acetates and Nitrates). The Journal of Physical Chemistry A 2023, 127 (11) , 2564-2576. https://doi.org/10.1021/acs.jpca.2c06601
    11. Lu Jia, Matthew D. Lloyd, Martin R. Lees, Limin Huang, Richard I. Walton. Limits of Solid Solution and Evolution of Crystal Morphology in (La1–xREx)FeO3 Perovskites by Low Temperature Hydrothermal Crystallization. Inorganic Chemistry 2023, 62 (11) , 4503-4513. https://doi.org/10.1021/acs.inorgchem.2c04325
    12. Josef Heveling. La-Doped Alumina, Lanthanum Aluminate, Lanthanum Hexaaluminate, and Related Compounds: A Review Covering Synthesis, Structure, and Practical Importance. Industrial & Engineering Chemistry Research 2023, 62 (6) , 2353-2386. https://doi.org/10.1021/acs.iecr.2c03007
    13. Qinyang Zhao, Xinglin Hou, Jinling Wang, Dang-guo Cheng, Fengqiu Chen, Xiaoli Zhan. Engineering Specific Mo–O Bond Stretching to Activate Lattice Oxygen in V-Doped Bi2MoO6 for Enhanced Oxidative Dehydrogenation of 1-Butene. Industrial & Engineering Chemistry Research 2023, 62 (1) , 329-340. https://doi.org/10.1021/acs.iecr.2c03848
    14. Ruixue Cui, Qing Yuan, Chao Zhang, Xuan Yang, Zhouru Ji, Zhaolin Shi, Xiaoqian Han, Yunying Wang, Jiqing Jiao, Tongbu Lu. Revealing the Behavior of Interfacial Water in Te-Doped Bi via Operando Infrared Spectroscopy for Improving Electrochemical CO2 Reduction. ACS Catalysis 2022, 12 (18) , 11294-11300. https://doi.org/10.1021/acscatal.2c03369
    15. Felix Donat, Agnieszka Kierzkowska, Christoph R. Müller. Chemical Looping Partial Oxidation of Methane: Reducing Carbon Deposition through Alloying. Energy & Fuels 2022, 36 (17) , 9780-9784. https://doi.org/10.1021/acs.energyfuels.2c01345
    16. Kai Yuan, Yuhao Wang, Kongzhai Li, Xing Zhu, Hua Wang, Lihong Jiang, Yonggang Wei, Shaoyun Shan, Yane Zheng. LaFe0.8Co0.15Cu0.05O3 Supported on Silicalite-1 as a Durable Oxygen Carrier for Chemical Looping Reforming of CH4 Coupled with CO2 Reduction. ACS Applied Materials & Interfaces 2022, 14 (34) , 39004-39013. https://doi.org/10.1021/acsami.2c12700
    17. Weiping Yang, Haochen Yu, Beibei Wang, Xuemin Wang, Hao Zhang, Da Lei, Lan-Lan Lou, Kai Yu, Shuangxi Liu. Leveraging Pt/Ce1–xLaxO2−δ To Elucidate Interfacial Oxygen Vacancy Active Sites for Aerobic Oxidation of 5-Hydroxymethylfurfural. ACS Applied Materials & Interfaces 2022, 14 (33) , 37667-37680. https://doi.org/10.1021/acsami.2c07065
    18. Xue Xia, Wenxi Chang, Shuwen Cheng, Chuande Huang, Yue Hu, Weibin Xu, Li Zhang, Bo Jiang, Zhehao Sun, Yanyan Zhu, Xiaodong Wang. Oxygen Activity Tuning via FeO6 Octahedral Tilting in Perovskite Ferrites for Chemical Looping Dry Reforming of Methane. ACS Catalysis 2022, 12 (12) , 7326-7335. https://doi.org/10.1021/acscatal.2c00920
    19. Hui Chang, Gong Cheng, Ka-Ke Zhu, Zhi-Jun Sui, De Chen, Xing-Gui Zhou, Yi-An Zhu. A Mechanistic Study of Oxygen Replenishment of Reduced Perovskites in Chemical Looping Redox Reactions. The Journal of Physical Chemistry C 2022, 126 (17) , 7431-7445. https://doi.org/10.1021/acs.jpcc.2c00509
    20. Jun Hu, Haobo Li, Shiyi Chen, Wenguo Xiang. Enhanced Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Steam Reforming of Methane with Different Mg Ratios. Industrial & Engineering Chemistry Research 2022, 61 (2) , 1022-1031. https://doi.org/10.1021/acs.iecr.1c03933
    21. Yujia Han, Ming Tian, Chaojie Wang, Yu Kang, Leilei Kang, Yang Su, Chuande Huang, Teng Zong, Jian Lin, Baolin Hou, Xiaoli Pan, Xiaodong Wang. Highly Active and Anticoke Ni/CeO2 with Ultralow Ni Loading in Chemical Looping Dry Reforming via the Strong Metal–Support Interaction. ACS Sustainable Chemistry & Engineering 2021, 9 (51) , 17276-17288. https://doi.org/10.1021/acssuschemeng.1c06079
    22. Jinhui Feng, Ning Li, Yu Du, Xiang Ren, Xueying Wang, Xuejing Liu, Hongmin Ma, Qin Wei. Ultrasensitive Double-Channel Microfluidic Biosensor-Based Cathodic Photo-electrochemical Analysis via Signal Amplification of SOD-Au@PANI for Cardiac Troponin I Detection. Analytical Chemistry 2021, 93 (42) , 14196-14203. https://doi.org/10.1021/acs.analchem.1c02922
    23. Kai Yuan, Yane Zheng, Kongzhai Li, Zhiyuan Yang, Hua Wang, Yaming Wang, Lihong Jiang, Xing Zhu, Yonggang Wei, Yuhao Wang. Enhanced Resistance to Carbon Deposition over LaxCe1–xFexNi1–xO3 Oxygen Carrier for Chemical Looping Reforming. Energy & Fuels 2021, 35 (19) , 15867-15878. https://doi.org/10.1021/acs.energyfuels.1c01932
    24. Hyun Suk Lim, Yikyeom Kim, Dohyung Kang, Minbeom Lee, Ayeong Jo, Jae W. Lee. Fundamental Aspects of Enhancing Low-Temperature CO2 Splitting to CO on a Double La2NiFeO6 Perovskite. ACS Catalysis 2021, 11 (19) , 12220-12231. https://doi.org/10.1021/acscatal.1c03398
    25. Li Huang, Rui Gao, Qizan Chen, Yunsheng Qiu, Lirong Zheng, Zhongbo Hu, Xiangfeng Liu. Synergy of Oxygen-Deficient LaFeO3−δ and N-Doped Reduced Graphene Oxide in Oxygen Reduction Reaction in Alkaline Solutions. ACS Applied Energy Materials 2021, 4 (9) , 8745-8754. https://doi.org/10.1021/acsaem.1c00404
    26. Yao Chai, Yanmei Chen, Jinni Shen, Mengmeng Ni, Bing Wang, Dongmiao Li, Zizhong Zhang, Xuxu Wang. Distortion of the Coordination Structure and High Symmetry of the Crystal Structure in In4SnS8 Microflowers for Enhancing Visible-Light Photocatalytic CO2 Reduction. ACS Catalysis 2021, 11 (17) , 11029-11039. https://doi.org/10.1021/acscatal.1c02937
    27. Hong-Yan Ma, Gui-Chang Wang. A First-Principles Study of the Mechanism and Site Requirements for CO2 Methanation over CeO2-Supported Ru Catalyst. The Journal of Physical Chemistry C 2021, 125 (33) , 18161-18169. https://doi.org/10.1021/acs.jpcc.1c04231
    28. Leandro M. Acuña, Marcelo D. Cabezas, Rodolfo O. Fuentes, Fernando F. Muñoz. Strong Co–Mo Interaction behind Unexpected Physicochemical Properties in SrMo0.9Co0.1O3−δ Perovskite. The Journal of Physical Chemistry C 2021, 125 (31) , 17342-17354. https://doi.org/10.1021/acs.jpcc.1c04006
    29. Bin Zheng, Tao Gan, Shaozhen Shi, Junhu Wang, Wenxiang Zhang, Xin Zhou, Yongcun Zou, Wenfu Yan, Gang Liu. Exsolution of Iron Oxide on LaFeO3 Perovskite: A Robust Heterostructured Support for Constructing Self-Adjustable Pt-Based Room-Temperature CO Oxidation Catalysts. ACS Applied Materials & Interfaces 2021, 13 (23) , 27029-27040. https://doi.org/10.1021/acsami.1c04836
    30. Jun Hyuk Kim, Jun Kyu Kim, Jiapeng Liu, Antonino Curcio, Ji-Soo Jang, Il-Doo Kim, Francesco Ciucci, WooChul Jung. Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS Nano 2021, 15 (1) , 81-110. https://doi.org/10.1021/acsnano.0c07105
    31. Bangxin Li, Shuai He, Jibiao Li, Xiangling Yue, John T.S. Irvine, Deti Xie, Jiupai Ni, Chengsheng Ni. A Ce/Ru Codoped SrFeO3−δ Perovskite for a Coke-Resistant Anode of a Symmetrical Solid Oxide Fuel Cell. ACS Catalysis 2020, 10 (24) , 14398-14409. https://doi.org/10.1021/acscatal.0c03554
    32. Yan Liu, Lang Qin, Jianhua Pan, Yu-Yen Chen, Josh W. Goetze, Dikai Xu, Jonathan A. Fan, Liang-Shih Fan. SBA-16-Mediated Nanoparticles Enabling Accelerated Kinetics in Cyclic Methane Conversion to Syngas at Low Temperatures. ACS Applied Energy Materials 2020, 3 (10) , 9833-9840. https://doi.org/10.1021/acsaem.0c01495
    33. Peishen Li, Ziang Zhou, Qiang Wang, Ming Guo, Shaowei Chen, Jingxiang Low, Ran Long, Wen Liu, Peiren Ding, Yunyun Wu, Yujie Xiong. Visible-Light-Driven Nitrogen Fixation Catalyzed by Bi5O7Br Nanostructures: Enhanced Performance by Oxygen Vacancies. Journal of the American Chemical Society 2020, 142 (28) , 12430-12439. https://doi.org/10.1021/jacs.0c05097
    34. Yumei Li, Bingqian Deng, Jiexin Wang, Jialong Li, Jian Fan, Jianhong Han. Effects of Mo doping on the structure, adsorption performance, and photocatalytic activity of LaFeO3 nanoparticles: Experimental and DFT studies. Separation and Purification Technology 2024, 347 , 127304. https://doi.org/10.1016/j.seppur.2024.127304
    35. Shuang Liang, Yanfen Liao, Hailong Yang, Tongyu Zhang, Xiaoqian Ma. Inhibition strategies for phase separation of iron-based oxygen carriers in chemical looping gasification- enhanced oxygen transport efficiency through oxide-support interactions. Separation and Purification Technology 2024, 343 , 127173. https://doi.org/10.1016/j.seppur.2024.127173
    36. Yuelun Li, Dong Tian, Lei jiang, Huicong Zuo, LiNan Huang, Mingyi Chen, Jianchun Zuo, Hua Wang, Kongzhai Li. Optimizing the sulfur-resistance and activity of perovskite oxygen carrier for chemical looping dry reforming of methane. Journal of Energy Chemistry 2024, 96 , 259-271. https://doi.org/10.1016/j.jechem.2024.04.042
    37. Guanghao Wang, Zhishan Li, Yiguang Gai, Zonghao Xu, Wenli Kang, Zhouhang Li, Hua Wang, Kongzhai Li. In situ exsolution of Pt nanoparticles on low Pt-substituted A-site deficient perovskite for efficient CO oxidation. Applied Surface Science 2024, 664 , 160264. https://doi.org/10.1016/j.apsusc.2024.160264
    38. Zewei Zhang, Mingxuan Zhong, Chenxuanzi Wang, Yongcheng Cai, Bo Xiao, Tingting Xu, Xun Wang. Chemical looping reforming with water splitting (CLRWS) for syngas and hydrogen coproduction using the ternary metal-oxides (Ca-Fe-Cu–O) as oxygen carriers. Fuel 2024, 368 , 131640. https://doi.org/10.1016/j.fuel.2024.131640
    39. Zi-Hua Niu, Jie Yang, Ze-Yi Zhou, Ming Lei, Zhi-Jun Sui, De Chen, Xing-Gui Zhou, Yi-An Zhu. ABO3 perovskite catalyst screening for chemical looping methane partial oxidation from descriptor-based microkinetic analysis. Chemical Engineering Science 2024, 292 , 119992. https://doi.org/10.1016/j.ces.2024.119992
    40. Kang Xu, Hua Zhang, Yangsen Xu, Dongliang Liu, Feng Zhu, Fan He, Ying Liu, Haobing Wang, Yu Chen. Phase engineering of a donor-doped air electrode for reversible protonic ceramic electrochemical cells. Advanced Powder Materials 2024, 3 (3) , 100187. https://doi.org/10.1016/j.apmate.2024.100187
    41. Haiyin Zhan, Ruiren Zhou, Kewang Liu, Zhihui Ma, Pengfei Wang, Sihui Zhan, Qixing Zhou. Progress and challenges of photocatalytic reduction of CO2 with g-C3N4-based photocatalysts in the context of carbon neutrality. Science China Materials 2024, 123 https://doi.org/10.1007/s40843-024-2900-5
    42. Da Song, Tao Long, Cuiqin Li, Yang Li, Mingyang Fan, Yonghao Lu, Yuchao Zhou, Haitao Chen, Yan Lin, Zhen Huang, Fang He. Micro-structure change and crystal-structure modulated of oxygen carriers for chemical looping: Controlling local chemical environment of lattice oxygen. Fuel 2024, 364 , 131087. https://doi.org/10.1016/j.fuel.2024.131087
    43. Yuanjie Xu, Rong Chen, Hongqiao Lin, Qian Lv, Bo Liu, Lizhi Wu, Li Tan, Yihu Dai, Xupeng Zong, Yu Tang. Constructing the Ni-O-Ce interface to enhance the activity and stability for partial oxidation of methane to syngas under high temperatures. Journal of Catalysis 2024, 47 , 115545. https://doi.org/10.1016/j.jcat.2024.115545
    44. Hao Zheng, Atta Ullah, Xubin Zhang, Liang Zeng. Ni-modified La2Ce2O7 oxygen carriers for chemical looping partial oxidation of methane. International Journal of Hydrogen Energy 2024, 7 https://doi.org/10.1016/j.ijhydene.2024.05.213
    45. Tong Liu, Hongfei Zheng, Hongsheng Wang, Jian Wang, Zhaolong Wang, Hui Kong. A review of methane-driven two-step thermochemical cycle hydrogen production. Journal of Cleaner Production 2024, 62 , 142668. https://doi.org/10.1016/j.jclepro.2024.142668
    46. Xianhua Zhang, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Towards green and efficient chemical looping ammonia synthesis: design principles and advanced redox catalysts. Energy & Environmental Science 2024, 17 (7) , 2381-2405. https://doi.org/10.1039/D4EE00037D
    47. Tingting Yang, Ran Luo, Xiangcheng Shi, Xianhua Zhang, Shican Wu, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Achieving surface and bulk rate matching for chemical looping partial oxidation of methane by modulating oxygen transport. Science China Materials 2024, 67 (4) , 1217-1224. https://doi.org/10.1007/s40843-023-2853-0
    48. Zeling Zhou, Chao Li, Junfeng Zhang, Qiliang Gao, Jiahao Wang, Qingde Zhang, Yizhuo Han. Dry Reforming of Methane over Pyrochlore-Type La2Ce2O7-Supported Ni Catalyst: Effect of Particle Size of Support. Molecules 2024, 29 (8) , 1871. https://doi.org/10.3390/molecules29081871
    49. Ao Zhu, Dongfang Li, Tao Zhu, Xing Zhu. Tailored SrFeO3-δ for chemical looping dry reforming of methane. Green Chemical Engineering 2024, 361 https://doi.org/10.1016/j.gce.2024.04.003
    50. Xin Yang, Zizhuo Wang, Guoqiang Li, Yue Zhou, Chongzheng Sun, Lei Bi. Sc-doped Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes for protonic ceramic fuel cells. Ceramics International 2024, 35 https://doi.org/10.1016/j.ceramint.2024.03.085
    51. Zheng Weng, Luohua Liu, Yang Hu, Yicheng Wei, Pengfei Da, Zelong Wu, Zhaori Mu, Pinxian Xi, Chun‐Hua Yan. Significance of Engineering the MnO 6 Octahedral Units to Promote the Oxygen Reduction Reaction of Perovskite Oxides. Advanced Materials 2024, 36 (13) https://doi.org/10.1002/adma.202311102
    52. Yuxue Chang, Guang Li, Kang Li, Dexu Li, Na Li, Shuqi Ma, Yulong Zhang. Oxygen carrier prepared by solvent-free grinding and biomass based oxygenates for chemical looping oxidative dehydrogenation of isobutane. Energy 2024, 291 , 130340. https://doi.org/10.1016/j.energy.2024.130340
    53. Pengfei Wang, Zhiyong Zhao, Lijun Zhang, Sihui Zhan, Yi Li. Revealing the Role of Binary Distortion in PMS Activation over Spinel toward Efficient New Pollutants Removal. Advanced Functional Materials 2024, 56 https://doi.org/10.1002/adfm.202316542
    54. Jiangyong Yuan, Chunqiang Lu, Zhenhua Gu, Jun Cai, Han Zhao, Danyang Li, Lei Jiang, Haiwen Xu, Zhi qiang Li, Kongzhai Li. Ni-Co catalyst-assisted carbon cycling for CH4-CO2 reforming. Applied Catalysis B: Environmental 2024, 341 , 123318. https://doi.org/10.1016/j.apcatb.2023.123318
    55. Qiao Lan, Yilong Hua, Yufeng Li, Yueyuan Gu, Lei Bi. A high-performing and stable Pr0.25Nd0.25Ca0.5MnO3-δ cathode for protonic ceramic fuel cells. Ceramics International 2024, 50 (4) , 7202-7209. https://doi.org/10.1016/j.ceramint.2023.12.024
    56. Yanru Yin, Yifan Wang, Nan Yang, Lei Bi. Unveiling the importance of the interface in nanocomposite cathodes for proton‐conducting solid oxide fuel cells. Exploration 2024, 15 https://doi.org/10.1002/EXP.20230082
    57. Keyao Wang, Yinghui Cui, Jiupai Ni, Chengsheng Ni. Cu doping enhanced the performance of BaFe0.8Zr0.1Y0.1O3-δ cathode for a proton-conducting solid oxide fuel cell at low temperature. International Journal of Hydrogen Energy 2024, 57 , 1316-1324. https://doi.org/10.1016/j.ijhydene.2024.01.089
    58. Weixiao Ding, Kun Zhao, Shican Jiang, Zhen Huang, Fang He. Ca2MnO4-layered perovskite modified by NaNO3 for chemical looping oxidative dehydrogenation of ethane to ethylene. Chinese Journal of Chemical Engineering 2024, 3 https://doi.org/10.1016/j.cjche.2023.12.021
    59. Lihai Ma, Wenlong Song, Yaqin Xing, Kangzhou Wang, Xinhua Gao, Qingxiang Ma, Jianli Zhang, Jingjing Ma, Qingjie Guo. Gd doped LaFeCuO 3 perovskites for enhanced olefin selectivity in CO 2 hydrogenation. New Journal of Chemistry 2024, 48 (4) , 1596-1606. https://doi.org/10.1039/D3NJ04905A
    60. Allan J. M. Araújo, Vanessa C. D. Graça, Rafael A. Raimundo, Antonio C. L. Filho, Daniel A. Macedo, Francisco J. A. Loureiro. A new layered barium cobaltite electrode for protonic ceramic cells. Journal of Materials Chemistry A 2024, 12 (2) , 840-853. https://doi.org/10.1039/D3TA06438G
    61. T.J. Siang, A.A. Jalil, S.Y. Liew, A.H.K. Owgi, A.F.A. Rahman. A review on state-of-the-art catalysts for methane partial oxidation to syngas production. Catalysis Reviews 2024, 66 (1) , 343-399. https://doi.org/10.1080/01614940.2022.2072450
    62. Wenji Ruan, Menglin Wu, Yuanhua Xia, Jiupai Ni, Chengsheng Ni. High La/Sr ratio in La0.67Sr0.33Fe0.67Ti0.33O3-δ cathode induced a controlled Fe0 exsolution for CO2 electrolysis. Journal of Alloys and Compounds 2024, 970 , 172628. https://doi.org/10.1016/j.jallcom.2023.172628
    63. Yuelun Li, Mingyi Chen, Lei Jiang, Dong Tian, Kongzhai Li. Perovskites as oxygen storage materials for chemical looping partial oxidation and reforming of methane. Physical Chemistry Chemical Physics 2024, 12 https://doi.org/10.1039/D3CP04626E
    64. Alison P. Dantas, Rafael A. Raimundo, Pedro F.C. Neto, Caio M.S. Lopes, Jakeline R.D. Santos, Francisco J.A. Loureiro, Thiago O. Pereira, Marco A. Morales, Eliton S. Medeiros, Daniel A. Macedo. Copper oxide nanofibers obtained by solution blow spinning as catalysts for oxygen evolution reaction. Ceramics International 2024, 7 https://doi.org/10.1016/j.ceramint.2024.01.213
    65. Yufeng Li, Shuai Wu, Chao Wang, Dan Du, Yueyuan Gu, Lei Bi. Sc-doping strategy for LaNi0.5Fe0.5O3-δ cathode to boost the performance of proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy 2024, 50 , 124-133. https://doi.org/10.1016/j.ijhydene.2023.08.075
    66. Xuan Zhu, Yan Liu, Menglin Wang, Li Zhang, Qiaoli Li, Entao Zhang, Hongfen Mo, Yuan Gao, Chenyu Xu, Yanwei Zhang. Boosting solar photothermal synergy for efficient overall water splitting based on Mg, Al codoped and Rh/Cr2O3/CoOOH coloaded SrTiO3. Chemical Engineering Journal 2024, 479 , 147636. https://doi.org/10.1016/j.cej.2023.147636
    67. V. Sherlin Vinita, S. C. Jeyakumar, C. S. Biju. Sol-gel synthesis, structural, morphological, X-ray photoelectron spectroscopy and magnetic properties of Cd doped BaTiO 3 nanostructures. Molecular Crystals and Liquid Crystals 2023, 767 (1) , 106-114. https://doi.org/10.1080/15421406.2023.2228644
    68. Yujia Han, Ming Tian, Chaojie Wang, Teng Zong, Xiaodong Wang. High-entropy spinel oxide (Fe0.2Mg0.2Mn0.1Al0.3Cr0.2)3O4 as a highly active and stable redox material for methane driven solar thermochemical water splitting. Applied Catalysis B: Environmental 2023, 339 , 123096. https://doi.org/10.1016/j.apcatb.2023.123096
    69. Dong Zhang, Jian Zhou, Yao Luo, Yao Wang, Xiaoyu Zhang, Xi Chen, Tong Liu, Mingyue Ding. Robust cobalt-free perovskite type electrospun nanofiber cathode for efficient electrochemical carbon dioxide reduction reaction. Journal of Power Sources 2023, 587 , 233705. https://doi.org/10.1016/j.jpowsour.2023.233705
    70. Jiyun Park, Boyuan Xu, Jie Pan, Dawei Zhang, Stephan Lany, Xingbo Liu, Jian Luo, Yue Qi. Accurate prediction of oxygen vacancy concentration with disordered A-site cations in high-entropy perovskite oxides. npj Computational Materials 2023, 9 (1) https://doi.org/10.1038/s41524-023-00981-1
    71. Huicong Zuo, Chunqiang Lu, Lei Jiang, Xianming Cheng, Zhiqiang Li, Yuelun Li, Danyang Li, Hua Wang, Kongzhai Li. Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept. Chemical Engineering Journal 2023, 477 , 146870. https://doi.org/10.1016/j.cej.2023.146870
    72. Yuming Gao, Bo Jiang, Xiaojing Shi, Jiahui He, Wang Si-ma, Chuande Huang, Lin Li, Dawei Tang. A-site vacancy induced electronic engineering of perovskite for synergistic modulation of redox activity and magnetocaloric effect. Nano Energy 2023, 117 , 108912. https://doi.org/10.1016/j.nanoen.2023.108912
    73. Chi Cao, Jinshuo Li, Yang Hu, Lin Zhang, Wensheng Yang. Mechanism investigation of A-site doping on modulating electronic band structure and photocatalytic performance towards CO2 reduction of LaFeO3 perovskite. Nano Research 2023, 262 https://doi.org/10.1007/s12274-023-6285-7
    74. Tao Liu, Chunlei Pei, Tingting Yang, Xianhua Zhang, Rui Liu, Zhi-Jian Zhao, Jinlong Gong. Promoted oxygen release from copper-ceria interfacial sites for selective hydrogen production. Applied Catalysis B: Environmental 2023, 337 , 123014. https://doi.org/10.1016/j.apcatb.2023.123014
    75. Rui Zhou, Yueyuan Gu, Hailu Dai, Yangsen Xu, Lei Bi. In-situ exsolution of PrO2−x nanoparticles boost the performance of traditional Pr0.5Sr0.5MnO3-δ cathode for proton-conducting solid oxide fuel cells. Journal of the European Ceramic Society 2023, 43 (14) , 6612-6621. https://doi.org/10.1016/j.jeurceramsoc.2023.06.054
    76. Kang Xu, Hua Zhang, Wanqing Deng, Ying Liu, Yong Ding, Yucun Zhou, Meilin Liu, Yu Chen. Self-hydrating of a ceria-based catalyst enables efficient operation of solid oxide fuel cells on liquid fuels. Science Bulletin 2023, 68 (21) , 2574-2582. https://doi.org/10.1016/j.scib.2023.09.012
    77. Yufeng Li, Yangsen Xu, Yanru Yin, Hailu Dai, Yueyuan Gu, Lei Bi. Entropy engineering design of high-performing lithiated oxide cathodes for proton-conducting solid oxide fuel cells. Journal of Advanced Ceramics 2023, 12 (11) , 2017-2031. https://doi.org/10.26599/JAC.2023.9220804
    78. Jiahui He, Qian Yang, Zhe Song, Wenxi Chang, Chuande Huang, Yanyan Zhu, Xiaoxun Ma, Xiaodong Wang. Improving the carbon resistance of iron-based oxygen carrier for hydrogen production via chemical looping steam methane reforming: A review. Fuel 2023, 351 , 128864. https://doi.org/10.1016/j.fuel.2023.128864
    79. Weizhi Shi, Rongjun Zhang, Hongwei Li, Yu Wu, Sam Toan, Zhao Sun, Zhiqiang Sun. Modulating Mxene‐Derived Ni‐Mo m ‐Mo 2‐m TiC 2 T x Structure for Intensified Low‐Temperature Ethanol Reforming. Advanced Energy Materials 2023, 13 (40) https://doi.org/10.1002/aenm.202301920
    80. Bingxue Wu, Jian Zhang, Zhi Yang, Xuanlin Lu, Xin Zhao, Wen Liu, Jiaxuan Chen, Yicheng Zhao, Yongdan Li. Achieve a high electrochemical oxidation activity by a self-assembled cermet composite anode with low Ni content for solid oxide fuel cells. Journal of Solid State Electrochemistry 2023, 27 (10) , 2727-2736. https://doi.org/10.1007/s10008-023-05573-z
    81. Jiangping Liu, Hong Su, Yanan Hu, Chenhao Gong, Jichang Lu, Dedong He, Wenjie Zhu, Dingkai Chen, Xiaohua Cao, Jun Li, Sasho Gligorovski, Yongming Luo. Highly efficient degradation of sulfur-containing volatile organic compounds by amorphous MnO2 at room temperature: Implications for controlling odor pollutants. Applied Catalysis B: Environmental 2023, 334 , 122877. https://doi.org/10.1016/j.apcatb.2023.122877
    82. Lifei Wei, Rui Han, Shuang Xing, Yang Wang, Zhiyong Li, Qingling Liu. Calcium-looping coupling methane partial oxidation and dry reforming process for integrated CO2 capture and conversion: Regulable H2/CO molar ratio and excellent coke deposition-resistant. Chemical Engineering Journal 2023, 474 , 145833. https://doi.org/10.1016/j.cej.2023.145833
    83. Liuqing Yang, Junshe Zhang, Jinjia Wei. Highly active La0.35Sr0.35Ba0.3Fe1-xCoxO3 oxygen carriers with the anchored nanoparticles for chemical looping dry reforming of methane. Fuel 2023, 349 , 128771. https://doi.org/10.1016/j.fuel.2023.128771
    84. Weijie Li, Changxin Li, Yanfen Liao, Shuang Liang, Xiaoqian Ma. Highly efficient and durable syngas production over one-step synthesized synergistic oxygen carriers in biomass chemical looping gasification. Bioresource Technology 2023, 386 , 129553. https://doi.org/10.1016/j.biortech.2023.129553
    85. Yufeng Li, Shoufu Yu, Hailu Dai, Yangsen Xu, Lei Bi. TiO2-induced electronic change in traditional La0.5Sr0.5MnO3−δ cathode allows high performance of proton-conducting solid oxide fuel cells. Science China Materials 2023, 66 (9) , 3475-3483. https://doi.org/10.1007/s40843-023-2519-9
    86. Weijie Li, Changxin Li, Yanfen Liao, Shuang Liang, Xiaoqian Ma. Enhanced oxygen activity of LaFeO3 oxygen carriers in biomass chemical looping gasification coupled with CO2/H2O splitting by fragmented flaky structure. Chemical Engineering Journal 2023, 471 , 144457. https://doi.org/10.1016/j.cej.2023.144457
    87. Shoufu Yu, Yuning Li, Yu Wang, Yanru Yin, Qiucai Zhang. Modifying La0.5Sr0.5MnO3 with the U element leads to the formation of nanocomposites as a cathode for proton-conducting SOFCs. Ceramics International 2023, 49 (18) , 30905-30913. https://doi.org/10.1016/j.ceramint.2023.07.023
    88. Huanhuan Liu, Yanxu Chen, Huiyi Li, Guanglin Wan, Yafei Feng, Wentao Wang, Chong Xiao, Genqiang Zhang, Yi Xie. Construction of Asymmetrical Dual Jahn–Teller Sites for Photocatalytic CO 2 Reduction. Angewandte Chemie 2023, 135 (31) https://doi.org/10.1002/ange.202304562
    89. Huanhuan Liu, Yanxu Chen, Huiyi Li, Guanglin Wan, Yafei Feng, Wentao Wang, Chong Xiao, Genqiang Zhang, Yi Xie. Construction of Asymmetrical Dual Jahn–Teller Sites for Photocatalytic CO 2 Reduction. Angewandte Chemie International Edition 2023, 62 (31) https://doi.org/10.1002/anie.202304562
    90. Qian Yang, Lihua Chen, Nannan Jin, Yanyan Zhu, Jiahui He, Peijie Zhao, Chuande Huang, Liping Wei, Xiaoxun Ma, Xiaodong Wang. Boosted carbon resistance of ceria-hexaaluminate by in-situ formed CeFexAl1−xO3 as oxygen pool for chemical looping dry reforming of methane. Applied Catalysis B: Environmental 2023, 330 , 122636. https://doi.org/10.1016/j.apcatb.2023.122636
    91. Xian Yao, Xianhua Zhang, Rui Liu, Chunlei Pei, Zhi-Jian Zhao, Jinlong Gong. Oxygen activity regulation over LaNiO3 perovskites by Ti substitution for chemical looping partial oxidation of methane. Chemical Engineering Science 2023, 278 , 118911. https://doi.org/10.1016/j.ces.2023.118911
    92. I.A. Opeida, R.B. Sheparovych, W.Ya. Suprun. Kinetic analysis of aerobic oxidation catalyzed by a hybrid heterogeneous-homogeneous system containing supported Mn and V oxides and N-hydroxyphthalimide. Journal of Catalysis 2023, 424 , 197-210. https://doi.org/10.1016/j.jcat.2023.04.016
    93. Lele Wang, Yueyuan Gu, Hailu Dai, Yanru Yin, Lei Bi. Sr and Fe co-doped Ba2In2O5 as a new proton-conductor-derived cathode for proton-conducting solid oxide fuel cells. Journal of the European Ceramic Society 2023, 43 (10) , 4573-4579. https://doi.org/10.1016/j.jeurceramsoc.2023.03.035
    94. Kazuhiko Amakawa, Jonathan M. Mauß, Philipp Müller, Bernd Hinrichsen, Sabine Hirth, Armin Bader, Stephen W. T. Price, Simon D. M. Jacques, Josef Macht. Architecture of industrial Bi-Mo-Co-Fe-K-O propene oxidation catalysts. Science Advances 2023, 9 (28) https://doi.org/10.1126/sciadv.adh5331
    95. Lele Wang, Liling Zhang, Shoufu Yu, Yueyuan Gu, Lei Bi. Microwave-induced oxygen vacancy-rich surface boosts the cathode performance for proton-conducting solid oxide fuel cells. Ceramics International 2023, 49 (13) , 22608-22616. https://doi.org/10.1016/j.ceramint.2023.03.286
    96. Hyeon Seok Kim, Yikyeom Kim, Hyun Suk Lim, Hyunjung Kim, Jae W. Lee. Surface enrichment of lanthanum on Co3O4 for stable chemical looping combustion. Journal of CO2 Utilization 2023, 73 , 102532. https://doi.org/10.1016/j.jcou.2023.102532
    97. Xianhua Zhang, Rui Liu, Tao Liu, Chunlei Pei, Jinlong Gong. Redox catalysts for chemical looping methane conversion. Trends in Chemistry 2023, 5 (7) , 512-525. https://doi.org/10.1016/j.trechm.2023.03.001
    98. Yikyeom Kim, Hyeon Seok Kim, Dohyung Kang, Minkyu Kim, Jae W. Lee. Enhanced redox performance of LaFeO3 perovskite through in-situ exsolution of iridium nanoparticles for chemical looping steam methane reforming. Chemical Engineering Journal 2023, 468 , 143662. https://doi.org/10.1016/j.cej.2023.143662
    99. Kang Xiao, Yifan Wang, Peiyuan Wu, Liping Hou, Zhao‐Qing Liu. Activating Lattice Oxygen in Spinel ZnCo 2 O 4 through Filling Oxygen Vacancies with Fluorine for Electrocatalytic Oxygen Evolution. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202301408
    100. Kang Xiao, Yifan Wang, Peiyuan Wu, Liping Hou, Zhao‐Qing Liu. Activating Lattice Oxygen in Spinel ZnCo 2 O 4 through Filling Oxygen Vacancies with Fluorine for Electrocatalytic Oxygen Evolution. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202301408
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect