ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Controlling the S1 Energy Profile by Tuning Excited-State Aromaticity

  • Ryota Kotani
    Ryota Kotani
    Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan
    More by Ryota Kotani
  • Li Liu
    Li Liu
    Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
    More by Li Liu
  • Pardeep Kumar
    Pardeep Kumar
    Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
    Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako 351-0198, Japan
  • Hikaru Kuramochi
    Hikaru Kuramochi
    Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
    Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako 351-0198, Japan
    PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
  • Tahei Tahara*
    Tahei Tahara
    Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
    Ultrafast Spectroscopy Research Team, RIKEN Center for Advanced Photonics (RAP), 2-1, Hirosawa, Wako 351-0198, Japan
    *[email protected]
    More by Tahei Tahara
  • Pengpeng Liu
    Pengpeng Liu
    Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan
    More by Pengpeng Liu
  • Atsuhiro Osuka
    Atsuhiro Osuka
    Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan
  • Peter B. Karadakov*
    Peter B. Karadakov
    Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
    *[email protected]
  • , and 
  • Shohei Saito*
    Shohei Saito
    Graduate School of Science, Kyoto University, Kitashirakawa Oiwake, Sakyo, Kyoto 606-8502, Japan
    PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
    *[email protected]
    More by Shohei Saito
Cite this: J. Am. Chem. Soc. 2020, 142, 35, 14985–14992
Publication Date (Web):August 10, 2020
https://doi.org/10.1021/jacs.0c05611
Copyright © 2020 American Chemical Society

Article Views

5644

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (4)»

Abstract

Abstract Image

The shape of the lowest singlet excited-state (S1) energy profile is of primary importance in photochemistry and related materials science areas. Here we demonstrate a new approach for controlling the shape of the S1 energy profile which relies on tuning the level of excited-state aromaticity (ESA). In a series of fluorescent π-expanded oxepins, the energy decrease accompanying the bent-to-planar conformational change in S1 becomes less pronounced with lower ESA levels. Stabilization energies following from ESA were quantitatively estimated to be 10–20 kcal/mol using photophysical data. Very fast planarization dynamics in S1 was revealed by time-resolved fluorescence spectroscopy. The time constants were estimated to be shorter than 1 ps, regardless of molecular size and level of ESA, indicating barrierless S1 planarization within the oxepin series.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c05611.

  • Synthetic protocols, characterization data, photophysical spectra, and theoretical calculation (PDF)

  • Code 1997512 for 1 (CIF)

  • Code 1997513 for 2 (CIF)

  • Code 1997513 for 3 (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 35 publications.

  1. Shuhai Qiu, Zhiyun Zhang, Zhaohui Wang, Da-Hui Qu, He Tian. Tailor-Made Dynamic Fluorophores: Precise Structures Controlling the Photophysical Properties. Precision Chemistry 2023, 1 (3) , 129-138. https://doi.org/10.1021/prechem.3c00002
  2. Peter B. Karadakov, Muntadar A. H. Al-Yassiri. Excited-State Aromaticity Reversals in Naphthalene and Anthracene. The Journal of Physical Chemistry A 2023, 127 (14) , 3148-3162. https://doi.org/10.1021/acs.jpca.3c00485
  3. Zi Yang, Xinyu Li, Kai Yang, Na Yu, Rong Gao, Yi Ren. Synthesis and Unexpected Optical Properties of Ionic Phosphorus Heterocycles with P-Regulated Noncovalent Interactions. The Journal of Organic Chemistry 2023, 88 (5) , 2792-2800. https://doi.org/10.1021/acs.joc.2c02424
  4. Austin L. Dorris, Jonathon Watson, Jacquelyn J. Mosely, Ethan C. Lambert, Gregory S. Tschumper, Jared H. Delcamp, Nathan I. Hammer. Effects of Proaromaticity on Excited-State Lifetimes and Charge Separation in Near-Infrared Sensitizer Dyes in Solution and on TiO2. The Journal of Physical Chemistry C 2023, 127 (1) , 649-659. https://doi.org/10.1021/acs.jpcc.2c06906
  5. Jie Li, Jianyu Zhang, Jianxing Wang, Dong Wang, Yun Yan, Jianbin Huang, Ben Zhong Tang. Insights into Self-Assembly of Nonplanar Molecules with Aggregation-Induced Emission Characteristics. ACS Nano 2022, 16 (12) , 20559-20566. https://doi.org/10.1021/acsnano.2c07263
  6. Shunwei Chen, Xiaoyu Miao, Huanyi Zhou, Cunjin Peng, Ruiqin Zhang, Xiujun Han. Steric Hindrance Governs the Photoinduced Structural Planarization of Cycloparaphenylene Materials. The Journal of Physical Chemistry A 2022, 126 (41) , 7452-7459. https://doi.org/10.1021/acs.jpca.2c05030
  7. Baswanth Oruganti, Jun Wang, Bo Durbeej. Modulating the Photocyclization Reactivity of Diarylethenes through Changes in the Excited-State Aromaticity of the π-Linker. The Journal of Organic Chemistry 2022, 87 (17) , 11565-11571. https://doi.org/10.1021/acs.joc.2c01172
  8. Tsubasa Aoki, Michihisa Ueda, Takuzo Aida, Yoshimitsu Itoh. Supramolecular Polymerization of a Photo-Fluttering Chiral Monomer: A Temporarily Suspendable Chain Growth by Light. Journal of the American Chemical Society 2022, 144 (16) , 7080-7084. https://doi.org/10.1021/jacs.2c02176
  9. Xin Jin, Sifan Li, Lifang Guo, Jianli Hua, Da-Hui Qu, Jianhua Su, Zhiyun Zhang, He Tian. Interplay of Steric Effects and Aromaticity Reversals to Expand the Structural/Electronic Responses of Dihydrophenazines. Journal of the American Chemical Society 2022, 144 (11) , 4883-4896. https://doi.org/10.1021/jacs.1c12610
  10. Zi Yang, Xinyu Li, Kai Yang, Zhikai Zhang, Yankun Wang, Na Yu, Thomas Baumgartner, Yi Ren. Tailored Solvatochromic NIR Phosphorus-Chromophores via Selective P−N and P−C Chemistry in P-Heteropines. Organic Letters 2022, 24 (10) , 2045-2049. https://doi.org/10.1021/acs.orglett.2c00570
  11. Yi Chen, Sheng-Ming Tseng, Kai-Hsin Chang, Pi-Tai Chou. Energy Counterbalance to Harness Photoinduced Structural Planarization of Dibenzo[b,f]azepines toward Thermal Reversibility. Journal of the American Chemical Society 2022, 144 (4) , 1748-1757. https://doi.org/10.1021/jacs.1c11231
  12. Yuma Goto, Shun Omagari, Ryuma Sato, Takuya Yamakado, Ryo Achiwa, Nilanjan Dey, Kensuke Suga, Martin Vacha, Shohei Saito. Dynamic Polymer Free Volume Monitored by Single-Molecule Spectroscopy of a Dual Fluorescent Flapping Dopant. Journal of the American Chemical Society 2021, 143 (35) , 14306-14313. https://doi.org/10.1021/jacs.1c06428
  13. Cheng-Wei Ju, Bo Li, Lianghui Li, Weiguang Yan, Chunming Cui, Xiaonan Ma, Dongbing Zhao. Modular Synthesis of Pentagonal and Hexagonal Ring-Fused NBN-Phenalenes Leading to an Excited-State Aromatization-Induced Structural Planarization Molecular Library. Journal of the American Chemical Society 2021, 143 (15) , 5903-5916. https://doi.org/10.1021/jacs.1c01339
  14. Xin Jin, Shiyan Guo, Xueli Wang, Muyu Cong, Jinquan Chen, Zhiyun Zhang, Jianhua Su, Da‐Hui Qu, He Tian. Sequential Multistep Excited‐State Structural Transformations in N , N ′‐Diphenyl‐dihydrodibenzo[ a , c ]phenazine Fluorophores. Angewandte Chemie International Edition 2023, 377 https://doi.org/10.1002/anie.202305572
  15. Xin Jin, Shiyan Guo, Xueli Wang, Muyu Cong, Jinquan Chen, Zhiyun Zhang, Jianhua Su, Da‐Hui Qu, He Tian. Sequential Multistep Excited‐State Structural Transformations in N , N ′‐Diphenyl‐dihydrodibenzo[ a , c ]phenazine Fluorophores. Angewandte Chemie 2023, 122 https://doi.org/10.1002/ange.202305572
  16. Troy L. R. Bennett, Adam V. Marsh, James M. Turner, Felix Plasser, Martin Heeney, Florian Glöcklhofer. Functionalisation of conjugated macrocycles with type I and II concealed antiaromaticity via cross-coupling reactions. Molecular Systems Design & Engineering 2023, 8 (6) , 713-720. https://doi.org/10.1039/D3ME00045A
  17. Younghun Kim, Heechan Kim, Jung Bae Son, Michael Filatov, Cheol Ho Choi, Nam Ki Lee, Dongwhan Lee. Single‐Benzene Dual‐Emitters Harness Excited‐State Antiaromaticity for White Light Generation and Fluorescence Imaging. Angewandte Chemie 2023, 135 (20) https://doi.org/10.1002/ange.202302107
  18. Younghun Kim, Heechan Kim, Jung Bae Son, Michael Filatov, Cheol Ho Choi, Nam Ki Lee, Dongwhan Lee. Single‐Benzene Dual‐Emitters Harness Excited‐State Antiaromaticity for White Light Generation and Fluorescence Imaging. Angewandte Chemie International Edition 2023, 62 (20) https://doi.org/10.1002/anie.202302107
  19. Jiajie Yan, Tomáš Slanina, Joakim Bergman, Henrik Ottosson. Photochemistry Driven by Excited‐State Aromaticity Gain or Antiaromaticity Relief. Chemistry – A European Journal 2023, 29 (19) https://doi.org/10.1002/chem.202203748
  20. Toshiki Fujii, Takahiro Kusukawa, Hiroaki Imoto, Kensuke Naka. Pnictogen‐Bridged Diphenyl Sulfones as Photoinduced Pnictogen Bond Forming Emission Motifs. Chemistry – A European Journal 2023, 29 (1) https://doi.org/10.1002/chem.202202572
  21. Lu Lin, Jun Zhu. Computational predictions of adaptive aromaticity for the design of singlet fission materials. Inorganic Chemistry Frontiers 2022, 9 (5) , 914-924. https://doi.org/10.1039/D1QI01442K
  22. Hiroaki Imoto, Kensuke Naka. Recent progress on arsenic-containing functional polymers. Polymer 2022, 241 , 124464. https://doi.org/10.1016/j.polymer.2021.124464
  23. Jingyi Zhao, Xiaoyan Zheng. Progress on Exploring the Luminescent Properties of Organic Molecular Aggregates by Multiscale Modeling. Frontiers in Chemistry 2022, 9 https://doi.org/10.3389/fchem.2021.808957
  24. Enrique M. Arpa, Bo Durbeej. Transient changes in aromaticity and their effect on excited-state proton transfer reactions. Physical Chemistry Chemical Physics 2022, 94 https://doi.org/10.1039/D2CP00494A
  25. Heechan Kim, Woojin Park, Younghun Kim, Michael Filatov, Cheol Ho Choi, Dongwhan Lee. Relief of excited-state antiaromaticity enables the smallest red emitter. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25677-2
  26. Rulin Qiu, Jun Zhu. Adaptive aromaticity in 16-valence-electron metallazapentalenes. Dalton Transactions 2021, 50 (45) , 16842-16848. https://doi.org/10.1039/D1DT03244E
  27. Zi Yang, Zhikai Zhang, Cece Xue, Kai Yang, Rong Gao, Na Yu, Yi Ren. Excited-state engineering of oligothiophenes via phosphorus chemistry towards strong fluorescent materials. Physical Chemistry Chemical Physics 2021, 23 (42) , 24265-24272. https://doi.org/10.1039/D1CP03737D
  28. Kai Zhang, Guangqian Ji, Niu Zhang, Nan Wang, Xiaodong Yin, Quansong Li, Pangkuan Chen. Responsive organoboranes with dynamic conformation of octacyclophane-type scaffolds: synthesis, AIE and temperature-dependent dual emissions. Journal of Materials Chemistry C 2021, 9 (39) , 13851-13859. https://doi.org/10.1039/D1TC02713A
  29. Martina Rimmele, Wojciech Nogala, Maryam Seif-Eddine, Maxie M. Roessler, Martin Heeney, Felix Plasser, Florian Glöcklhofer. Functional group introduction and aromatic unit variation in a set of π-conjugated macrocycles: revealing the central role of local and global aromaticity. Organic Chemistry Frontiers 2021, 8 (17) , 4730-4745. https://doi.org/10.1039/D1QO00901J
  30. Musa ERDOĞAN. An efficient synthetic approach for the transition metal-free preparation of 2-bromo-3-(bromomethyl)naphthalene from naphthalene. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2021, 25 (3) , 714-722. https://doi.org/10.16984/saufenbilder.909041
  31. Weixuan Zeng, Ouissam El Bakouri, Dariusz W. Szczepanik, Hugo Bronstein, Henrik Ottosson. Excited state character of Cibalackrot-type compounds interpreted in terms of Hückel-aromaticity: a rationale for singlet fission chromophore design. Chemical Science 2021, 12 (17) , 6159-6171. https://doi.org/10.1039/D1SC00382H
  32. Sílvia Escayola, Claire Tonnelé, Eduard Matito, Albert Poater, Henrik Ottosson, Miquel Solà, David Casanova. Guidelines for Tuning the Excited State Hückel–Baird Hybrid Aromatic Character of Pro‐Aromatic Quinoidal Compounds**. Angewandte Chemie 2021, 133 (18) , 10343-10353. https://doi.org/10.1002/ange.202100261
  33. Sílvia Escayola, Claire Tonnelé, Eduard Matito, Albert Poater, Henrik Ottosson, Miquel Solà, David Casanova. Guidelines for Tuning the Excited State Hückel–Baird Hybrid Aromatic Character of Pro‐Aromatic Quinoidal Compounds**. Angewandte Chemie International Edition 2021, 60 (18) , 10255-10265. https://doi.org/10.1002/anie.202100261
  34. Matthias Pletzer, Felix Plasser, Martina Rimmele, Martin Heeney, Florian Glöcklhofer. [2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly(p‑phenylene vinylene)s (PPVs). Open Research Europe 2021, 1 , 111. https://doi.org/10.12688/openreseurope.13723.1
  35. Matthias Pletzer, Felix Plasser, Martina Rimmele, Martin Heeney, Florian Glöcklhofer. [2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly(p‑phenylene vinylene)s (PPVs). Open Research Europe 2021, 1 , 111. https://doi.org/10.12688/openreseurope.13723.2

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect