ACS Publications. Most Trusted. Most Cited. Most Read
Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries
My Activity

Figure 1Loading Img
    Article

    Bis(diisopropylamino)cyclopropenium-arene Cations as High Oxidation Potential and High Stability Catholytes for Non-aqueous Redox Flow Batteries
    Click to copy article linkArticle link copied!

    • Yichao Yan
      Yichao Yan
      Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
      Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, Illinois 60439, United States
      More by Yichao Yan
    • Thomas P. Vaid
      Thomas P. Vaid
      Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
      Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, Illinois 60439, United States
    • Melanie S. Sanford*
      Melanie S. Sanford
      Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
      Joint Center for Energy Storage Research (JCESR), 9700 South Cass Avenue, Argonne, Illinois 60439, United States
      [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 41, 17564–17571
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.0c07464
    Published October 2, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    This Article describes the development of 1,2-bis(diisopropylamino)-3-cyclopropenylium-functionalized (DAC-functionalized) benzene derivatives as high-potential catholytes for non-aqueous redox flow batteries. Density functional theory (DFT) calculations predict that the oxidation potentials (in CH3CN) of various DAC-benzene derivatives will range from +0.96 to +1.64 V vs Fc+/0, depending upon the substituents on the benzene ring. To test these predictions, a set of eight DAC-arene derivatives were synthesized and evaluated electrochemically. The molecule 1-DAC-4-tert-butyl-2-methoxy-5-pentafluoropropoxybenzene was found to offer the optimal balance of high redox potential (E1/2 = +1.19 V vs Fc+/0) and charge–discharge cycling stability (with 92% capacity retention over 116 h of cycling at 0.3 M concentration in a symmetrical flow cell). This optimal derivative was successfully deployed as a catholyte in a non-aqueous redox flow cell with butyl viologen as the anolyte to yield a 2.0 V battery.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c07464.

    • Synthetic procedures, NMR spectral data, DFT calculation methods and data, and electrochemical experimental methods and data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 45 publications.

    1. H. T. Katie Chung, Tim K. Schramm, Martin Head-Gordon, James Shee, F. Dean Toste. Regioisomeric Engineering for Multicharge and Spin Stabilization in Two-Electron Organic Catholytes. Journal of the American Chemical Society 2025, 147 (2) , 2115-2128. https://doi.org/10.1021/jacs.4c16027
    2. Harvey Sharma, Mitchell J. Demchuk, Suman Debnath, Brady J. H. Austen, Marcus W. Drover. Electrochemical Properties of a Pyridine-Tunable Trisferrocenylborane. Organometallics 2024, 43 (20) , 2427-2433. https://doi.org/10.1021/acs.organomet.3c00470
    3. Andrii Varenikov, Mark Gandelman, Matthew S. Sigman. Development of Modular Nitrenium Bipolar Electrolytes for Possible Applications in Symmetric Redox Flow Batteries. Journal of the American Chemical Society 2024, 146 (28) , 19474-19488. https://doi.org/10.1021/jacs.4c05799
    4. Sabrina N. Carneiro, Joshua D. Laffoon, Long Luo, Melanie S. Sanford. Benchmarking Trisaminocyclopropeniums as Mediators for Anodic Oxidation Reactions. The Journal of Organic Chemistry 2024, 89 (9) , 6389-6394. https://doi.org/10.1021/acs.joc.4c00422
    5. Jacob S. Tracy, Conor H. Broderick, F. Dean Toste. Development of the Squaramide Scaffold for High Potential and Multielectron Catholytes for Use in Redox Flow Batteries. Journal of the American Chemical Society 2024, 146 (17) , 11740-11755. https://doi.org/10.1021/jacs.3c14776
    6. Moritz Fink, Jannik Stäuble, Maïté Weisgerber, Erick M. Carreira. Aryl Azocyclopropeniums: Minimalist, Visible-Light Photoswitches. Journal of the American Chemical Society 2024, 146 (14) , 9519-9525. https://doi.org/10.1021/jacs.4c01786
    7. Ryan Walser-Kuntz, Yichao Yan, MatthewS. Sigman, Melanie S. Sanford. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries. Accounts of Chemical Research 2023, 56 (10) , 1239-1250. https://doi.org/10.1021/acs.accounts.3c00095
    8. Michael A. Pence, Oliver Rodríguez, Nikita G. Lukhanin, Charles M. Schroeder, Joaquín Rodríguez-López. Automated Measurement of Electrogenerated Redox Species Degradation Using Multiplexed Interdigitated Electrode Arrays. ACS Measurement Science Au 2023, 3 (1) , 62-72. https://doi.org/10.1021/acsmeasuresciau.2c00054
    9. Yichao Yan, Paban Sitaula, Susan A. Odom, Thomas P. Vaid. High Energy Density, Asymmetric, Nonaqueous Redox Flow Batteries without a Supporting Electrolyte. ACS Applied Materials & Interfaces 2022, 14 (44) , 49633-49640. https://doi.org/10.1021/acsami.2c10072
    10. Hang-Fei Tu, Aliénor Jeandin, Marcos G. Suero. Catalytic Synthesis of Cyclopropenium Cations with Rh-Carbynoids. Journal of the American Chemical Society 2022, 144 (37) , 16737-16743. https://doi.org/10.1021/jacs.2c07769
    11. Samuel I. Etkind, Jeffrey Lopez, Yun Guang Zhu, Jen-Hung Fang, Wen Jie Ong, Yang Shao-Horn, Timothy M. Swager. Thianthrene-Based Bipolar Redox-Active Molecules Toward Symmetric All-Organic Batteries. ACS Sustainable Chemistry & Engineering 2022, 10 (36) , 11739-11750. https://doi.org/10.1021/acssuschemeng.2c01717
    12. Yichao Yan, Ryan Walser-Kuntz, Melanie S. Sanford. Targeted Optimization of Phenoxazine Redox Center for Nonaqueous Redox Flow Batteries. ACS Materials Letters 2022, 4 (4) , 733-739. https://doi.org/10.1021/acsmaterialslett.2c00050
    13. Xiao Wang, Jingchao Chai, Shu Zhang, Bingbing Chen, Ashwin Chaturvedi, Guanglei Cui, Jianbing Jimmy Jiang. Insights into Indigo K+ Association in a Half-Slurry Flow Battery. ACS Energy Letters 2022, 7 (3) , 1178-1186. https://doi.org/10.1021/acsenergylett.2c00165
    14. Bin Liu, Chun Wai Tang, Fu Kit Sheong, Guochen Jia, Tianshou Zhao. Artificial Bipolar Redox-Active Molecule for Symmetric Nonaqueous Redox Flow Batteries. ACS Sustainable Chemistry & Engineering 2022, 10 (1) , 613-621. https://doi.org/10.1021/acssuschemeng.1c07190
    15. Min Li, Susan A. Odom, Adam R. Pancoast, Lily A. Robertson, Thomas P. Vaid, Garvit Agarwal, Hieu A. Doan, Yilin Wang, T. Malsha Suduwella, Sambasiva R. Bheemireddy, Randy H. Ewoldt, Rajeev S. Assary, Lu Zhang, Matthew S. Sigman, Shelley D. Minteer. Experimental Protocols for Studying Organic Non-aqueous Redox Flow Batteries. ACS Energy Letters 2021, 6 (11) , 3932-3943. https://doi.org/10.1021/acsenergylett.1c01675
    16. Yichao Yan, Sophia G. Robinson, Thomas P. Vaid, Matthew S. Sigman, Melanie S. Sanford. Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents. Journal of the American Chemical Society 2021, 143 (33) , 13450-13459. https://doi.org/10.1021/jacs.1c07237
    17. Jeremy D. Griffin, Adam R. Pancoast, Matthew S. Sigman. Interrogation of 2,2′-Bipyrimidines as Low-Potential Two-Electron Electrolytes. Journal of the American Chemical Society 2021, 143 (2) , 992-1004. https://doi.org/10.1021/jacs.0c11267
    18. Seongmo Ahn, Ariyeong Yun, Donghwi Ko, Vikram Singh, Jung Min Joo, Hye Ryung Byon. Organic redox flow batteries in non-aqueous electrolyte solutions. Chemical Society Reviews 2025, 54 (2) , 742-789. https://doi.org/10.1039/D4CS00585F
    19. Kaiqiang Zhang, Chao Wu, Luoya Wang, Changlong Ma, Shiye Yan, Jilei Ye, Yuping Wu. Transition from liquid-electrode batteries to colloidal electrode batteries for long-lasting performance. Journal of Power Sources 2025, 626 , 235754. https://doi.org/10.1016/j.jpowsour.2024.235754
    20. Belay Getahun Tegegne, Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Aknachew Mebreku Demeku, Chen-Hao Wang. Molecular engineering, supporting electrolyte, and membrane selections for enhanced cycling stability of non-aqueous organic redox flow batteries: A review. Chemical Engineering Journal 2024, 501 , 157792. https://doi.org/10.1016/j.cej.2024.157792
    21. Yunho Cho, Hyojin Kye, Bong-Gi Kim, Ji Eon Kwon. Redox active viologen derivatives for aqueous and non-aqueous organic redox flow batteries applications. Journal of Industrial and Engineering Chemistry 2024, 136 , 73-88. https://doi.org/10.1016/j.jiec.2024.02.037
    22. Jules Moutet, David D. Mills, Diego L. Lozier, Thomas L. Gianetti. [4]Helicenium Ion as Bipolar Redox Material for Symmetrical Fully Organic Pole‐less Redox Flow Battery. Batteries & Supercaps 2024, 7 (4) https://doi.org/10.1002/batt.202300519
    23. Hyeon-Bee Song, Do-Hyeong Kim, Myung-Jin Lee, Moon-Sung Kang. Thin Reinforced Anion-Exchange Membranes for Non-Aqueous Redox Flow Battery Employing Fe/Co-Metal Complex Redox Species. Batteries 2024, 10 (1) , 9. https://doi.org/10.3390/batteries10010009
    24. Adam R. Pancoast, Sara L. McCormack, Shelby Galinat, Ryan Walser-Kuntz, Brianna M. Jett, Melanie S. Sanford, Matthew S. Sigman. Data science enabled discovery of a highly soluble 2,2′-bipyrimidine anolyte for application in a flow battery. Chemical Science 2023, 14 (47) , 13734-13742. https://doi.org/10.1039/D3SC04084D
    25. Ryan P. King, Jenny Y. Yang. Modular preparation of cationic bipyridines and azaarenes via C–H activation. Chemical Science 2023, 14 (46) , 13530-13536. https://doi.org/10.1039/D3SC04864K
    26. Hyunjin Kim, Seonghwan Kim, Dayoung Ahn, Choonsoo Kim. Improved desalination via cell voltage extension and simultaneous energy recovery of redox flow desalination using organic supporting electrolyte. Separation and Purification Technology 2023, 324 , 124490. https://doi.org/10.1016/j.seppur.2023.124490
    27. Brianna Jett, Autumn Flynn, Matthew S. Sigman, Melanie S. Sanford. Identifying structure-function relationships to modulate crossover in nonaqueous redox flow batteries. Journal of Materials Chemistry A 2023, 11 (41) , 22288-22294. https://doi.org/10.1039/D3TA02633G
    28. Casey M. Davis, Claire E. Boronski, Tianyi Yang, Tuo Liu, Zhiming Liang. Molecular Engineering of Redox Couples for Non-Aqueous Redox Flow Batteries. Batteries 2023, 9 (10) , 504. https://doi.org/10.3390/batteries9100504
    29. Rebekah Duke, Vinayak Bhat, Parker Sornberger, Susan A. Odom, Chad Risko. Towards a comprehensive data infrastructure for redox-active organic molecules targeting non-aqueous redox flow batteries. Digital Discovery 2023, 2 (4) , 1152-1162. https://doi.org/10.1039/D3DD00081H
    30. Bo Hu, Hongbin Li, Hao Fan, Jiangxuan Song. A long-lifetime aqueous organic redox flow battery utilizing multi-redox anolyte. Energy Storage Materials 2023, 59 , 102789. https://doi.org/10.1016/j.ensm.2023.102789
    31. Alagar Ramar, Fu-Ming Wang, Ruben Foeng, Rocan Hsing. Organic redox flow battery: Are organic redox materials suited to aqueous solvents or organic solvents?. Journal of Power Sources 2023, 558 , 232611. https://doi.org/10.1016/j.jpowsour.2022.232611
    32. Kathryn Toghill, Craig Armstrong. Nonaqueous Metal‐Free Flow Batteries. 2023, 975-1005. https://doi.org/10.1002/9783527832767.ch43
    33. Jihan Park, Minsoo Kim, Jinyeong Choi, Soobeom Lee, Jueun Kim, Duho Han, Hyeokjun Jang, Minjoon Park. Recent Progress in High‐voltage Aqueous Zinc‐based Hybrid Redox Flow Batteries. Chemistry – An Asian Journal 2023, 18 (2) https://doi.org/10.1002/asia.202201052
    34. Md Motiur Rahaman Mazumder, Rezoanul Islam, M. Azizur R. Khan, K. M. Anis‐Ul‐Haque, Mohammed M. Rahman. Efficient AcFc‐[Fe III (acac) 3 ] Redox Couple for Non‐aqueous Redox Flow Battery at Low Temperature. Chemistry – An Asian Journal 2023, 18 (1) https://doi.org/10.1002/asia.202201025
    35. Luana Cardinale, Shannon S. Stahl, Dipannita Kalyani, Dan Lehnherr. Overview of outer-sphere electron transfer mediators for electrosynthesis. 2023, 57-102. https://doi.org/10.1016/bs.acat.2023.07.009
    36. Anton S. Perera, T. Malsha Suduwella, N. Harsha Attanayake, Rahul Kant Jha, William L. Eubanks, Ilya A. Shkrob, Chad Risko, Aman Preet Kaur, Susan A. Odom. Large variability and complexity of isothermal solubility for a series of redox-active phenothiazines. Materials Advances 2022, 3 (23) , 8705-8715. https://doi.org/10.1039/D2MA00598K
    37. Patrick W. Antoni, Christopher Golz, Max M. Hansmann. Organische Vier‐Elektronen Redox‐Systeme basierend auf Bipyridin‐ und Phenanthrolin‐Carben‐Architekturen. Angewandte Chemie 2022, 134 (24) https://doi.org/10.1002/ange.202203064
    38. Patrick W. Antoni, Christopher Golz, Max M. Hansmann. Organic Four‐Electron Redox Systems Based on Bipyridine and Phenanthroline Carbene Architectures. Angewandte Chemie International Edition 2022, 61 (24) https://doi.org/10.1002/anie.202203064
    39. Dukhan Kim, Melanie S. Sanford, Thomas P. Vaid, Anne J. McNeil. A Nonaqueous Redox‐Matched Flow Battery with Charge Storage in Insoluble Polymer Beads**. Chemistry – A European Journal 2022, 28 (25) https://doi.org/10.1002/chem.202200149
    40. Ziming Zhao, Changkun Zhang, Xianfeng Li. Opportunities and challenges of organic flow battery for electrochemical energy storage technology. Journal of Energy Chemistry 2022, 67 , 621-639. https://doi.org/10.1016/j.jechem.2021.10.037
    41. Jules Moutet, David Mills, Md Mubarak Hossain, Thomas L. Gianetti. Increased performance of an all-organic redox flow battery model via nitration of the [4]helicenium DMQA ion electrolyte. Materials Advances 2022, 3 (1) , 216-223. https://doi.org/10.1039/D1MA00914A
    42. Pavit K. Ranga, Feroz Ahmad, Gurdeep Singh, Akshi Tyagi, Ramasamy Vijaya Anand. Recent advances in the organocatalytic applications of cyclopropene- and cyclopropenium-based small molecules. Organic & Biomolecular Chemistry 2021, 19 (44) , 9541-9564. https://doi.org/10.1039/D1OB01549D
    43. Shikha Sharma, Suman Rathod, Satya Prakash Yadav, Arunavo Chakraborty, Ashok K. Shukla, Nagaphani Aetukuri, Satish Patil. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries. Chemistry – A European Journal 2021, 27 (47) , 12172-12180. https://doi.org/10.1002/chem.202101516
    44. Fahad Alkhayri, C. Adam Dyker. Evaluation of Two-Electron Bispyridinylidene Anolytes and a TEMPO Catholyte for Non-Aqueous Redox Flow Batteries. Journal of The Electrochemical Society 2021, 168 (7) , 070501. https://doi.org/10.1149/1945-7111/ac0def
    45. Shyam K. Pahari, Tugba Ceren Gokoglan, Benjoe Rey B. Visayas, Jennifer Woehl, James A. Golen, Rachael Howland, Maricris L. Mayes, Ertan Agar, Patrick J. Cappillino. Designing high energy density flow batteries by tuning active-material thermodynamics. RSC Advances 2021, 11 (10) , 5432-5443. https://doi.org/10.1039/D0RA10913D

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 41, 17564–17571
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.0c07464
    Published October 2, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    6492

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.