ACS Publications. Most Trusted. Most Cited. Most Read
Synthetic, Mechanistic, and Biological Interrogation of Ginkgo biloba Chemical Space En Route to (−)-Bilobalide
My Activity

Figure 1Loading Img
    Article

    Synthetic, Mechanistic, and Biological Interrogation of Ginkgo biloba Chemical Space En Route to (−)-Bilobalide
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (11)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 43, 18599–18618
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.0c08231
    Published September 29, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Here we interrogate the structurally dense (1.64 mcbits/Å3) GABAA receptor antagonist bilobalide, intermediates en route to its synthesis, and related mechanistic questions. 13C isotope labeling identifies an unexpected bromine migration en route to an α-selective, catalytic asymmetric Reformatsky reaction, ruling out an asymmetric allylation pathway. Experiment and computation converge on the driving forces behind two surprising observations. First, an oxetane acetal persists in concentrated mineral acid (1.5 M DCl in THF-d8/D2O); its longevity is correlated to destabilizing steric clash between substituents upon ring-opening. Second, a regioselective oxidation of des-hydroxybilobalide is found to rely on lactone acidification through lone-pair delocalization, which leads to extremely rapid intermolecular enolate equilibration. We also establish equivalent effects of (−)-bilobalide and the nonconvulsive sesquiterpene (−)-jiadifenolide on action potential-independent inhibitory currents at GABAergic synapses, using (+)-bilobalide as a negative control. The high information density of bilobalide distinguishes it from other scaffolds and may characterize natural product (NP) space more generally. Therefore, we also include a Python script to quickly (ca. 132 000 molecules/min) calculate information content (Böttcher scores), which may prove helpful to identify important features of NP space.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c08231.

    • Part I: Experimental materials and methods (PDF)

    • Part II: Electrophysiology (PDF)

    • Python script that annotates molecules with Böttcher scores (ZIP)

    • Crystallographic data for compounds in this manuscript (CIF)

    • Crystallographic data for compounds in this manuscript (CIF)

    • Crystallographic data for compounds in this manuscript (CIF)

    • Crystallographic data for compounds in this manuscript (CIF)

    • Crystallographic data for compounds in this manuscript (CIF)

    • Crystallographic data for compounds in this manuscript (CIF)

    • Crystallographic data for compounds in this manuscript (CIF)

    • Crystallographic data for compounds in this manuscript (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 51 publications.

    1. Dylan W. Snelson, Stephen I. Ting, Ryan A. Shenvi. Contrasteric Glycosylations of Cotylenol and 1,2-Diols by Virtual Linker Selection. Journal of the American Chemical Society 2025, 147 (1) , 1327-1333. https://doi.org/10.1021/jacs.4c15719
    2. Brandon A. Wright, Taku Okada, Alessio Regni, Guilian Luchini, Shree Sowndarya S. V, Nattawadee Chaisan, Sebastian Kölbl, Sojung F. Kim, Robert S. Paton, Richmond Sarpong. Molecular Complexity-Inspired Synthetic Strategies toward the Calyciphylline A-Type Daphniphyllum Alkaloids Himalensine A and Daphenylline. Journal of the American Chemical Society 2024, 146 (48) , 33130-33148. https://doi.org/10.1021/jacs.4c11252
    3. Xiaoding Jiang, Xu He, Jonathan Wong, Stephan Scheeff, Sam Chun-Kit Hau, Tak Hin Wong, Yao Qin, Chi Hang Fan, Bowen Ma, Ngai Lam Chung, Junzhe Huang, Jiajia Zhao, Yu Yan, Min Xiao, Xueqin Song, Tony K. C. Hui, Zhong Zuo, William Ka-Kei Wu, Ho Ko, Kim Hei-Man Chow, Billy Wai-Lung Ng. Lactone-to-Lactam Editing Alters the Pharmacology of Bilobalide. JACS Au 2024, 4 (9) , 3537-3546. https://doi.org/10.1021/jacsau.4c00416
    4. Mahati Chintapalli, Samuel Faucher, Aravindh Rajan, Ian S. McKay. Molecular Complexity Heuristic Suggests That Thermochemistry Will Play an Important Role in the Decarbonization of Simple Chemical Commodities. Industrial & Engineering Chemistry Research 2024, 63 (37) , 16174-16185. https://doi.org/10.1021/acs.iecr.4c01958
    5. Ryan A. Shenvi. Natural Product Synthesis in the 21st Century: Beyond the Mountain Top. ACS Central Science 2024, 10 (3) , 519-528. https://doi.org/10.1021/acscentsci.3c01518
    6. Adrian Krzyzanowski, Axel Pahl, Michael Grigalunas, Herbert Waldmann. Spacial Score─A Comprehensive Topological Indicator for Small-Molecule Complexity. Journal of Medicinal Chemistry 2023, 66 (18) , 12739-12750. https://doi.org/10.1021/acs.jmedchem.3c00689
    7. Phillip S. Grant, Ricardo Meyrelles, Oliver Gajsek, Gerhard Niederacher, Boris Maryasin, Nuno Maulide. Biomimetic Cationic Cyclopropanation Enables an Efficient Chemoenzymatic Synthesis of 6,8-Cycloeudesmanes. Journal of the American Chemical Society 2023, 145 (10) , 5855-5863. https://doi.org/10.1021/jacs.2c13116
    8. D. Sai Reddy, Ivan M. Novitskiy, Andrei G. Kutateladze. Complexity-Building Photoinduced Cascade Involving Csp2–Csp3 Coupling of Aromatic Amides via [2 + 2] Reactivity of ESIPT-Generated o-Azaxylylenes. Organic Letters 2023, 25 (7) , 1131-1135. https://doi.org/10.1021/acs.orglett.3c00092
    9. Manvendra Singh, Bryce Gaskins, Daniel R. Johnson, Christopher G. Elles, Zarko Boskovic. Synthesis of Cycloheptatriene-Containing Azetidine Lactones. The Journal of Organic Chemistry 2022, 87 (22) , 15001-15010. https://doi.org/10.1021/acs.joc.2c00367
    10. Hai-Hua Lu, Kang-Ji Gan, Fu-Qiang Ni, Zhihan Zhang, Yao Zhu. Concise Total Synthesis of Salimabromide. Journal of the American Chemical Society 2022, 144 (41) , 18778-18783. https://doi.org/10.1021/jacs.2c08337
    11. Michael Grigalunas, Susanne Brakmann, Herbert Waldmann. Chemical Evolution of Natural Product Structure. Journal of the American Chemical Society 2022, 144 (8) , 3314-3329. https://doi.org/10.1021/jacs.1c11270
    12. Fuzhuo Li, Hans Renata. A Chiral-Pool-Based Strategy to Access trans-syn-Fused Drimane Meroterpenoids: Chemoenzymatic Total Syntheses of Polysin, N-Acetyl-polyveoline and the Chrodrimanins. Journal of the American Chemical Society 2021, 143 (43) , 18280-18286. https://doi.org/10.1021/jacs.1c08696
    13. Daichi Yamane, Haruna Tanaka, Akihiro Hirata, Yumiko Tamura, Daichi Takahashi, Yusuke Takahashi, Tohru Nagamitsu, Masaki Ohtawa. One-Pot γ-Lactonization of Homopropargyl Alcohols via Intramolecular Ketene Trapping. Organic Letters 2021, 23 (7) , 2831-2835. https://doi.org/10.1021/acs.orglett.1c00840
    14. Stone Woo, Ryan A. Shenvi. Natural Product Synthesis through the Lens of Informatics. Accounts of Chemical Research 2021, 54 (5) , 1157-1167. https://doi.org/10.1021/acs.accounts.0c00791
    15. Rishab N. Iyer, David Favela, Andras Domokos, Guoliang Zhang, Arabo A. Avanes, Samuel J. Carter, Andrian G. Basargin, Alexis R. Davis, Dean J. Tantillo, David E. Olson. Efficient and modular synthesis of ibogaine and related alkaloids. Nature Chemistry 2025, 17 (3) , 412-420. https://doi.org/10.1038/s41557-024-01714-7
    16. Frederik Simonsen Bro, Luca Laraia. Unifying principles for the design and evaluation of natural product-inspired compound collections. Chemical Science 2025, 16 (7) , 2961-2979. https://doi.org/10.1039/D4SC08017C
    17. Payal Malvi, Dharti Mistry, Galla V. Karunakar, Diksha Rajput, Dandamudi V. Lenin. Baylis–Hillman Adducts as a Valuable Source for Synthesis of Functionalized [4,4,4]-Propellone Dilactone Derivatives. Synlett 2025, 98 https://doi.org/10.1055/a-2517-2139
    18. Srinivas Beduru, Deepak B. Huple, Andrei G. Kutateladze. Complexity‐Building Exhaustive Dearomatization of Benzenoid Aromatics within an ESIPT‐Initiated Three‐Step Photochemical Cascade.. Angewandte Chemie 2025, 137 (2) https://doi.org/10.1002/ange.202415176
    19. Srinivas Beduru, Deepak B. Huple, Andrei G. Kutateladze. Complexity‐Building Exhaustive Dearomatization of Benzenoid Aromatics within an ESIPT‐Initiated Three‐Step Photochemical Cascade.. Angewandte Chemie International Edition 2025, 64 (2) https://doi.org/10.1002/anie.202415176
    20. P. Pramod Kumar, K.V. Harish Prashanth. Self-assembled low molecular weight chitosan-bilobalide microsuspension protects hippocampal toxicity in amyloid beta(25–35) induced mice. Carbohydrate Polymer Technologies and Applications 2024, 8 , 100555. https://doi.org/10.1016/j.carpta.2024.100555
    21. Brandon A. Wright, Richmond Sarpong. Molecular complexity as a driving force for the advancement of organic synthesis. Nature Reviews Chemistry 2024, 8 (10) , 776-792. https://doi.org/10.1038/s41570-024-00645-8
    22. Yoshiyasu Fukuyama, Miwa Kubo, Kenichi Harada. Neurotrophic Natural Products. 2024, 1-473. https://doi.org/10.1007/978-3-031-42422-9_1
    23. Rachel M. Gillard, Jiajun Zhang, Richard Steel, Jocelyn Wang, Jessica L. Strull, Bin Cai, Nilanjana Chakraborty, Dale L. Boger. Aryl Annulation: A Powerful Simplifying Retrosynthetic Disconnection. Synthesis 2024, 56 (01) , 118-133. https://doi.org/10.1055/a-1959-2088
    24. Velaphi Thipe, Nya Hall, Amoolya Pandurangi, Samuel Ajayi, Prosper Emeh, Iti Gauttam, Rania Ghamgui, Fatima Hameedat, Sihem Khelil, Nhu Ly, Mahmoud Salim, Anum Waleed, Prajna Hegde, Vrushali Hegde, Deepa Prakash, Ilaadevi Hegde, Kavita Katti, Alice Raphael Karikachery, Emilie Roger, Anne Landreau, Kattesh Katti. Nano-Ayurvedic Medicine Approaches Using Ginkgo biloba-Phytochemicals Functionalized Gold Nanoparticles Against Breast Cancer. Nanotechnology, Science and Applications 2024, Volume 17 , 189-210. https://doi.org/10.2147/NSA.S478533
    25. Guanghu Tong, Samantha Griffin, Avery Sader, Anna B. Crowell, Ken Beavers, Jerry Watson, Zachary Buchan, Shuming Chen, Ryan A. Shenvi. C5 methylation confers accessibility, stability and selectivity to picrotoxinin. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-44030-3
    26. Jianing Xie, Axel Pahl, Adrian Krzyzanowski, Anna Krupp, Jie Liu, Sandra Koska, Beate Schölermann, Ruirui Zhang, Jana Bonowski, Sonja Sievers, Carsten Strohmann, Slava Ziegler, Michael Grigalunas, Herbert Waldmann. Synthetic Matching of Complex Monoterpene Indole Alkaloid Chemical Space. Angewandte Chemie 2023, 135 (48) https://doi.org/10.1002/ange.202310222
    27. Jianing Xie, Axel Pahl, Adrian Krzyzanowski, Anna Krupp, Jie Liu, Sandra Koska, Beate Schölermann, Ruirui Zhang, Jana Bonowski, Sonja Sievers, Carsten Strohmann, Slava Ziegler, Michael Grigalunas, Herbert Waldmann. Synthetic Matching of Complex Monoterpene Indole Alkaloid Chemical Space. Angewandte Chemie International Edition 2023, 62 (48) https://doi.org/10.1002/anie.202310222
    28. Sophia Khom, Vittoria Borgonetti, Valentina Vozella, Dean Kirson, Larry Rodriguez, Pauravi Gandhi, Paula Cristina Bianchi, Angela Snyder, Roman Vlkolinsky, Michal Bajo, Christopher S. Oleata, Roberto Ciccocioppo, Marisa Roberto. Glucocorticoid receptors regulate central amygdala GABAergic synapses in Marchigian-Sardinian alcohol-preferring rats. Neurobiology of Stress 2023, 25 , 100547. https://doi.org/10.1016/j.ynstr.2023.100547
    29. Christian R. S. Maior, Paulo C. S. Costa, Carolina B. P. Ligiéro, Lygia S. de Moraes, Gustavo R. Sousa, Sidney G. Lima, Pierre M. Esteves, Paulo C. M. L. Miranda. Diastereoselectivity Switch During Alkene Reductions: Diastereodivergent Syntheses of Molecular Fossils via MHAT or Homogeneous Catalytic Hydrogenation Reactions. Chemistry – A European Journal 2023, 29 (20) https://doi.org/10.1002/chem.202203731
    30. Eliott Le Du, Jérôme Waser. Recent progress in alkynylation with hypervalent iodine reagents. Chemical Communications 2023, 59 (12) , 1589-1604. https://doi.org/10.1039/D2CC06168F
    31. Yanyu Chen, Zhengyuan Xin, Hui Wang, Haibing He, Shuanhu Gao. Asymmetric total synthesis of norzoanthamine and formal synthesis of zoanthenol. Organic Chemistry Frontiers 2023, 10 (3) , 651-660. https://doi.org/10.1039/D2QO01834A
    32. Alexander Düfert. Carbonylchemie. 2023, 39-186. https://doi.org/10.1007/978-3-662-65244-2_2
    33. G. Blay, A. Monleón, M. Montesinos-Magraner, A. Sanz-Marco, C. Vila. Zinc Enolates: The Reformatsky and Blaise Reactions. 2023https://doi.org/10.1016/B978-0-323-96025-0.00025-9
    34. Zhijian Zhao, Yang Liu, Yingjie Lu, Mingzhuang Hou, Xu Shen, Huilin Yang, Qin Shi, Yijian Zhang, Fan He, Xuesong Zhu. Gingko biloba-inspired lactone prevents osteoarthritis by activating the AMPK-SIRT1 signaling pathway. Arthritis Research & Therapy 2022, 24 (1) https://doi.org/10.1186/s13075-022-02890-y
    35. Kevin A. Scott, Jeffrey R. Groch, Jianhua Bao, Christopher M. Marshall, Rachel A. Allen, Steven J. Nick, Nicholas R. Lauta, Ryan E. Williams, Munaum H. Qureshi, Michael D. Delost, Jon T. Njardarson. Minimalistic graphical presentation approach for total syntheses. Tetrahedron 2022, 126 , 133062. https://doi.org/10.1016/j.tet.2022.133062
    36. Stone Woo, Eleanor M. Landwehr, Ryan A. Shenvi. Synthesis of psychotropic alkaloids from Galbulimima. Tetrahedron 2022, 126 , 133064. https://doi.org/10.1016/j.tet.2022.133064
    37. Masaki Ohtawa. Comprehensive Studies on the Synthetic Organic Chemistry of Unique Bioactive Natural Products; Total Synthesis, Drug Discovery, and Development of New Reactions. YAKUGAKU ZASSHI 2022, 142 (10) , 1067-1075. https://doi.org/10.1248/yakushi.22-00118
    38. Masaki Ohtawa, Ryan A. Shenvi. Concise Syntheses of (−)-11-O-Debenzoyltashironin and (−)-Bilobalide. Journal of Synthetic Organic Chemistry, Japan 2022, 80 (8) , 766-777. https://doi.org/10.5059/yukigoseikyokaishi.80.766
    39. Eleanor M. Landwehr, Meghan A. Baker, Takuya Oguma, Hannah E. Burdge, Takahiro Kawajiri, Ryan A. Shenvi. Concise syntheses of GB22, GB13, and himgaline by cross-coupling and complete reduction. Science 2022, 375 (6586) , 1270-1274. https://doi.org/10.1126/science.abn8343
    40. D. Sai Reddy, Ivan M. Novitskiy, Andrei G. Kutateladze. Maximizing Step‐Normalized Increases in Molecular Complexity: Formal [4+2+2+2] Photoinduced Cyclization Cascade to Access Polyheterocycles Possessing Privileged Substructures. Angewandte Chemie 2022, 134 (4) https://doi.org/10.1002/ange.202112573
    41. D. Sai Reddy, Ivan M. Novitskiy, Andrei G. Kutateladze. Maximizing Step‐Normalized Increases in Molecular Complexity: Formal [4+2+2+2] Photoinduced Cyclization Cascade to Access Polyheterocycles Possessing Privileged Substructures. Angewandte Chemie International Edition 2022, 61 (4) https://doi.org/10.1002/anie.202112573
    42. Benjamin J. Huffman, Tiffany Chu, Yusuke Hanaki, Jonathan J. Wong, Shuming Chen, Kendall N. Houk, Ryan A. Shenvi. Stereodivergent Attached‐Ring Synthesis via Non‐Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angewandte Chemie 2022, 134 (3) https://doi.org/10.1002/ange.202114514
    43. Benjamin J. Huffman, Tiffany Chu, Yusuke Hanaki, Jonathan J. Wong, Shuming Chen, Kendall N. Houk, Ryan A. Shenvi. Stereodivergent Attached‐Ring Synthesis via Non‐Covalent Interactions: A Short Formal Synthesis of Merrilactone A. Angewandte Chemie International Edition 2022, 61 (3) https://doi.org/10.1002/anie.202114514
    44. Kevin A. Scott, Nathalie Ropek, Bruno Melillo, Stuart L. Schreiber, Benjamin F. Cravatt, Ekaterina V. Vinogradova. Stereochemical diversity as a source of discovery in chemical biology. Current Research in Chemical Biology 2022, 2 , 100028. https://doi.org/10.1016/j.crchbi.2022.100028
    45. Jinghua Wu, Zhiqiang Ma. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Organic Chemistry Frontiers 2021, 8 (24) , 7050-7076. https://doi.org/10.1039/D1QO01139A
    46. Guanghu Tong, Meghan A Baker, Ryan A Shenvi. Change the channel: CysLoop receptor antagonists from nature. Pest Management Science 2021, 77 (8) , 3650-3662. https://doi.org/10.1002/ps.6166
    47. George Karageorgis, Daniel J. Foley, Luca Laraia, Susanne Brakmann, Herbert Waldmann. Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angewandte Chemie 2021, 133 (29) , 15837-15855. https://doi.org/10.1002/ange.202016575
    48. George Karageorgis, Daniel J. Foley, Luca Laraia, Susanne Brakmann, Herbert Waldmann. Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angewandte Chemie International Edition 2021, 60 (29) , 15705-15723. https://doi.org/10.1002/anie.202016575
    49. Zhengyuan Xin, Hui Wang, Haibing He, Xiaoli Zhao, Shuanhu Gao. Asymmetric Total Synthesis of Norzoanthamine. Angewandte Chemie 2021, 133 (23) , 12917-12922. https://doi.org/10.1002/ange.202102643
    50. Zhengyuan Xin, Hui Wang, Haibing He, Xiaoli Zhao, Shuanhu Gao. Asymmetric Total Synthesis of Norzoanthamine. Angewandte Chemie International Edition 2021, 60 (23) , 12807-12812. https://doi.org/10.1002/anie.202102643
    51. Josefa Anaya, Ramón M. Sánchez. Four-membered ring systems. 2021, 53-91. https://doi.org/10.1016/B978-0-323-98410-2.00004-7

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2020, 142, 43, 18599–18618
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.0c08231
    Published September 29, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    9005

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.