ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

High-Mobility Semiconducting Two-Dimensional Conjugated Covalent Organic Frameworks with p-Type Doping

  • Mingchao Wang
    Mingchao Wang
    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
  • Mao Wang
    Mao Wang
    Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
    More by Mao Wang
  • Hung-Hsuan Lin
    Hung-Hsuan Lin
    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
  • Marco Ballabio
    Marco Ballabio
    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
  • Haixia Zhong
    Haixia Zhong
    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
    More by Haixia Zhong
  • Mischa Bonn
    Mischa Bonn
    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
    More by Mischa Bonn
  • Shengqiang Zhou
    Shengqiang Zhou
    Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden, Germany
  • Thomas Heine
    Thomas Heine
    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
    More by Thomas Heine
  • Enrique Cánovas*
    Enrique Cánovas
    Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
    Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Faraday 9, 28049 Madrid, Spain
    *[email protected]
  • Renhao Dong*
    Renhao Dong
    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
    *[email protected]
    More by Renhao Dong
  • , and 
  • Xinliang Feng*
    Xinliang Feng
    Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
    *[email protected]
Cite this: J. Am. Chem. Soc. 2020, 142, 52, 21622–21627
Publication Date (Web):December 17, 2020
https://doi.org/10.1021/jacs.0c10482
Copyright © 2020 American Chemical Society

    Article Views

    11938

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are emerging as a unique class of semiconducting 2D conjugated polymers for (opto)electronics and energy storage. Doping is one of the common, reliable strategies to control the charge carrier transport properties, but the precise mechanism underlying COF doping has remained largely unexplored. Here we demonstrate molecular iodine doping of a metal–phthalocyanine-based pyrazine-linked 2D c-COF. The resultant 2D c-COF ZnPc-pz-I2 maintains its structural integrity and displays enhanced conductivity by 3 orders of magnitude, which is the result of elevated carrier concentrations. Remarkably, Hall effect measurements reveal enhanced carrier mobility reaching ∼22 cm2 V–1 s–1 for ZnPc-pz-I2, which represents a record value for 2D c-COFs in both the direct-current and alternating-current limits. This unique transport phenomenon with largely increased mobility upon doping can be traced to increased scattering time for free charge carriers, indicating that scattering mechanisms limiting the mobility are mitigated by doping. Our work provides a guideline on how to assess doping effects in COFs and highlights the potential of 2D c-COFs to display high conductivities and mobilities toward novel (opto)electronic devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c10482.

    • Synthetic details, characterization, modeling, conductivity measurements, and terahertz experiments (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 118 publications.

    1. Xiao Luo, Yunlei Wang, Haifeng Lv, Xiaojun Wu. Asymmetric Potential Model of Two-Dimensional Imine Covalent Organic Frameworks with Enhanced Quantum Efficiency for Photocatalytic Water Splitting. The Journal of Physical Chemistry Letters 2024, 15 (20) , 5467-5475. https://doi.org/10.1021/acs.jpclett.4c00980
    2. Itishree Pradhan, Anwesha Mahapatra, Priyanka Priyadarshani Samal, Puneet Mishra, Prashant Kumar, Alpana Nayak. Liquid–Liquid Interface-Assisted Self-Assembly of Ag-Doped ZnO Nanosheets for Atomic Switch Application. The Journal of Physical Chemistry Letters 2024, 15 (1) , 165-172. https://doi.org/10.1021/acs.jpclett.3c02791
    3. Chitvan Jain, Rinku Kushwaha, Deepak Rase, Pragalbh Shekhar, Ankita Shelke, Disha Sonwani, Thalasseril G. Ajithkumar, Chathakudath Prabhakaran Vinod, Ramanathan Vaidhyanathan. Tailoring COFs: Transforming Nonconducting 2D Layered COF into a Conducting Quasi-3D Architecture via Interlayer Knitting with Polypyrrole. Journal of the American Chemical Society 2024, 146 (1) , 487-499. https://doi.org/10.1021/jacs.3c09937
    4. Boxu Feng, Xiyu Chen, Pu Yan, Senhe Huang, Chenbao Lu, Huiping Ji, Jinhui Zhu, Zhi Yang, Kecheng Cao, Xiaodong Zhuang. Isomeric Dual-Pore Two-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society 2023, 145 (49) , 26871-26882. https://doi.org/10.1021/jacs.3c09559
    5. Yi Zhang, Xiyuan Zhang, Long Jiao, Zheng Meng, Hai-Long Jiang. Conductive Covalent Organic Frameworks of Polymetallophthalocyanines as a Tunable Platform for Electrocatalysis. Journal of the American Chemical Society 2023, 145 (44) , 24230-24239. https://doi.org/10.1021/jacs.3c08594
    6. Yangyang Wan, Pengting Sun, Lebin Shi, Xiaohong Yan, Xu Zhang. Three-Dimensional Fully Conjugated Covalent Organic Frameworks for Efficient Photocatalytic Water Splitting. The Journal of Physical Chemistry Letters 2023, 14 (33) , 7411-7420. https://doi.org/10.1021/acs.jpclett.3c01850
    7. Dong Wang, Hongde Yu, Wen Shi, Chunlin Xu. Chemical Doping of Organic and Coordination Polymers for Thermoelectric and Spintronic Applications: A Theoretical Understanding. Accounts of Chemical Research 2023, 56 (16) , 2127-2138. https://doi.org/10.1021/acs.accounts.3c00091
    8. Zhen Shan, Miaomiao Wu, Tongtong Liu, Jinjian Wang, Congjie Chen, Shufan Li, Jian Su, Gen Zhang. Adjusting the Stacking Model of Two-Dimensional Covalent Organic Frameworks for Volatile Acid Sensing via Spatial Effects. ACS Applied Materials & Interfaces 2023, 15 (29) , 35350-35357. https://doi.org/10.1021/acsami.3c05702
    9. David W. Burke, Raghunath R. Dasari, Vinod K. Sangwan, Alexander K. Oanta, Zoheb Hirani, Chloe E. Pelkowski, Yongjian Tang, Ruofan Li, Daniel C. Ralph, Mark C. Hersam, Stephen Barlow, Seth R. Marder, William R. Dichtel. Synthesis, Hole Doping, and Electrical Properties of a Semiconducting Azatriangulene-Based Covalent Organic Framework. Journal of the American Chemical Society 2023, 145 (22) , 11969-11977. https://doi.org/10.1021/jacs.2c12371
    10. Pengyu Dong, Ting Cheng, Jin-long Zhang, Jinhui Jiang, Lei Zhang, Xinguo Xi, Jinlong Zhang. Fabrication of an Organic/Inorganic Hybrid TpPa-1-COF/ZnIn2S4 S-Scheme Heterojunction for Boosted Photocatalytic Hydrogen Production. ACS Applied Energy Materials 2023, 6 (2) , 1103-1115. https://doi.org/10.1021/acsaem.2c03806
    11. Ai Fu, Guangzheng Yi, Yuan Li. Phonon-Limited Electron Transport in a Highly Conductive Two-Dimensional Covalent Organic Framework: A Computational Study. The Journal of Physical Chemistry C 2022, 126 (47) , 20127-20134. https://doi.org/10.1021/acs.jpcc.2c06211
    12. Xiaoyi Xu, Peiyu Cai, Hongzheng Chen, Hong-Cai Zhou, Ning Huang. Three-Dimensional Covalent Organic Frameworks with she Topology. Journal of the American Chemical Society 2022, 144 (40) , 18511-18517. https://doi.org/10.1021/jacs.2c07733
    13. Luoxing Xiang, Siqi Yuan, Faxing Wang, Zhihan Xu, Xiuhong Li, Feng Tian, Liang Wu, Wei Yu, Yiyong Mai. Porous Polymer Cubosomes with Ordered Single Primitive Bicontinuous Architecture and Their Sodium–Iodine Batteries. Journal of the American Chemical Society 2022, 144 (34) , 15497-15508. https://doi.org/10.1021/jacs.2c02881
    14. Hongde Yu, Dong Wang. Suppressing the Excitonic Effect in Covalent Organic Frameworks for Metal-Free Hydrogen Generation. JACS Au 2022, 2 (8) , 1848-1856. https://doi.org/10.1021/jacsau.2c00169
    15. Xuan Wang, Xing Han, Cheng Cheng, Xing Kang, Yan Liu, Yong Cui. 2D Covalent Organic Frameworks with cem Topology. Journal of the American Chemical Society 2022, 144 (16) , 7366-7373. https://doi.org/10.1021/jacs.2c01082
    16. Shuai Fu, Enquan Jin, Hiroki Hanayama, Wenhao Zheng, Heng Zhang, Lucia Di Virgilio, Matthew A. Addicoat, Markus Mezger, Akimitsu Narita, Mischa Bonn, Klaus Müllen, Hai I. Wang. Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks. Journal of the American Chemical Society 2022, 144 (16) , 7489-7496. https://doi.org/10.1021/jacs.2c02408
    17. Cheng-Hao Liu, Allan Wei, Maïline Fok Cheung, Dmytro F. Perepichka. Vanishing Electronic Band Gap in Two-Dimensional Hydrogen-Bonded Organic Frameworks. Chemistry of Materials 2022, 34 (7) , 3461-3467. https://doi.org/10.1021/acs.chemmater.2c00294
    18. Yue Zhao, Ling Liu, Shuangjie Liu, Yang Wang, Yonghui Li, Xiao-Dong Zhang. Electronic and Near-Infrared-II Optical Properties of I-Doped Monolayer MoTe2: A First-Principles Study. ACS Omega 2022, 7 (14) , 11956-11963. https://doi.org/10.1021/acsomega.2c00071
    19. Dong Yan, Zhifang Wang, Zhenjie Zhang. Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications. Accounts of Chemical Research 2022, 55 (7) , 1047-1058. https://doi.org/10.1021/acs.accounts.2c00027
    20. Seong-Wook Kim, Sein Chung, Gao-Feng Han, Jeong-Min Seo, Hyuk-Jun Noh, Seok-Jin Kim, Jong-Pil Jeon, Eunho Lee, Boseok Kang, Javeed Mahmood, Kilwon Cho, Jong-Beom Baek. Solution-Processable Semiconducting Conjugated Planar Network. ACS Applied Materials & Interfaces 2022, 14 (12) , 14588-14595. https://doi.org/10.1021/acsami.2c00368
    21. Guolong Xing, Wenhao Zheng, Lei Gao, Ting Zhang, Xiaowei Wu, Shuai Fu, Xiaoyu Song, Ziqiang Zhao, Silvio Osella, Marta Martínez-Abadía, Hai I. Wang, Jinming Cai, Aurelio Mateo-Alonso, Long Chen. Nonplanar Rhombus and Kagome 2D Covalent Organic Frameworks from Distorted Aromatics for Electrical Conduction. Journal of the American Chemical Society 2022, 144 (11) , 5042-5050. https://doi.org/10.1021/jacs.1c13534
    22. Yan Yue, Hanying Li, Hongzheng Chen, Ning Huang. Piperazine-Linked Covalent Organic Frameworks with High Electrical Conductivity. Journal of the American Chemical Society 2022, 144 (7) , 2873-2878. https://doi.org/10.1021/jacs.1c13012
    23. Shashini D. Diwakara, Whitney S. Y. Ong, Yalini H. Wijesundara, Robert L. Gearhart, Fabian C. Herbert, Sarah G. Fisher, Gregory T. McCandless, Sampath B. Alahakoon, Jeremiah J. Gassensmith, Sheel C. Dodani, Ronald A. Smaldone. Supramolecular Reinforcement of a Large-Pore 2D Covalent Organic Framework. Journal of the American Chemical Society 2022, 144 (6) , 2468-2473. https://doi.org/10.1021/jacs.1c12020
    24. Xiao-Rui Ren, Bin Bai, Qingsong Zhang, Qing Hao, Yunlong Guo, Li-Jun Wan, Dong Wang. Constructing Stable Chromenoquinoline-Based Covalent Organic Frameworks via Intramolecular Povarov Reaction. Journal of the American Chemical Society 2022, 144 (6) , 2488-2494. https://doi.org/10.1021/jacs.1c13005
    25. Arseni Borissov, Yogesh Kumar Maurya, Liliia Moshniaha, Wai-Shing Wong, Marika Żyła-Karwowska, Marcin Stępień. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chemical Reviews 2022, 122 (1) , 565-788. https://doi.org/10.1021/acs.chemrev.1c00449
    26. Pengyu Dong, Yan Wang, Aicaijun Zhang, Ting Cheng, Xinguo Xi, Jinlong Zhang. Platinum Single Atoms Anchored on a Covalent Organic Framework: Boosting Active Sites for Photocatalytic Hydrogen Evolution. ACS Catalysis 2021, 11 (21) , 13266-13279. https://doi.org/10.1021/acscatal.1c03441
    27. Yan Yue, Peiyu Cai, Kai Xu, Hanying Li, Hongzheng Chen, Hong-Cai Zhou, Ning Huang. Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. Journal of the American Chemical Society 2021, 143 (43) , 18052-18060. https://doi.org/10.1021/jacs.1c06238
    28. Raja Ghosh, Francesco Paesani. Topology-Mediated Enhanced Polaron Coherence in Covalent Organic Frameworks. The Journal of Physical Chemistry Letters 2021, 12 (39) , 9442-9448. https://doi.org/10.1021/acs.jpclett.1c02454
    29. Shitao Wang, Xiang-Xiang Li, Ling Da, Yaqin Wang, Zhehao Xiang, Wei Wang, Yue-Biao Zhang, Dapeng Cao. A Three-Dimensional sp2 Carbon-Conjugated Covalent Organic Framework. Journal of the American Chemical Society 2021, 143 (38) , 15562-15566. https://doi.org/10.1021/jacs.1c06986
    30. Michael T. Quick, Nina Owschimikow, Alexander W. Achtstein. Terahertz Charge Carrier Mobility in 1D and 2D Semiconductor Nanoparticles. The Journal of Physical Chemistry Letters 2021, 12 (32) , 7688-7695. https://doi.org/10.1021/acs.jpclett.1c02045
    31. Zhen Shan, Miaomiao Wu, Yihan Du, Bingqing Xu, Boying He, Xiaowei Wu, Gen Zhang. Covalent Organic Framework-Based Electrolytes for Fast Li+ Conduction and High-Temperature Solid-State Lithium-Ion Batteries. Chemistry of Materials 2021, 33 (13) , 5058-5066. https://doi.org/10.1021/acs.chemmater.1c00978
    32. Bin Han, Xu Ding, Baoqiu Yu, Hui Wu, Wei Zhou, Wenping Liu, Chuangyu Wei, Baotong Chen, Dongdong Qi, Hailong Wang, Kang Wang, Yanli Chen, Banglin Chen, Jianzhuang Jiang. Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society 2021, 143 (18) , 7104-7113. https://doi.org/10.1021/jacs.1c02145
    33. Qi Liu, Qiqi Sun, Yuming Zhang, Hao Li, Wenmiao Chen, Yuexing Zhang, Sirong Yu, Yanli Chen, Jianzhuang Jiang. Universal synthesis of metallophthalocyanine covalent organic frameworks as ultra-sensitive multifaceted electrochemical sensor. Science China Chemistry 2024, 424 https://doi.org/10.1007/s11426-024-1998-5
    34. Yaqin Wang, Zelong Qiao, Han Li, Rui Zhang, Zhonghua Xiang, Dapeng Cao, Shitao Wang. Molecular Engineering for Modulating Photocatalytic Hydrogen Evolution of Fully Conjugated 3D Covalent Organic Frameworks. Angewandte Chemie 2024, 66 https://doi.org/10.1002/ange.202404726
    35. Yaqin Wang, Zelong Qiao, Han Li, Rui Zhang, Zhonghua Xiang, Dapeng Cao, Shitao Wang. Molecular Engineering for Modulating Photocatalytic Hydrogen Evolution of Fully Conjugated 3D Covalent Organic Frameworks. Angewandte Chemie International Edition 2024, 141 https://doi.org/10.1002/anie.202404726
    36. Guang‐en Fu, Haoyong Yang, Wenkai Zhao, Paolo Samorì, Tao Zhang. 2D Conjugated Polymer Thin Films for Organic Electronics: Opportunities and Challenges. Advanced Materials 2024, 145 https://doi.org/10.1002/adma.202311541
    37. Lei Zhang, Changlang Liu, Zhifan Ke, Qiliang Zhu, Xinhua Huang, Guangzhi Hu, Ruikun Zhao. Doping and heterostructure engineering regulated I-Ni(OH)2/Co(OH)2@nickel foam charge buffer electrode for decoupled and alternating water splitting. Journal of Alloys and Compounds 2024, 980 , 173660. https://doi.org/10.1016/j.jallcom.2024.173660
    38. Yeonsang Lee, Minhyuk Choi, Ina Park, In-Chul Hwang, Sk. Atiur Rahaman, Hee Jun Shin, Pritam Giri, Moon-Ho Jo, Kangkyun Baek, Ilha Hwang, Ji Hoon Shim, Jun Sung Kim, Kimoon Kim. Observation of ultrafast electrons in pendant-embedded conducting two-dimensional polymers. Chem 2024, 10 (4) , 1160-1174. https://doi.org/10.1016/j.chempr.2023.12.007
    39. Adithyan Puthukkudi, Satyapriya Nath, Payel Shee, Arpita Dutta, Chetan V. Rajput, Suresh Bommakanti, Jeebanjyoti Mohapatra, Mahalaxmi Samal, Sharmistha Anwar, Shovon Pal, Bishnu P. Biswal. Terahertz Conductivity of Free‐Standing 3D Covalent Organic Framework Membranes Fabricated via Triple‐Layer‐Dual Interfacial Approach. Advanced Materials 2024, 36 (16) https://doi.org/10.1002/adma.202312960
    40. Ran Zheng, Dong Meng, Yang Yang. Noncovalent π-stacked organic frameworks (πOFs): A promising class of porous materials. Materials Today 2024, 32 https://doi.org/10.1016/j.mattod.2024.04.002
    41. Yanan Lei, Jie Cheng, Huanli Dong, Peilong Wang. Functional porous material-based sensors for food safety. Coordination Chemistry Reviews 2024, 501 , 215566. https://doi.org/10.1016/j.ccr.2023.215566
    42. Yuhua Zhu, Shuhong Zhang, Xiaofeng Qiu, Quanguo Hao, Yan Wu, Zhu Luo, Yanbing Guo. Graphdiyne/metal oxide hybrid materials for efficient energy and environmental catalysis. Chemical Science 2024, 9 https://doi.org/10.1039/D4SC00036F
    43. Donglin Chen, Jinpeng Li, Xudong Mei, Xiaoyun Liu, Peiyuan Zuo, Xunlin Qiu, Qixin Zhuang. Adjustable Plane Curvature of Covalent Organic Framework Enabling Outstanding Dielectric, Electret, and High‐Temperature Processing Properties. Angewandte Chemie 2023, 135 (51) https://doi.org/10.1002/ange.202315143
    44. Donglin Chen, Jinpeng Li, Xudong Mei, Xiaoyun Liu, Peiyuan Zuo, Xunlin Qiu, Qixin Zhuang. Adjustable Plane Curvature of Covalent Organic Framework Enabling Outstanding Dielectric, Electret, and High‐Temperature Processing Properties. Angewandte Chemie International Edition 2023, 62 (51) https://doi.org/10.1002/anie.202315143
    45. Yueshuai Xu, Guanshi Ren, Dianqi Zhang, Lishui Sun, Yingjie Zhao. Fully Conjugated Covalent Organic Frameworks: Synthesis, Structures and Applications †. Chinese Journal of Chemistry 2023, 41 (23) , 3447-3472. https://doi.org/10.1002/cjoc.202300244
    46. Konrad Merkel, Johannes Greiner, Frank Ortmann. Understanding the electronic pi-system of 2D covalent organic frameworks with Wannier functions. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-28285-w
    47. Guojun Zhou, Taimin Yang, Zhehao Huang. Structure determination of a low-crystallinity covalent organic framework by three-dimensional electron diffraction. Communications Chemistry 2023, 6 (1) https://doi.org/10.1038/s42004-023-00915-4
    48. Qi Liu, Hao Li, Yuming Zhang, Wenmiao Chen, Sirong Yu, Yanli Chen. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. Environmental Research 2023, 239 , 117406. https://doi.org/10.1016/j.envres.2023.117406
    49. Guojuan Liu, Xuewen Li, Minghao Liu, Xiubei Yang, Zhuangyan Guo, Xinqing Chen, Qing Xu, Gaofeng Zeng, Yue He. Dimensional engineering of covalent organic frameworks derived carbons for electrocatalytic carbon dioxide reduction. SusMat 2023, 3 (6) , 834-842. https://doi.org/10.1002/sus2.167
    50. Tian-Tian Song, Wei-Qiang Huang, Kai-Bin Jiang, Wen-Fa Chen, Yu Zhou, Hong-Yi Bian, Ming-Sheng Wang, Guo-Cong Guo. Significant increase of the photoresponse range and conductivity for a chalcogenide semiconductor by viologen coating through charge transfer. Materials Horizons 2023, 10 (12) , 5677-5683. https://doi.org/10.1039/D3MH01241G
    51. Yicong Ge, Qiang Yan, Jiang Nan. Advancement of vinylene carbonate as a coupling partner in metal-catalyzed C–H functionalization. Organic Chemistry Frontiers 2023, 10 (22) , 5717-5734. https://doi.org/10.1039/D3QO01227A
    52. Teng Li, Yuan Pan, Binbin Shao, Xiansheng Zhang, Ting Wu, Qingyun He, Miao He, Lin Ge, Linfeng Zhou, Sheng Liu, Xuemei Zheng, Jie Ye, Zhifeng Liu. Covalent–Organic Framework (COF)‐Core–Shell Composites: Classification, Synthesis, Properties, and Applications. Advanced Functional Materials 2023, 33 (45) https://doi.org/10.1002/adfm.202304990
    53. Guanglong Ding, JiYu Zhao, Kui Zhou, Qi Zheng, Su-Ting Han, Xiaojun Peng, Ye Zhou. Porous crystalline materials for memories and neuromorphic computing systems. Chemical Society Reviews 2023, 52 (20) , 7071-7136. https://doi.org/10.1039/D3CS00259D
    54. Wenjin Li, Wenzhe Xiao, Qizhen Luo, Jipeng Yan, Guang Zhang, Long Chen, Jian Sun. Ionic liquids promoted synthesis, enhanced functions, and expanded applications of porous organic frameworks. Coordination Chemistry Reviews 2023, 493 , 215304. https://doi.org/10.1016/j.ccr.2023.215304
    55. Narges Abdolhossein Rejali, Mohammad Dinari, Yong Wang. Post-synthetic modifications of covalent organic frameworks (COFs) for diverse applications. Chemical Communications 2023, 59 (78) , 11631-11647. https://doi.org/10.1039/D3CC03091A
    56. Rui Wang, Hang Lyu, Gerald Siu Hang Poon Ho, Huanhuan Chen, Yufei Yuan, Ki‐Taek Bang, Yoonseob Kim. Highly Conductive Covalent–Organic Framework Films. Small 2023, https://doi.org/10.1002/smll.202306634
    57. Marcin Wojciechowski. Radiofrequency Measuring Receiver with Spectrum Analyzer Function as a Tool for Noise Measurement of Semiconductor Structures. 2023, 1-5. https://doi.org/10.1109/EMCEurope57790.2023.10274310
    58. Qiao‐Qiao Jiang, Ya‐Jie Li, Qiong Wu, Ru‐Ping Liang, Xun Wang, Rui Zhang, Ying‐Ao Wang, Xin Liu, Jian‐Ding Qiu. Molecular Insertion: A Master Key to Unlock Smart Photoelectric Responses of Covalent Organic Frameworks. Small 2023, 19 (39) https://doi.org/10.1002/smll.202302254
    59. Yamei Liu, Mingchao Wang, Changlin Dong, Hongde Yu, Yang Lu, Xing Huang, Silvia Paasch, Eike Brunner, Thomas Heine, Fang Song, Florian Auras, Fugui Xu, Yiyong Mai, Xinliang Feng. A thienyl‐benzodithiophene‐based two‐dimensional conjugated covalent organic framework for fast photothermal conversion. Journal of Polymer Science 2023, 61 (16) , 1843-1848. https://doi.org/10.1002/pol.20230090
    60. Wei‐Hua Deng, Qiao‐Hong Li, Jie Chen, Chuan‐Zhe Wang, Zhi‐Hua Fu, Xiao‐Liang Ye, Guan‐E Wang, Gang Xu. A Humidity‐Induced Large Electronic Conductivity Change of 10 7 on a Metal‐Organic Framework for Highly Sensitive Water Detection. Angewandte Chemie 2023, 135 (31) https://doi.org/10.1002/ange.202305977
    61. Wei‐Hua Deng, Qiao‐Hong Li, Jie Chen, Chuan‐Zhe Wang, Zhi‐Hua Fu, Xiao‐Liang Ye, Guan‐E Wang, Gang Xu. A Humidity‐Induced Large Electronic Conductivity Change of 10 7 on a Metal‐Organic Framework for Highly Sensitive Water Detection. Angewandte Chemie International Edition 2023, 62 (31) https://doi.org/10.1002/anie.202305977
    62. Chenghan Yang, Chunfeng Mao, Qinghua Deng, Yong Yang, Yuming Zhou, Yiwei Zhang. One-Pot synthesis of flavones catalyzed by an Au-mediated covalent organic framework. Journal of Colloid and Interface Science 2023, 642 , 283-291. https://doi.org/10.1016/j.jcis.2023.03.151
    63. Mingchao Wang, Shuai Fu, Petko Petkov, Yubin Fu, Zhitao Zhang, Yannan Liu, Ji Ma, Guangbo Chen, Sai Manoj Gali, Lei Gao, Yang Lu, Silvia Paasch, Haixia Zhong, Hans-Peter Steinrück, Enrique Cánovas, Eike Brunner, David Beljonne, Mischa Bonn, Hai I. Wang, Renhao Dong, Xinliang Feng. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nature Materials 2023, 22 (7) , 880-887. https://doi.org/10.1038/s41563-023-01581-6
    64. Wei-Kang Qin, Chen-Ho Tung, Li-Zhu Wu. Covalent organic framework and hydrogen-bonded organic framework for solar-driven photocatalysis. Journal of Materials Chemistry A 2023, 11 (24) , 12521-12538. https://doi.org/10.1039/D2TA09375H
    65. Guoying Ren, Fengshi Cai, Shoucheng Wang, Zhiqiang Luo, Zhihao Yuan. Iodine doping induced activation of covalent organic framework cathodes for Li-ion batteries. RSC Advances 2023, 13 (27) , 18983-18990. https://doi.org/10.1039/D3RA01414B
    66. Wen Fang Wei, Xue Li, Kaiyue Jiang, Bin Zhang, Xiaodong Zhuang, Tao Cai. Exploiting Reusable Edge‐Functionalized Metal‐Free Polyphthalocyanine Networks for Efficient Polymer Synthesis at Near Infrared Wavelengths. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202304608
    67. Wen Fang Wei, Xue Li, Kaiyue Jiang, Bin Zhang, Xiaodong Zhuang, Tao Cai. Exploiting Reusable Edge‐Functionalized Metal‐Free Polyphthalocyanine Networks for Efficient Polymer Synthesis at Near Infrared Wavelengths. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202304608
    68. Xiaoyi Xu, Yue Yue, Guoqing Xin, Ning Huang. Rational Construction of Electrically Conductive Covalent Organic Frameworks through Encapsulating Fullerene via Donor–Acceptor Interaction. Macromolecular Rapid Communications 2023, 44 (11) https://doi.org/10.1002/marc.202200715
    69. Shaofeng Huang, Ji Yong Choi, Qiucheng Xu, Yinghua Jin, Jihye Park, Wei Zhang. Carbazolylene‐Ethynylene Macrocycle based Conductive Covalent Organic Frameworks. Angewandte Chemie International Edition 2023, 62 (22) https://doi.org/10.1002/anie.202303538
    70. Shaofeng Huang, Ji Yong Choi, Qiucheng Xu, Yinghua Jin, Jihye Park, Wei Zhang. Carbazolylene‐Ethynylene Macrocycle based Conductive Covalent Organic Frameworks. Angewandte Chemie 2023, 135 (22) https://doi.org/10.1002/ange.202303538
    71. Mingchao Shao, Yunqi Liu, Yunlong Guo. Customizable 2D Covalent Organic Frameworks for Optoelectronic Applications. Chinese Journal of Chemistry 2023, 41 (10) , 1260-1285. https://doi.org/10.1002/cjoc.202200664
    72. Qi Liu, Qiqi Sun, Jingshun Shen, Hao Li, Yuming Zhang, Wenmiao Chen, Sirong Yu, Xiyou Li, Yanli Chen. Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coordination Chemistry Reviews 2023, 482 , 215078. https://doi.org/10.1016/j.ccr.2023.215078
    73. Xiyu Chen, Min Zeng, Jianhua Yang, Nantao Hu, Xiaoyong Duan, Wei Cai, Yanjie Su, Zhi Yang. Two-Dimensional Bimetallic Phthalocyanine Covalent-Organic-Framework-Based Chemiresistive Gas Sensor for ppb-Level NO2 Detection. Nanomaterials 2023, 13 (10) , 1660. https://doi.org/10.3390/nano13101660
    74. Yufei Yuan, Ki‐Taek Bang, Rui Wang, Yoonseob Kim. Macrocycle‐Based Covalent Organic Frameworks. Advanced Materials 2023, 35 (16) https://doi.org/10.1002/adma.202210952
    75. Ruofan Li, Guolong Xing, Hui Li, Shen Li, Long Chen. A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. Chinese Chemical Letters 2023, 34 (4) , 107454. https://doi.org/10.1016/j.cclet.2022.04.052
    76. Hanyin Zhang, Yubo Geng, Jin Huang, Zixiao Wang, Kun Du, Haoyuan Li. Charge and mass transport mechanisms in two-dimensional covalent organic frameworks (2D COFs) for electrochemical energy storage devices. Energy & Environmental Science 2023, 16 (3) , 889-951. https://doi.org/10.1039/D2EE02742A
    77. Zhilin Xu, Xu Cui, Yanhui Li, Yanwei Li, Zhenjun Si, Qian Duan. Tetraphenylethylene and porphyrin-based covalent organic framework with square lattice for effective photocatalytic hydrogen evolution. Applied Surface Science 2023, 613 , 155966. https://doi.org/10.1016/j.apsusc.2022.155966
    78. Chunxu Wu, Zipeng Xing, Shilin Yang, Zhenzi Li, Wei Zhou. Nanoreactors for photocatalysis. Coordination Chemistry Reviews 2023, 477 , 214939. https://doi.org/10.1016/j.ccr.2022.214939
    79. Xueli Li, Xianjin Yue, Yifei Wang, Tengge Chen, Yihui Zhou, Di Liu, Hengyang Xiang, Shengli Zhang, Haibo Zeng, Zhonghua Xiang. Electron donor–acceptor (D-A) tuning to achieve soluble covalent organic polymers for optoelectronic devices. eScience 2023, 3 (1) , 100084. https://doi.org/10.1016/j.esci.2022.10.009
    80. Raja Ghosh, Francesco Paesani. Connecting the dots for fundamental understanding of structure–photophysics–property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chemical Science 2023, 14 (5) , 1040-1064. https://doi.org/10.1039/D2SC03793A
    81. Shilpa Palit, Bettina V. Lotsch, Tanmay Banerjee. Understanding solar fuel photocatalysis using covalent organic frameworks. 2022, 403-427. https://doi.org/10.1039/9781839167676-00403
    82. Yannan Liu, Shuai Fu, Dominik L. Pastoetter, Arafat Hossain Khan, Yingying Zhang, Arezoo Dianat, Shunqi Xu, Zhongquan Liao, Marcus Richter, Minghao Yu, Miroslav Položij, Eike Brunner, Gianaurelio Cuniberti, Thomas Heine, Mischa Bonn, Hai I. Wang, Xinliang Feng. Vinylene‐Linked 2D Conjugated Covalent Organic Frameworks by Wittig Reactions. Angewandte Chemie International Edition 2022, 61 (49) https://doi.org/10.1002/anie.202209762
    83. Yannan Liu, Shuai Fu, Dominik L. Pastoetter, Arafat Hossain Khan, Yingying Zhang, Arezoo Dianat, Shunqi Xu, Zhongquan Liao, Marcus Richter, Minghao Yu, Miroslav Položij, Eike Brunner, Gianaurelio Cuniberti, Thomas Heine, Mischa Bonn, Hai I. Wang, Xinliang Feng. Vinylene‐Linked 2D Conjugated Covalent Organic Frameworks by Wittig Reactions. Angewandte Chemie 2022, 134 (49) https://doi.org/10.1002/ange.202209762
    84. Shengcong Shang, Changsheng Du, Youxing Liu, Minghui Liu, Xinyu Wang, Wenqiang Gao, Ye Zou, Jichen Dong, Yunqi Liu, Jianyi Chen. A one-dimensional conductive metal-organic framework with extended π-d conjugated nanoribbon layers. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-35315-0
    85. Mingwan Leng, Lei Fang. Semiconducting ladder-type covalent organic frameworks. Chem 2022, 8 (11) , 2904-2906. https://doi.org/10.1016/j.chempr.2022.10.009
    86. Hyuk-Jun Noh, Sein Chung, Mahmut Sait Okyay, Yoon-Kwang Im, Seong-Wook Kim, Do-Hyung Kweon, Jong-Pil Jeon, Jeong-Min Seo, Na-Hyun Kim, Soo-Young Yu, Youjin Reo, Yong-Young Noh, Boseok Kang, Noejung Park, Javeed Mahmood, Kilwon Cho, Jong-Beom Baek. Hydrophenazine-linked two-dimensional ladder-type crystalline fused aromatic network with high charge transport. Chem 2022, 8 (11) , 3130-3144. https://doi.org/10.1016/j.chempr.2022.08.001
    87. Xiaodong Zhao, Huaji Pang, Dekang Huang, Gang Liu, Jianxiang Hu, Yonggang Xiang. Construction of Ultrastable Nonsubstituted Quinoline‐Bridged Covalent Organic Frameworks via Rhodium‐Catalyzed Dehydrogenative Annulation. Angewandte Chemie 2022, 134 (41) https://doi.org/10.1002/ange.202208833
    88. Xiaodong Zhao, Huaji Pang, Dekang Huang, Gang Liu, Jianxiang Hu, Yonggang Xiang. Construction of Ultrastable Nonsubstituted Quinoline‐Bridged Covalent Organic Frameworks via Rhodium‐Catalyzed Dehydrogenative Annulation. Angewandte Chemie International Edition 2022, 61 (41) https://doi.org/10.1002/anie.202208833
    89. Chengfei Qian, Ronghao Wang, Feng Yu, He Liu, Cong Guo, Kaiwen Sun, Jingfa Li, Weizhai Bao. Conductive Covalent Organic Frameworks Meet Micro-Electrical Energy Storage: Mechanism, Synthesis and Applications—A Review. Crystals 2022, 12 (10) , 1405. https://doi.org/10.3390/cryst12101405
    90. Xueli Li, Qingbin Liu, Bolong Yang, Zhijian Liao, Wensheng Yan, Zhonghua Xiang. An Initial Covalent Organic Polymer with Closed‐F Edges Directly for Proton‐Exchange‐Membrane Fuel Cells. Advanced Materials 2022, 34 (36) https://doi.org/10.1002/adma.202204570
    91. Tiantian Feng, Bing Sun, Qing Hao, Jing Li, Ying Xu, Hong Shang, Dong Wang. Ambient synthesis of metal–covalent organic frameworks with Fe-iminopyridine linkages. Chemical Communications 2022, 58 (63) , 8830-8833. https://doi.org/10.1039/D2CC03148E
    92. Wendao Xu, Song Wang, Wei Li, Ziyang Zhang, Yingli Wang, Yuhao Yang, Haoran Zhang, Pingwei Liu, Lijuan Xie, Yibin Ying. Pesticide detection with covalent-organic-framework nanofilms at terahertz band. Biosensors and Bioelectronics 2022, 209 , 114274. https://doi.org/10.1016/j.bios.2022.114274
    93. Xiya Yang, Yucheng Jin, Baoqiu Yu, Lei Gong, Wenbo Liu, Xiaolin Liu, Xin Chen, Kang Wang, Jianzhuang Jiang. Two-dimensional conjugated N-rich covalent organic frameworks for superior sodium storage. Science China Chemistry 2022, 65 (7) , 1291-1298. https://doi.org/10.1007/s11426-022-1269-0
    94. Yunyang Zhu, Weijun Weng, Ting Zhou, Zheng Lin, Ning Ding, Phornphimon Maitarad, Changchun Wang, Jia Guo. Iodine-doped covalent organic frameworks with coaxially stacked cruciform anthracenes for high Hall mobility. Chemical Communications 2022, 58 (46) , 6606-6609. https://doi.org/10.1039/D2CC01721K
    95. Qianying Guo, Hongyan Ji, Lei Yang, Daizong Ji, Zhaolin Ai, Shi Luo, Jiatao Sun, Yunqi Liu, Dacheng Wei. Olefin-linked covalent organic frameworks with twisted tertiary amine knots for enhanced ultraviolet detection. Chinese Chemical Letters 2022, 33 (5) , 2621-2624. https://doi.org/10.1016/j.cclet.2021.09.082
    96. Cheng-Hao Liu, Yoko Sakai-Otsuka, Paul Richardson, Muhammad Rizwan Niazi, Ehsan Hamzehpoor, Thaksen Jadhav, Akaela Michels-Gualteri, Yuan Fang, Muralee Murugesu, Dmytro F. Perepichka. A 2D perchlorinated sp2-carbon framework. Cell Reports Physical Science 2022, 3 (5) , 100858. https://doi.org/10.1016/j.xcrp.2022.100858
    97. Xing Li, Kun Zhang, Gang Wang, Yijia Yuan, Gaolei Zhan, Tanmay Ghosh, Walter P. D. Wong, Fangzheng Chen, Hai-Sen Xu, Utkur Mirsaidov, Keyu Xie, Junhao Lin, Kian Ping Loh. Constructing ambivalent imidazopyridinium-linked covalent organic frameworks. Nature Synthesis 2022, 1 (5) , 382-392. https://doi.org/10.1038/s44160-022-00071-y
    98. Patrick W. Fritz, Tianyang Chen, Timur Ashirov, Anh‐Dao Nguyen, Mircea Dincă, Ali Coskun. Fully Conjugated Tetraoxa[8]circulene‐Based Porous Semiconducting Polymers. Angewandte Chemie 2022, 134 (17) https://doi.org/10.1002/ange.202116527
    99. Patrick W. Fritz, Tianyang Chen, Timur Ashirov, Anh‐Dao Nguyen, Mircea Dincă, Ali Coskun. Fully Conjugated Tetraoxa[8]circulene‐Based Porous Semiconducting Polymers. Angewandte Chemie International Edition 2022, 61 (17) https://doi.org/10.1002/anie.202116527
    100. Congyong Wang, Zhicheng Zhang, Yating Zhu, Chenhuai Yang, Jishan Wu, Wenping Hu. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical‐Electrical‐Magnetic Functionalities. Advanced Materials 2022, 34 (17) https://doi.org/10.1002/adma.202102290
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect