ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Chemoselective Cleavage of Si–C(sp3) Bonds in Unactivated Tetraalkylsilanes Using Iodine Tris(trifluoroacetate)

  • Keitaro Matsuoka
    Keitaro Matsuoka
    Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
  • Narumi Komami
    Narumi Komami
    Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
  • Masahiro Kojima
    Masahiro Kojima
    Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
  • Tsuyoshi Mita
    Tsuyoshi Mita
    Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
    JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
  • Kimichi Suzuki
    Kimichi Suzuki
    Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
    JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
    Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
  • Satoshi Maeda
    Satoshi Maeda
    Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
    JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
    Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
  • Tatsuhiko Yoshino*
    Tatsuhiko Yoshino
    Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
    *[email protected]
  • , and 
  • Shigeki Matsunaga*
    Shigeki Matsunaga
    Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
    Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
    *[email protected]
Cite this: J. Am. Chem. Soc. 2021, 143, 1, 103–108
Publication Date (Web):December 24, 2020
https://doi.org/10.1021/jacs.0c11645
Copyright © 2020 American Chemical Society

    Article Views

    7328

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Organosilanes are synthetically useful reagents and precursors in organic chemistry. However, the typical inertness of unactivated Si–C(sp3) bonds under conventional reaction conditions has hampered the application of simple tetraalkylsilanes in organic synthesis. Herein we report the chemoselective cleavage of Si–C(sp3) bonds of unactivated tetraalkylsilanes using iodine tris(trifluoroacetate). The reaction proceeds smoothly under mild conditions (−50 °C to room temperature) and tolerates various polar functional groups, thus enabling subsequent Tamao–Fleming oxidation to provide the corresponding alcohols. NMR experiments and density functional theory calculations on the reaction indicate that the transfer of alkyl groups from Si to the I(III) center and the formation of the Si–O bond proceed concertedly to afford an alkyl-λ3-iodane and silyl trifluoroacetate. The developed method enables the use of unactivated tetraalkylsilanes as highly stable synthetic precursors.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c11645.

    • Experimental procedures and spectral data for all new compounds (PDF)

    • Cartesian coordinates (XYZ)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 24 publications.

    1. Alison Sy-min Chang, Kiana E. Kawamura, Hayden S. Henness, Victor M. Salpino, Jack C. Greene, Lev N. Zakharov, Amanda K. Cook. (NHC)Ni(0)-Catalyzed Branched-Selective Alkene Hydrosilylation with Secondary and Tertiary Silanes. ACS Catalysis 2022, 12 (18) , 11002-11014. https://doi.org/10.1021/acscatal.2c03580
    2. Bin Yang, Kangning Cao, Guofeng Zhao, Junfeng Yang, Junliang Zhang. Pd/Ming-Phos-Catalyzed Asymmetric Three-Component Arylsilylation of N-Sulfonylhydrazones: Enantioselective Synthesis of gem-Diarylmethine Silanes. Journal of the American Chemical Society 2022, 144 (34) , 15468-15474. https://doi.org/10.1021/jacs.2c07037
    3. Cong Luo, Yang Zhou, Hang Chen, Ting Wang, Zheng-Bing Zhang, Pan Han, Lin-Hai Jing. Photoredox Metal-Free Allylic Defluorinative Silylation of α-Trifluoromethylstyrenes with Hydrosilanes. Organic Letters 2022, 24 (23) , 4286-4291. https://doi.org/10.1021/acs.orglett.2c01690
    4. Jan H. Kuhlmann, Mustafa Uygur, Olga García Mancheño. Protodesilylation of Arylsilanes by Visible-Light Photocatalysis. Organic Letters 2022, 24 (8) , 1689-1694. https://doi.org/10.1021/acs.orglett.2c00288
    5. Chunngai Hui, Lukas Brieger, Carsten Strohmann, Andrey P. Antonchick. Stereoselective Synthesis of Cyclobutanes by Contraction of Pyrrolidines. Journal of the American Chemical Society 2021, 143 (45) , 18864-18870. https://doi.org/10.1021/jacs.1c10175
    6. Shengnan Jin, Kang Liu, Shuai Wang, Qiuling Song. Enantioselective Cobalt-Catalyzed Cascade Hydrosilylation and Hydroboration of Alkynes to Access Enantioenriched 1,1-Silylboryl Alkanes. Journal of the American Chemical Society 2021, 143 (33) , 13124-13134. https://doi.org/10.1021/jacs.1c04248
    7. Elisabeth L. R. Leonard, Geoffrey R. Akien, Thomas K. Britten, Nahin Kazi, Dean D. Roberts, Mark G. McLaughlin. Synthesis of Diverse Allylsilanes Employing Brønsted Acid Catalyzed Reductive Functionalization. Advanced Synthesis & Catalysis 2023, 365 (22) , 3872-3875. https://doi.org/10.1002/adsc.202300917
    8. Tao He, Hendrik F. T. Klare, Martin Oestreich. Arenium-ion-catalysed halodealkylation of fully alkylated silanes. Nature 2023, 623 (7987) , 538-543. https://doi.org/10.1038/s41586-023-06646-9
    9. Lara H. Polak, John B. Soltys, Kai C. Hultzsch. Yttrium‐Catalyzed Intermolecular Anti‐Markovnikov Hydroamination and Sequential Intermolecular Hydroamination/Endocyclization of Vinylsilanes. Advanced Synthesis & Catalysis 2023, 37 https://doi.org/10.1002/adsc.202300862
    10. Guo‐Qin Wang, Ting Wang, Yue Zhang, Yuan‐Xia Zhou, Dan Yang, Pan Han, Lin‐Hai Jing. Photoredox Metal‐Free Synthesis of Unnatural β ‐Silyl‐ α ‐Amino Acids via Hydrosilylation. Chemistry – An Asian Journal 2023, 26 https://doi.org/10.1002/asia.202300805
    11. Baptiste Neil, Lamine Saadi, Louis Fensterbank, Clément Chauvier. Organopotassium‐Catalyzed Silylation of Benzylic C( sp 3 )−H Bonds. Angewandte Chemie 2023, 135 (31) https://doi.org/10.1002/ange.202306115
    12. Baptiste Neil, Lamine Saadi, Louis Fensterbank, Clément Chauvier. Organopotassium‐Catalyzed Silylation of Benzylic C( sp 3 )−H Bonds. Angewandte Chemie International Edition 2023, 62 (31) https://doi.org/10.1002/anie.202306115
    13. Christoph Rücker, Elisa Grabitz, Klaus Kümmerer. Are Si–C bonds cleaved by microorganisms? A critical review on biodegradation of methylsiloxanes. Chemosphere 2023, 321 , 137858. https://doi.org/10.1016/j.chemosphere.2023.137858
    14. Masayuki Shigekane, Tomonori Arai, Makoto Tamura, Tatsuya Uchida, Fumitoshi Kakiuchi, Takuya Kochi. Desymmetrization of prochiral methylenes by asymmetric chain-walking cyclization using bioxazoline palladium catalysts. Tetrahedron Letters 2023, 114 , 154292. https://doi.org/10.1016/j.tetlet.2022.154292
    15. Xi Wang, Zhen-Hua Li, Huadong Wang. Alkyl Exchange between Alkylsilanes and Hydroborenium Ion. Chinese Journal of Organic Chemistry 2023, 43 (5) , 1852. https://doi.org/10.6023/cjoc202212033
    16. Qiyang Li, Haiyan Zhang, Wenbo Liu. Research Progress in Transition-Metal-Free C—Si Bond Formation. Chinese Journal of Organic Chemistry 2023, 43 (10) , 3470. https://doi.org/10.6023/cjoc202307017
    17. Kristine Klimovica, Julius X. Heidlas, Irvin Romero, Thanh V. Le, Olafs Daugulis. “Sandwich” Diimine‐Copper Catalysts for C−H Functionalization by Carbene Insertion. Angewandte Chemie 2022, 134 (31) https://doi.org/10.1002/ange.202200334
    18. Kristine Klimovica, Julius X. Heidlas, Irvin Romero, Thanh V. Le, Olafs Daugulis. “Sandwich” Diimine‐Copper Catalysts for C−H Functionalization by Carbene Insertion. Angewandte Chemie International Edition 2022, 61 (31) https://doi.org/10.1002/anie.202200334
    19. Arnaud Osi, Damien Mahaut, Nikolay Tumanov, Luca Fusaro, Johan Wouters, Benoît Champagne, Aurélien Chardon, Guillaume Berionni. Taming the Lewis Superacidity of Non‐Planar Boranes: C−H Bond Activation and Non‐Classical Binding Modes at Boron. Angewandte Chemie 2022, 134 (7) https://doi.org/10.1002/ange.202112342
    20. Arnaud Osi, Damien Mahaut, Nikolay Tumanov, Luca Fusaro, Johan Wouters, Benoît Champagne, Aurélien Chardon, Guillaume Berionni. Taming the Lewis Superacidity of Non‐Planar Boranes: C−H Bond Activation and Non‐Classical Binding Modes at Boron. Angewandte Chemie International Edition 2022, 61 (7) https://doi.org/10.1002/anie.202112342
    21. Li Hui, He Yuhan, Wang Jiaqi. Theoretical investigation on the effect of the ligand on bis-silylation of C(sp)–C(sp) by Ni complexes. RSC Advances 2021, 12 (2) , 1005-1010. https://doi.org/10.1039/D1RA08153E
    22. Ming Zhang, Shan Gao, Juan Tang, Ling Chen, Aihua Liu, Shouri Sheng, Ai Qin Zhang. Asymmetric synthesis of chiral organosilicon compounds via transition metal-catalyzed stereoselective C–H activation and silylation. Chemical Communications 2021, 57 (67) , 8250-8263. https://doi.org/10.1039/D1CC02839A
    23. Avijit Roy, Martin Oestreich. Zu guter Letzt: Die Me 3 Si‐Gruppe als ein getarnter Alkohol. Angewandte Chemie 2021, 133 (9) , 4456-4458. https://doi.org/10.1002/ange.202017157
    24. Avijit Roy, Martin Oestreich. At Long Last: The Me 3 Si Group as a Masked Alcohol. Angewandte Chemie International Edition 2021, 60 (9) , 4408-4410. https://doi.org/10.1002/anie.202017157

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect