ACS Publications. Most Trusted. Most Cited. Most Read
Tuning the Reactivity of Cofacial Porphyrin Prisms for Oxygen Reduction Using Modular Building Blocks
My Activity

Figure 1Loading Img
    Article

    Tuning the Reactivity of Cofacial Porphyrin Prisms for Oxygen Reduction Using Modular Building Blocks
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 2, 1098–1106
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.0c11895
    Published December 30, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We assembled eight cofacial porphyrin prisms using MTPyP (M = Co(II) or Zn(II), TPyP = 4-tetrapyridylporphyrin) and functionalized ruthenium-based “molecular clips” using coordination-driven self-assembly. Our approach allows for the rapid synthesis of these architectures in isolated yields as high as 98% for the assembly step. Structural and reactivity studies provided a deeper understanding of the role of the building blocks on the oxygen reduction reaction (ORR). Catalytic efficacy was probed by using cyclic and hydrodynamic voltammetry on heterogeneous catalyst inks in aqueous media. The reported prisms showed outstanding selectivity (>98%) for the kinetically hindered 4e/4H+ reduction of O2 to H2O over the kinetically more accessible 2e/2H+ reduction to H2O2. Furthermore, we have demonstrated significant cofacial enhancement in the observed catalytic rate constant ks (∼5 orders of magnitude) over the mononuclear analogue. We conclude that the steric bulk of the clip plays an important role in the structural dynamics of these prisms, which in turn modulates the ORR reactivity with respect to selectivity and kinetics.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c11895.

    • Synthetic procedure and spectroscopic characterization data (HR-MS, NMR, IR, UV/vis), crystallographic details, electrochemical characterization, and a detailed discussion of catalyst performance (PDF)

    • Crystallographic data of Ru-CF3 (CIF)

    • Crystallographic data of Zn-CF3 (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 45 publications.

    1. Qi-Fa Chen, Yao Xiao, Kai Hua, Hong-Tao Zhang, Ming-Tian Zhang. Bimetallic Synergy in Oxygen Reduction: How Tailored Metal–Metal Interactions Amplify Cooperative Catalysis. Journal of the American Chemical Society 2025, 147 (17) , 14504-14518. https://doi.org/10.1021/jacs.5c01406
    2. Minghao Liang, Jingyu Chen, Jiawang Hou, Sha Wu, Yuhao Wang, Qian Dong, Jiong Zhou. Hybrid[4]arene-Based Supramolecular Tessellations Driven by Exo-Wall Interaction. Crystal Growth & Design 2025, 25 (7) , 2020-2030. https://doi.org/10.1021/acs.cgd.4c01547
    3. Hao Sun, Linyang Li, Xin Li, Junhe Yang, Yuepeng Pang, Shiyou Zheng. Dual-Atom Catalysts for the Hydrogen Evolution Reaction. ACS Applied Energy Materials 2025, 8 (6) , 3276-3293. https://doi.org/10.1021/acsaem.4c02951
    4. Karla R. Sanchez-Lievanos, Daoyang Zhang, Scott M. Simpson, Mindula K. Wijayahena, Gina Rizzo, John Michael N. Aguilar, Liezel Mari Abaya, Julia M. Dovi, Howard I. Sirotkin, Matthew R. Crawley, Timothy R. Cook, Diana S. Aga. Synthesis and Evaluation of Cationic Porphyrin-Based Organic Nanocages for the Removal of 38 PFAS from Water: Experimental, Theoretical, and Eco-toxicological Insights. ACS ES&T Engineering 2025, 5 (3) , 701-713. https://doi.org/10.1021/acsestengg.4c00639
    5. Taro J. Jones, Kaitlyn G. Dutton, Harender S. Dhattarwal, P. Thomas Blackburn, Rupak Saha, Richard C. Remsing, Mark C. Lipke. Tuning Bro̷nsted Acidity by up to 12 pKa Units in a Redox-Active Nanopore Lined with Multifunctional Metal Sites. Journal of the American Chemical Society 2025, 147 (2) , 2086-2098. https://doi.org/10.1021/jacs.4c15873
    6. A. Priscila Gia, Alberto de Juan, Daniel Aranda, Fernando G. Guijarro, Juan Aragó, Enrique Ortí, Miguel García-Iglesias, David González-Rodríguez. Highly Rigid, Yet Conformationally Adaptable, Bisporphyrin sp2-Cage Receptors Afford Outstanding Binding Affinities, Chelate Cooperativities, and Substrate Selectivities. Journal of the American Chemical Society 2025, 147 (1) , 918-931. https://doi.org/10.1021/jacs.4c13756
    7. Daoyang Zhang, Rachel L. Snider, Matthew R. Crawley, Ming Fang, Karla R. Sanchez-Lievanos, Spencer Ang, Timothy R. Cook. Gram-Scale, One-Pot Synthesis of a Cofacial Porphyrin Bridged by Ortho-xylene as a Scaffold for Dinuclear Architectures. Inorganic Chemistry 2024, 63 (47) , 22532-22541. https://doi.org/10.1021/acs.inorgchem.4c03958
    8. Tao Liu, Haonan Qin, Yuhan Xu, Xinyang Peng, Wei Zhang, Rui Cao. Steric Effects on the Oxygen Reduction Reaction with Cobalt Porphyrin Atropisomers. ACS Catalysis 2024, 14 (9) , 6644-6649. https://doi.org/10.1021/acscatal.4c01295
    9. Zhengguang Li, Tingting Zhang, Huili Li, Xinyu Bai, Lili Zhao, Kaixiu Li, Jun Wang, Zhilong Jiang, Mingzhao Chen, Yiming Li, Pingshan Wang, Die Liu. Multi-functionalized Metallo-Supramolecular Spoked Wheels: Their Emission-Tunable Hierarchically Assembled System with Dye Molecules. Inorganic Chemistry 2023, 62 (29) , 11500-11509. https://doi.org/10.1021/acs.inorgchem.3c01103
    10. Vincent J. Pastore, Meghan G. Sullivan, Heshali K. Welgama, Matthew R. Crawley, Alan E. Friedman, Clayton Rumsey, Martin Trebbin, Javid Rzayev, Timothy R. Cook. Clickable Norbornene-Based Zirconium Carboxylate Polyhedra. Chemistry of Materials 2023, 35 (4) , 1651-1658. https://doi.org/10.1021/acs.chemmater.2c03252
    11. Daoyang Zhang, Matthew R. Crawley, Amanda N. Oldacre, Lea J. Kyle, Samantha N. MacMillan, Timothy R. Cook. Lowering the Symmetry of Cofacial Porphyrin Prisms for Selective Oxygen Reduction Electrocatalysis. Inorganic Chemistry 2023, 62 (5) , 1766-1775. https://doi.org/10.1021/acs.inorgchem.2c01109
    12. Xuechun Huang, Luyi Chen, Jianan Jin, Hyunuk Kim, Luyao Chen, Zibin Zhang, Ling Yu, Shijun Li, Peter J. Stang. Host–Guest Encapsulation to Promote the Formation of a Multicomponent Trigonal-Prismatic Metallacage. Inorganic Chemistry 2022, 61 (50) , 20237-20242. https://doi.org/10.1021/acs.inorgchem.2c03701
    13. Prodip Howlader, Shakil Ahmed, Surajit Mondal, Ennio Zangrando, Partha Sarathi Mukherjee. Conformation-Selective Self-Assembly of Pd6 Trifacial Molecular Barrels Using a Tetrapyridyl Ligand. Inorganic Chemistry 2022, 61 (21) , 8121-8125. https://doi.org/10.1021/acs.inorgchem.2c01081
    14. Qiuqi Cai, Linh K. Tran, Tian Qiu, Jennifer W. Eddy, Trong-Nhan Pham, Glenn P. A. Yap, Joel Rosenthal. An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e–/4H+ Peractivation of O2 to Water. Inorganic Chemistry 2022, 61 (14) , 5442-5451. https://doi.org/10.1021/acs.inorgchem.1c03766
    15. Ziwei Xu, Xinwen Ying, Yi Li, Xiaoyan Dong, Jiyong Liu, Shuping Wang, Marc A. Little, Dahao Zhang, Yongshu Xie, Zibin Zhang, Ling Yu, Feihe Huang, Shijun Li. Template-directed self-assembly of porphyrin nanorings through an imine condensation reaction. Chemical Science 2025, 16 (12) , 5166-5173. https://doi.org/10.1039/D4SC08569H
    16. Zuozhong Liang, Haitao Lei, Haoquan Zheng, Hong-Yan Wang, Wei Zhang, Rui Cao. Selective two-electron and four-electron oxygen reduction reactions using Co-based electrocatalysts. Chemical Society Reviews 2025, 355 https://doi.org/10.1039/D4CS01199F
    17. Masahiro Yamaguchi, Kentaro Yonesato, Kaito Shioya, Chifeng Li, Kei Murata, Kazuyuki Ishii, Kazuya Yamaguchi, Kosuke Suzuki. Engineering cofacial porphyrin dimers using lacunary polyoxotungstates. Chemical Science 2025, 245 https://doi.org/10.1039/D5SC00814J
    18. Ana Sonea, Jeffrey J. Warren. A Survey of Reaction Energetics for Diverse Small Molecule Activation: Where Do Molecular Electrocatalysts Go From Here?. ChemCatChem 2024, 16 (23) https://doi.org/10.1002/cctc.202400517
    19. Lang He, Yu Jiang, Jialin Wei, Zibin Zhang, Tao Hong, Zhiqiang Ren, Jianying Huang, Feihe Huang, Peter J. Stang, Shijun Li. Highly robust supramolecular polymer networks crosslinked by a tiny amount of metallacycles. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47333-1
    20. Jinxiu Han, Huang Tan, Kai Guo, Haoyuan Lv, Xinyang Peng, Wei Zhang, Haiping Lin, Ulf‐Peter Apfel, Rui Cao. The “Pull Effect” of a Hanging Zn II on Improving the Four‐Electron Oxygen Reduction Selectivity with Co Porphyrin. Angewandte Chemie International Edition 2024, 63 (36) https://doi.org/10.1002/anie.202409793
    21. Jinxiu Han, Huang Tan, Kai Guo, Haoyuan Lv, Xinyang Peng, Wei Zhang, Haiping Lin, Ulf‐Peter Apfel, Rui Cao. The “Pull Effect” of a Hanging Zn II on Improving the Four‐Electron Oxygen Reduction Selectivity with Co Porphyrin. Angewandte Chemie 2024, 136 (36) https://doi.org/10.1002/ange.202409793
    22. Daoyang Zhang, Lauren E. Rosch, Matthew R. Crawley, Timothy R. Cook. Post-synthetic modification of bis-iron( iii )-μ-oxo-porphyrin prisms to enhance oxygen reduction electrocatalysis. Inorganic Chemistry Frontiers 2024, 11 (17) , 5557-5565. https://doi.org/10.1039/D4QI01219D
    23. Joe Otsuki, Ken Sato, Kosuke Sugawa. A Cofacial Porphyrin Dimer Generated by Cooperative Zinc Ion Binding. European Journal of Inorganic Chemistry 2024, 27 (19) https://doi.org/10.1002/ejic.202400188
    24. Masaru Kato, Ichizo Yagi. Bio-inspired Cu, Fe-codoped carbon electrocatalysts for the oxygen reduction reaction. 2024, 289-298. https://doi.org/10.1016/B978-0-323-85669-0.00047-7
    25. Ahmed M'hamedi, Andrei S. Batsanov, Mark A. Fox, Juan A. Aguilar, Martin R. Bryce. Structural Diversity in Cyclometalated Diiridium(III) Complexes with Bridging syn and anti μ 2 ‐Oxamidato and μ 2 ‐Dithioxamidato Ligands. European Journal of Inorganic Chemistry 2023, 26 (34) https://doi.org/10.1002/ejic.202300423
    26. Xiaolin Liu, Chenxi Liu, Xiaojuan Song, Xu Ding, Hailong Wang, Baoqiu Yu, Heyuan Liu, Bin Han, Xiyou Li, Jianzhuang Jiang. Cofacial porphyrin organic cages. Metals regulating excitation electron transfer and CO 2 reduction electrocatalytic properties. Chemical Science 2023, 14 (34) , 9086-9094. https://doi.org/10.1039/D3SC01816D
    27. Rui Yuan, Stennard Leetroy George, Jun Chen, Qilong Wu, Xinping Qiu, Long Zhao. Meso ‐substituted Metalloporphyrin‐based Composites for Electrocatalytic Oxygen Reduction Reactions. ChemNanoMat 2023, 9 (6) https://doi.org/10.1002/cnma.202300027
    28. Rui Yuan, Yuqin Wei, Zhaoli Xue, Aijian Wang, Jianming Zhang, Haijun Xu, Long Zhao. Effects of support material and electrolyte on a triphenylamine substituted cobalt porphyrin catalytic oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 665 , 131214. https://doi.org/10.1016/j.colsurfa.2023.131214
    29. Xin Chen, Yu Dai, Hui Zhang, Xiuyun Zhao. Revealing the steric effects of cobalt porphyrin on the selectivity of oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 663 , 131091. https://doi.org/10.1016/j.colsurfa.2023.131091
    30. Matthew R. Crawley, Daoyang Zhang, Timothy R. Cook. Electrocatalytic production of hydrogen peroxide enabled by post-synthetic modification of a self-assembled porphyrin cube. Inorganic Chemistry Frontiers 2022, 10 (1) , 316-324. https://doi.org/10.1039/D2QI02050E
    31. Daoyang Zhang, Matthew R. Crawley, Ming Fang, Lea J. Kyle, Timothy R. Cook. The rigidity of self-assembled cofacial porphyrins influences selectivity and kinetics of oxygen reduction electrocatalysis. Dalton Transactions 2022, 51 (48) , 18373-18377. https://doi.org/10.1039/D2DT02724K
    32. Soumaya Nasri, Mouhieddinne Guergueb, Jihed Brahmi, Youssef O. Al-Ghamdi, Florian Molton, Frédérique Loiseau, Ilona Turowska-Tyrk, Habib Nasri. Synthesis of New Cobalt(III) Meso-Porphyrin Complex, Photochemical, X-ray Diffraction, and Electrical Properties for Photovoltaic Cells. Molecules 2022, 27 (24) , 8866. https://doi.org/10.3390/molecules27248866
    33. Hongyu Lai, Ning Wang, Yuliang Li. Porphyrin and phthalocyanine: from molecular materials to aggregates. SCIENTIA SINICA Chimica 2022, 52 (8) , 1259-1277. https://doi.org/10.1360/SSC-2022-0017
    34. Tao Liu, Qingxin Zhang, Hongbo Guo, Zuozhong Liang, Rui Cao. Electrocatalytic oxygen reduction reaction with metalloporphyrins. SCIENTIA SINICA Chimica 2022, 52 (8) , 1306-1320. https://doi.org/10.1360/SSC-2022-0056
    35. P. Thomas Blackburn, Mark C. Lipke. Effects of a triangular nanocage structure on the binding of neutral and anionic ligands to Co II and Zn II porphyrins. Journal of Coordination Chemistry 2022, 75 (11-14) , 1520-1542. https://doi.org/10.1080/00958972.2022.2128786
    36. Ling Bai, Ning Wang, Yuliang Li. Controlled Growth and Self‐Assembly of Multiscale Organic Semiconductor. Advanced Materials 2022, 34 (22) https://doi.org/10.1002/adma.202102811
    37. Shuai Fang, Mengbin Wang, Yating Wu, Qing-Hui Guo, Errui Li, Hao Li, Feihe Huang. Cagearenes: synthesis, characterization, and application for programmed vapour release. Chemical Science 2022, 13 (21) , 6254-6261. https://doi.org/10.1039/D2SC01782B
    38. Zhi-yuan Mei, Sheng Cai, Genfu Zhao, Xiaoxiao Zou, Yao Fu, Jingwen Jiang, Qi An, Mian Li, Tingting Liu, Hong Guo. Boosting the ORR active and Zn-air battery performance through ameliorating the coordination environment of iron phthalocyanine. Chemical Engineering Journal 2022, 430 , 132691. https://doi.org/10.1016/j.cej.2021.132691
    39. Angus Pedersen, Jesús Barrio, Alain Li, Rhodri Jervis, Dan J. L. Brett, Maria Magdalena Titirici, Ifan E. L. Stephens. Dual‐Metal Atom Electrocatalysts: Theory, Synthesis, Characterization, and Applications. Advanced Energy Materials 2022, 12 (3) https://doi.org/10.1002/aenm.202102715
    40. P. Thomas Blackburn, Iram F. Mansoor, Kaitlyn G. Dutton, Alexei M. Tyryshkin, Mark C. Lipke. Accessing three oxidation states of cobalt in M 6 L 3 nanoprisms with cobalt–porphyrin walls. Chemical Communications 2021, 57 (86) , 11342-11345. https://doi.org/10.1039/D1CC04860K
    41. Shuping Wang, Xuechun Huang, Ziwei Xu, Benyue Zhu, Yang Ye, Zibin Zhang, Shijun Li. Influence of solvent and axial coordination on self-assembly of a heteroditopic porphyrin derivative. Journal of Porphyrins and Phthalocyanines 2021, 25 (10n12) , 1240-1246. https://doi.org/10.1142/S108842462150125X
    42. Yuliang Li, Ni Wang, Haitao Lei, Xialiang Li, Haoquan Zheng, Hongyan Wang, Wei Zhang, Rui Cao. Bioinspired N4-metallomacrocycles for electrocatalytic oxygen reduction reaction. Coordination Chemistry Reviews 2021, 442 , 213996. https://doi.org/10.1016/j.ccr.2021.213996
    43. Fei Yang, Xinyong Liu, Zhijie Yang. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin‐Based Supramolecular Structures. Angewandte Chemie 2021, 133 (26) , 14792-14799. https://doi.org/10.1002/ange.202103809
    44. Fei Yang, Xinyong Liu, Zhijie Yang. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin‐Based Supramolecular Structures. Angewandte Chemie International Edition 2021, 60 (26) , 14671-14678. https://doi.org/10.1002/anie.202103809
    45. Florent Moutier, Jana Schiller, Guillaume Calvez, Christophe Lescop. Self-assembled luminescent Cu( i ) tetranuclear metallacycles based on 3,3′-bipyridine ligands. Organic Chemistry Frontiers 2021, 8 (12) , 2893-2902. https://doi.org/10.1039/D1QO00538C

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 2, 1098–1106
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.0c11895
    Published December 30, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    4319

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.