ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Selective Anion Binding Drives the Formation of AgI8L6 and AgI12L6 Six-Stranded Helicates

Cite this: J. Am. Chem. Soc. 2021, 143, 2, 664–670
Publication Date (Web):December 31, 2020
https://doi.org/10.1021/jacs.0c11905
Copyright © 2020 American Chemical Society
ACS AuthorChoiceACS AuthorChoiceCC: Creative CommonsCC: Creative CommonsBY: Credit must be given to the creatorBY: Credit must be given to the creator

Article Views

5020

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (5 MB)
Supporting Info (3)»

Abstract

Here we describe the formation of an unexpected and unique family of hollow six-stranded helicates. The formation of these structures depends on the coordinative flexibility of silver and the 2-formyl-1,8-napthyridine subcomponent. Crystal structures show that these assemblies are held together by Ag4I, Ag4Br, or Ag6(SO4)2 clusters, where the templating anion plays an integral structure-defining role. Prior to the addition of the anionic template, no six-stranded helicate was observed to form, with the system instead consisting of a dynamic mixture of triple helicate and tetrahedron. Six-stranded helicate formation was highly sensitive to the structure of the ligand, with minor modifications inhibiting its formation. This work provides an unusual example of mutual stabilization between metal clusters and a self-assembled metal–organic cage. The selective preparation of this anisotropic host demonstrates new modes of guiding selective self-assembly using silver(I), whose many stable coordination geometries render design difficult.

Self-assembly can produce complex metal–organic architectures from simple starting materials. (1−5) Such structures have been the subject of intense recent exploration, with applications spanning guest binding, stabilization of reactive species, biomolecular interactions, and chemical purification. (6−9) These applications often depend on binding a target in the pseudospherical cavity of a metal–organic cage. These isotropic cavities can bind roughly spherical guests or guest agglomerates (10−13) but are ill-adapted to bind asymmetric and anisotropic guests. The introduction of flexible organic ligands (14−16) or metal coordination spheres (17−20) has led to the formation of new metal–organic cages, with nonspherical internal cavities, partially alleviating these limitations. (21−25) Silver(I), in combination with dipyridyl peptidic linkers, has recently been shown to generate a wealth of complex knotted architectures via self-assembly. (26−28) The strategy of incorporating a guest of interest into the architecture formed, as a template (29−31) or other structural element, (32,33) can enhance selectivity and sensitivity in guest binding. (34−36) Furthermore, if the guest is anionic, (37−39) the diverse coordination chemistry of anions can be used to effect the selective recognition (40−42) of targeted anions. (43)

We hypothesized that the flexible coordination sphere of silver(I) ions, (44−49) in combination with organic ligands that assemble in situ around these metal-ion templates, would provide access to new structure types that bind anions as structural elements. Zhao and co-workers have previously shown that nitrogen containing macrocycles can stabilize atomically precise silver clusters with defined geometries, supporting this hypothesis. (50,51)

Here we describe the formation of a family of complex six-stranded silver helicates upon the addition of three anions: iodide, bromide, and sulfate. This family comprises two novel structure types, with sulfate generating a structure distinct from those templated by halides. Key structural elements within these architectures are unique silver(I)-anion clusters, (50,51) whose geometries are molded by the central anions, which in turn are held in an unusual, polarized, environment.

Building on the discovery that silver(I) assembles with 2-formyl-1,8-naphthyridine (1), (52) a tritopic subcomponent, and anionic templates to form a trigonal prism with disilver vertices, (17) we investigated the use of linear ditopic anilines in place of triangular ones. Initial experiments, involving the mixture of benzidine (2) together with 1, various silver salts, and prospective guests in acetonitrile (Figure 1a), gave in all cases an intractable gel (SI Section 8).

Figure 1

Figure 1. Self-assembly of Ag4L3 and Ag8L6 architectures. Conditions: (a) AgNTf2 (2 equiv), 2 (1 equiv), 1 (2 equiv), d3-MeCN, 5 min; (b) AgNTf2 (2 equiv), 3 or 4 (1 equiv), 1 (2 equiv), d3-MeCN, 5 min. Structures of 5 and 6 are MM3-optimized models. (c) DOSY NMR of 5 and 6.

Reasoning that increasing steric hindrance and widening the torsion angle between the phenylene groups of the dianiline could lead to a different outcome, (53) we explored the self-assembly of 2,2′-dimethyl-[1,1′-biphenyl]-4,4′-diamine (3) with 1 in acetonitrile, and observed the formation of discrete species with various silver(I) salts (Figure 1b). With silver perchlorate, we observed a 1:1 ratio of integrals between two species (Figure 1c). Diffusion ordered spectroscopy (DOSY) NMR revealed that one had a significantly larger diffusion coefficient (Figure 1c). Mass spectrometry indicated that the smaller species had Ag4L3 composition, with the larger species corresponding to Ag8L6 (Figures S72 and S75). Approximately 400 attempts to grow crystals of these species failed.

The observation of well-defined bands of peaks in the DOSY spectrum is consistent with the formation of discrete species, as opposed to poorly defined oligomers in solution. (54,55) We modeled potential structures for the Ag8L6 architecture and found that a tetrahedral geometry was preferred by 300–400 kcal mol–1 (SI Section 9). (56) Although we cannot definitively assign the product structures without crystallographic data, we infer that the two species are likely to be Ag4L3 helicate 5 and Ag8L6 tetrahedron 6, consistent with previously reported systems, (57) our modeling studies, and the solution data (SI Section 4.4). Investigations of host–guest behavior showed binding to a range of anionic and organic guests, with some altering the 5:6 equilibrium (SI Section 7). (58,59) When dianiline 4 was used in place of 3 we observed similar results (Figure 1b and SI Section 10).

Having extensively screened potential guest species, we next turned to the addition of halides to these silver(I) based assemblies. We had initially avoided the use of halides, anticipating precipitation of silver halide species (the solubility product of AgI is 10–14.5 in acetonitrile). (60) However, upon addition of TBA iodide, a new species, 9, immediately formed and, to our surprise, no precipitate was observed.

Characteristic 1H NMR signals were observed for 9 at 6 ppm, ca. 1 ppm upfield of any signals of 5 or 6 (Figure 1c). Furthermore, a twofold desymmetrization was observed, with two 1H NMR signals observed for each proton environment in free ligand (Figure S1). DOSY spectroscopy gave results consistent with the formation of a single species (Figure S8). Mass spectrometry confirmed that a Ag8L6I2 architecture had been formed (Figures S69 and S77). (61)

The X-ray crystal structure of 9 revealed its highly unusual six-stranded helicate structure (Figure 3a,b), which is capped at each end by a Ag4I cluster consisting of a Ag3 triangle capped by an apical Ag on the outside and iodide on the inside (Figure 3e). The six ligand strands bridge two such Ag4I clusters, grouped into three pairs of ligands that show aromatic stacking interactions between naphthyridine moieties, with distances of 3.1–3.7 Å between stacked rings.

Atypical coordination environments for the Ag centers were observed in 9. One arm of each ligand coordinates via all three available nitrogen donors, and the other via only a single inner naphythridine nitrogen. This differentiation leads to the twofold desymmetrization seen in the 1H NMR spectrum

The presence of 12 uncoordinated nitrogen donors within 9 violates the principle of maximal coordinative saturation, which has often, and successfully, been used to predict the product of metal–organic self-assembly processes. (62) The absence of coordinative stabilization may be a consequence of the nonchelating coordination vectors of 1, which precluded the formation of simple structures. The lack of coordinative saturation is compensated for by the extensive aromatic stacking seen in the crystal structure of 9. (63)

Silver–silver separations were 2.96–3.00 Å between silver atoms bridged by a single naphthyridine moiety, greater than those observed in simpler mononuclear naphthyridine-bridged silver complexes. (63) The iodide ion coordinated to all four Ag ions in the cluster, with Ag–I separations of 2.79–2.88 Å, consistent with previous reports of Ag4I clusters. (50,51)

Having determined the structure of 9, we investigated whether alternative anions might lead to the generation of further examples of this new structure type. Addition of tetramethylammonium sulfate to a mixture of 1, 3, and silver triflimide brought about conversion to an alternate species, 10, as the uniquely observed product (Figure 2). This product again showed twofold desymmetrization in the 1H NMR (Figure S9) and a single species by DOSY NMR (Figure S14). We initially anticipated that a structure analogous to 9 would be formed, with Ag8L6(SO4)2 stoichiometry, based upon similarities between 1H NMR spectra (Figure S9). However, mass spectrometry indicated that instead a Ag12L6(SO4)4 species formed (Figures S70 and S78). Six-stranded helicate formation was confirmed by single-crystal X-ray diffraction (Figure 3c,d). The organic portion of the structure was similar to 9, yet the silver clusters at the ends of both assemblies are dramatically different. Instead of the Ag4I clusters of 9, the vertices of 10 consist of Ag6(SO4)2 clusters composed of inner and outer Ag3 triangles. The externally facing sulfate coordinates to the outer triangle of silver ions via a single, triply coordinated, oxygen atom. (64) The coordination of this sulfate is reinforced by nonclassical hydrogen bonding from three naphthyridine CH groups (CH···O distances 2.40–2.43 Å), stabilizing the assembly (Figure 3f). (65) Each silver ion of this outer triangle is also coordinated by the internal sulfate via a single, triply coordinated oxygen. The interior sulfate additionally coordinates to the internal, more widely spaced, triangle of silver ions. The two Ag triangles form pairs of silver ions in close proximity, with each bridged by two naphthyridine moieties. The sulfur atoms of the internal anions are 11.58 Å apart, farther than the iodide anions in 9 (10.47 Å), and show nonclassical hydrogen bonds (CH···O distances 2.58–2.69 Å) to internally facing CH groups (Figure 3g). Ligand coordination again shows pairwise alternation, here between three and two coordinating nitrogen atoms per ligand arm. The uncoordinated donor atoms were again imine nitrogens

Figure 2

Figure 2. (a) Synthesis of six-stranded helicates 9 and 10, formed only during self-assembly from dianiline 3. (i) Tetrabutylammonium iodide (0.34 equiv), 5 min; (ii) tetramethylammonium sulfate (1.0 equiv), 6 h. Structures of 5 and 6 are MM3 optimized models, and those of 9 and 10 are based on crystallographic data (vide infra). Simplified representation of six-stranded helicate (b) 9 and (c) 10.

Figure 3

Figure 3. (a) X-ray crystal structure of 9; (b) schematic view of 9. (c) X-ray crystal structure of 10; (d) schematic view of 10. (e) End-on view of crystal structure of 9 showing cluster geometry. (f) End-on view of crystal structure of 10 showing the silver cluster and nonclassical hydrogen bonds to the exterior sulfate. (g) View from within the crystal structure of 10, showing nonclassical hydrogen bonds to the internal sulfate.

We next investigated whether other anions could template structures similar to 9 and 10. Among the 38 anions tested (SI Sections 6.7 and 6.8), only bromide proved able to efficiently template a six-stranded helicate (11). The 1H NMR spectrum of 11 again exhibited a twofold desymmetrization, and a single species was observed by DOSY spectroscopy, with a hydrodynamic radius of 11.9 Å, similar to the cases of 9 and 10 (Figures S8, S15, and S22). Attempts to grow crystals suitable for X-ray diffraction proved unsuccessful. However, we inferred the Ag8L6Br2 structure of 11 to be an analogue of 9 by comparing the 1H NMR, COSY, and HSQC spectra of 911. The spectra of 9 and 11 were clearly similar, whereas that of 10 was notably different (Figure 4a and SI Section 5).

Figure 4

Figure 4. (a) Comparison of 1H NMR spectra of 10 (top), 11 (middle), and 9 (bottom), showing the similarity between the spectra of 9 and 11. Simplified (b) schematic and (c) cartoon views of six-stranded helicate 11.

We then probed further the selectivity of the assembly process. Silver tetrafluoroborate, hexafluorophosphate, perchlorate, and triflate all furnished six-stranded helicates adopting the framework of 9 when combined with 1, 3, and potassium iodide (Figures S38 and S39). Titration of TBA bromide into a mixture of 5 and 6 revealed no intermediate species (i.e., from binding a single bromide). Instead, formation of 11 (containing two bromide anions) was seen immediately, in the continued presence of 5 and 6 (Figures S42 and S46), suggesting that the six-stranded helicate assembled cooperatively (SI Sections 6.3 and 6.6). Using 2 or 4 in place of 3 led to immediate gelation (for 2) or shifts in the equilibrium of 7 and 8 (for 4, Figures S55 and S68).

These results highlight the extent to which the subcomponent self-assembly of metal–organic architectures may depend critically upon subtle variations in subcomponent structure. The lack of methyl groups on 2 favored polymerization over the assembly of discrete structures. The subtle steric and electronic differences between the methyl groups of 3 and the trifluoromethyl groups of 4 disfavored, in the latter case, the formation of six-stranded helicates analogous to 911. We hypothesize this sensitivity to be due to the slightly weaker ligand field in the case of ligands incorporating 4, which disfavors structures that incorporate the more highly cationic silver clusters incorporated into the new structure types 911.

This work describes the development of a system of novel six-stranded helicates, which assemble around atomically precise silver clusters. Specific anionic templates, in turn, serve to shape these clusters, such that the identity of the anion dictates the architecture observed. The ability of 2-formyl-1,8-napthyridine to bridge silver ions enables these complex structures to form from simple subcomponents. These new assemblies are sensitive to the precise nature of the ligand chosen and are selective for the templates employed, with potential applications in sensing specific analytes.

The ability to use atomically precise clusters in place of mono- or dimetallic vertices in metal–organic cages has the potential to generate a vastly increased diversity of architectures, as we continue to uncover the principles underpinning silver–naphthyridine self-assembly. Future work will focus on exploring the photophysical properties of these novel clusters (66) and on expanding the range of architectures formed by the interplay of anion templation, ligand design, and coordinational flexibility to generate increased structural diversity.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c11905.

  • Experimental procedure and details; MM3 models and calculated energies; mass spectrometry data; X-ray crystallography data (PDF)

  • X-ray data for 9 (CCDC 2024152) (CIF)

  • X-ray data for 10 (CCDC 2024153) (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC, EP/P027067/1) and the European Research Council (695009). We thank the University of Cambridge Mass Spectrometry Service Centre for high-resolution mass spectrometry and Diamond Light Source (UK) for synchrotron beamtime on I19 (CY21497). C.T.M. thanks the Leverhulme Trust and the Isaac Newton Trust, and Sidney Sussex College, Cambridge, for Fellowship support.

References

ARTICLE SECTIONS
Jump To

This article references 66 other publications.

  1. 1
    Danon, J. J.; Krüger, A.; Leigh, D. A.; Lemonnier, J.-F.; Stephens, A. J.; Vitorica-Yrezabal, I. J.; Woltering, S. L. Braiding a Molecular Knot with Eight Crossings. Science 2017, 355, 159162,  DOI: 10.1126/science.aal1619
  2. 2
    Wang, H. Assembling Pentatopic Terpyridine Ligands with Three Types of Coordination Moieties into a Giant Supramolecular Hexagonal Prism: Synthesis, Self-Assembly, Characterization, and Antimicrobial Study. J. Am. Chem. Soc. 2019, 141, 1610816116,  DOI: 10.1021/jacs.9b08484
  3. 3
    Fujita, D.; Ueda, Y.; Sato, S.; Yokoyama, H.; Mizuno, N.; Kumasaka, T.; Fujita, M. Self-Assembly of M30L60 Icosidodecahedron. Chem 2016, 1, 91101,  DOI: 10.1016/j.chempr.2016.06.007
  4. 4
    Niki, K.; Tsutsui, T.; Yamashina, M.; Akita, M.; Yoshizawa, M. Recognition and Stabilization of Unsaturated Fatty Acids by a Polyaromatic Receptor. Angew. Chem., Int. Ed. 2020, 59, 1048910492,  DOI: 10.1002/anie.202003253
  5. 5
    Howlader, P.; Mukherjee, P. S. Face and Edge Directed Self-Assembly of Pd12 Tetrahedral Nano-Cages and their Self-Sorting. Chem. Sci. 2016, 7, 58935899,  DOI: 10.1039/C6SC02012G
  6. 6
    Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. A Supramolecular Microenvironment Strategy for Transition Metal Catalysis. Science 2015, 350, 12351238,  DOI: 10.1126/science.aad3087
  7. 7
    Zhang, D.; Ronson, T. K.; Lavendomme, R.; Nitschke, J. R. Selective Separation of Polyaromatic Hydrocarbons by Phase Transfer of Coordination Cages. J. Am. Chem. Soc. 2019, 141, 1894918953,  DOI: 10.1021/jacs.9b10741
  8. 8
    Zhu, J.; Haynes, C. J. E.; Kieffer, M.; Greenfield, J. L.; Greenhalgh, R. D.; Nitschke, J. R.; Keyser, U. F. FeII4L4 Tetrahedron Binds to Nonpaired DNA Bases. J. Am. Chem. Soc. 2019, 141, 1135811362,  DOI: 10.1021/jacs.9b03566
  9. 9
    Hotze, A. C. G.; Kariuki, B. M.; Hannon, M. J. Dinuclear Double-Stranded Metallosupramolecular Ruthenium Complexes: Potential Anticancer Drugs. Angew. Chem., Int. Ed. 2006, 45, 48394842,  DOI: 10.1002/anie.200601351
  10. 10
    Chen, B.; Holstein, J. J.; Horiuchi, S.; Hiller, W. G.; Clever, G. H. Pd(II) Coordination Sphere Engineering: Pyridine Cages, Quinoline Bowls, and Heteroleptic Pills Binding One or Two Fullerenes. J. Am. Chem. Soc. 2019, 141, 89078913,  DOI: 10.1021/jacs.9b02207
  11. 11
    Rizzuto, F. J.; von Krbek, L. K. S.; Nitschke, J. R. Strategies for Binding Multiple Guests in Metal-Organic Cages. Nat. Chem. Rev. 2019, 3, 204222,  DOI: 10.1038/s41570-019-0085-3
  12. 12
    Takezawa, H.; Shitozawa, K.; Fujita, M. Enhanced Reactivity of Twisted Amides Inside a Molecular Cage. Nat. Chem. 2020, 12, 574578,  DOI: 10.1038/s41557-020-0455-y
  13. 13
    Chepelin, O. Luminescent, Enantiopure, Phenylatopyridine Iridium-Based Coordination Capsules. J. Am. Chem. Soc. 2012, 134, 1933419337,  DOI: 10.1021/ja309031h
  14. 14
    Mosquera, J.; Ronson, T. K.; Nitschke, J. R. Subcomponent Flexibility Enables Conversion between D4-Symmetric CdII4L4 Assemblies. J. Am. Chem. Soc. 2016, 138, 18121815,  DOI: 10.1021/jacs.5b12955
  15. 15
    Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward, M. D. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 2016, 8, 231236,  DOI: 10.1038/nchem.2452
  16. 16
    Liu, Y.; Zhang, R.; He, C.; Dang, D. B.; Duan, C. Y. A Palladium(II) Triangle as Building Blocks of Microporous Molecular Materials: Structures and Catalytic Performance. Chem. Commun. 2010, 46, 746748,  DOI: 10.1039/B916916D
  17. 17
    Carpenter, J. P.; McTernan, C. T.; Ronson, T. K.; Nitschke, J. R. Anion Pairs Template a Trigonal Prism with Disilver Vertices. J. Am. Chem. Soc. 2019, 141, 1140911413,  DOI: 10.1021/jacs.9b05432
  18. 18
    Huang, S.; Lin, Y.; Hor, T. S. A.; Jin, J. Cp*Rh-based Heterometallic Metallarectangles: Size-Dependent Borromean Link Structures and Catalytic Acyl Transfer. J. Am. Chem. Soc. 2013, 135, 81258128,  DOI: 10.1021/ja402630g
  19. 19
    Yue, N. L. S.; Jennings, M. C.; Puddephatt, R. J. Disilver(I) Macrocycles: Variation of Cavity Size with Anion Binding. Inorg. Chem. 2005, 44, 11251131,  DOI: 10.1021/ic048549c
  20. 20
    Dong, Y.-B.; Geng, Y.; Ma, J.-P.; Huang, R.-Q. Organometallic Silver(I) Supramolecular Complexes Generated from Multidentate Furan-Containing Symmetric and Unsymmetric Fulvene Ligands and Silver(I) Salts. Inorg. Chem. 2005, 44, 16931703,  DOI: 10.1021/ic048518h
  21. 21
    Wang, Q.; Gonell, S.; Leenders, S. H. A. M.; Dürr, M.; Ivanović-Burmazović, I.; Reek, J. N. H. Self-Assembled Nanospheres with Multiple Endohedral Binding Sites Pre-Organize Catalysts and Substrates for Highly Efficient Reactions. Nat. Chem. 2016, 8, 225230,  DOI: 10.1038/nchem.2425
  22. 22
    Lisboa, L. S.; Findlay, J. A.; Wright, L. J.; Hartinger, C. G.; Crowley, J. D. A Reduced Symmetry Heterobimetallic [PdPtL4]4+ Cage: Assembly, Guest Binding and Stimulus-Induced Switching. Angew. Chem., Int. Ed. 2020, 59, 1110111107,  DOI: 10.1002/anie.202003220
  23. 23
    Ueda, Y.; Ito, H.; Fujita, D.; Fujita, M. Permeable Self-Assembled Molecular Containers for Catalyst Isolation Enabling Two-Step Cascade Reactions. J. Am. Chem. Soc. 2017, 139, 60906093,  DOI: 10.1021/jacs.7b02745
  24. 24
    Holloway, L. R.; Bogie, P. M.; Lyon, Y.; Ngai, C.; Miller, T. F.; Julian, R. R.; Hooley, R. J. Tandem Reactivity of a Self-Assembled Cage Catalyst with Endohedral Acid Groups. J. Am. Chem. Soc. 2018, 140, 80788081,  DOI: 10.1021/jacs.8b03984
  25. 25
    Hua, B.; Shao, L.; Zhang, Z.; Liu, J.; Huang, F. Cooperative Silver Ion-Pair Recognition by Peralkylated Pillar[5]arenes. J. Am. Chem. Soc. 2019, 141, 1500815012,  DOI: 10.1021/jacs.9b08257
  26. 26
    Sawada, T.; Fujita, M. Folding and Assembly of Metal-Linked Peptidic Nanostructures. Chem. 2020, 6, 18611876,  DOI: 10.1016/j.chempr.2020.07.002
  27. 27
    Sawada, T.; Inomata, Y.; Shimokawa, K.; Fujita, M. A Metal-Peptide Capsule by Multiple Ring Threading. Nat. Commun. 2019, 10, 5687,  DOI: 10.1038/s41467-019-13594-4
  28. 28
    Inomata, Y.; Sawada, T.; Fujita, M. Metal-Peptide Torus Knots from Flexible Short Peptides. Chem 2020, 6, 294,  DOI: 10.1016/j.chempr.2019.12.009
  29. 29
    Barendt, T. A.; Docker, A.; Marques, I.; Félix, V.; Beer, P. D. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle. Angew. Chem., Int. Ed. 2016, 55, 1106911076,  DOI: 10.1002/anie.201604327
  30. 30
    Langton, M. J.; Beer, P. D. Rotaxane and Catenane Host Structures for Sensing Charged Guest Species. Acc. Chem. Res. 2014, 47, 19351949,  DOI: 10.1021/ar500012a
  31. 31
    Kishi, N.; Akita, M.; Kamiya, M.; Hayashi, S.; Hsu, H.-F.; Yoshizawa, M. Facile Catch and Release of Fullerenes Using a Photoresponsive Molecular Tube. J. Am. Chem. Soc. 2013, 135, 1297612979,  DOI: 10.1021/ja406893y
  32. 32
    Riddell, I. A.; Smulders, M. M. J.; Clegg, J. K.; Hristova, Y. R.; Breiner, B.; Thoburn, J. D.; Nitschke, J. R. Anion-induced Reconstitution of a Self-Assembly System to Express a Chloride-Binding Co10L15 Pentagonal Prism. Nat. Chem. 2012, 4, 751756,  DOI: 10.1038/nchem.1407
  33. 33
    Zhang, W.; Yang, D.; Zhao, J.; Hou, L.; Sessler, J. L.; Yang, Z.-J.; Wu, B. Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage. J. Am. Chem. Soc. 2018, 140, 52485256,  DOI: 10.1021/jacs.8b01488
  34. 34
    Custelcean, R. Anion Encapsulation and Dynamics in Self-Assembled Coordination Cages. Chem. Soc. Rev. 2014, 43, 18131824,  DOI: 10.1039/C3CS60371G
  35. 35
    Bowman-James, K. Alfred Werner Revisited: The Coordination Chemistry of Anions. Acc. Chem. Res. 2005, 38, 671678,  DOI: 10.1021/ar040071t
  36. 36
    Custelcean, R.; Bonnesen, P. V.; Duncan, N. C.; Zhang, X.; Watson, L. A.; Van Berkel, G.; Parson, W. B.; Hay, B. P. Urea-Functionalized M4L6 Cage Receptors: Anion-Templated Self-Assembly and Selective Guest Exchange in Aqueous Solutions. J. Am. Chem. Soc. 2012, 134, 85258534,  DOI: 10.1021/ja300677w
  37. 37
    Liu, Y.; Zhao, W.; Chen, C.-H.; Flood, A. H. Chloride Capture Using a C-H Hydrogen-Bonding Cage. Science 2019, 365, 159161,  DOI: 10.1126/science.aaw5145
  38. 38
    Liu, Y.; Sengupta, A.; Raghavachari, K.; Flood, A. M. Anion Binding in Solution: Beyond the Electrostatic Regime. Chem 2017, 3, 411417,  DOI: 10.1016/j.chempr.2017.08.003
  39. 39
    Zhao, W.; Qiao, B.; Tropp, J.; Pink, M.; Azoulay, J. D.; Flood, A. H. Linear Supramolecular Polymers Driven by Anion-Anion Dimerization of Difunctional Phosphonate Monomers Inside Cyanostar Macrocycles. J. Am. Chem. Soc. 2019, 141, 49804989,  DOI: 10.1021/jacs.9b00248
  40. 40
    Wu, X.; Wang, P.; Turner, P.; Lewis, W.; Catal, O.; Thomas, D. S.; Gale, P. A. Tetraurea Macrocycles: Aggregation-Driven Binding of Chloride in Aqueous Solutions. Chem. 2019, 5, 12101222,  DOI: 10.1016/j.chempr.2019.02.023
  41. 41
    Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 80388155,  DOI: 10.1021/acs.chemrev.5b00099
  42. 42
    Chen, L.; Berry, S. N.; Wu, X.; Howe, E. N. W.; Gale, P. A. Advances in Anion Receptor Chemistry. Chem. 2020, 6, 61141,  DOI: 10.1016/j.chempr.2019.12.002
  43. 43
    Custelcean, R. Urea-Functionalized Crystalline Capsules for Recognition and Separation of Tetrahedral Oxoanions. Chem. Commun. 2013, 49, 21732182,  DOI: 10.1039/c2cc38252k
  44. 44
    Schäfer, S.; Gamer, M. T.; Lebedkin, S.; Weigend, F.; Kappes, M. M.; Roesky, P. W. Bis(6-methylene-2,2’-bipyridine)phenylphosphine – A Flexible Ligand for the Construction of Trinuclear Coinage-Metal Complexes. Chem. - Eur. J. 2017, 23, 1219812209,  DOI: 10.1002/chem.201701091
  45. 45
    Luo, G.-G.; Guo, Q.-L.; Wang, Z.; Sun, C.-F.; Lin, J.-Q.; Sun, D. New Protective Ligands for Atomically Precise Silver Nanoclusters. Dalton Trans. 2020, 49, 54065415,  DOI: 10.1039/D0DT00477D
  46. 46
    Wang, X. Discrete Ag6L6 Coordination Nanotubular Structures Based on a T-Shaped Pyridyl Diphosphine. Chem. Commun. 2011, 47, 38493851,  DOI: 10.1039/c0cc05235c
  47. 47
    Zhang, Y.-W.; Bai, S.; Wang, Y.-Y.; Han, Y.-F. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J. Am. Chem. Soc. 2020, 142, 1361413621,  DOI: 10.1021/jacs.0c06470
  48. 48
    Jin, G.-X.; Zhu, G.-Y.; Sun, Y.-Y.; Shi, Q.-X.; Liang, L.-P.; Wang, H.-Y.; Wu, Z.-W.; Ma, J.-P. [Ag-Ag]2+ Unit-Encapsulated Trimetallic Cages: One-Pot Syntheses and Modulation of Argentophilic Interactions by the Uncoordinated Substituents. Inorg. Chem. 2019, 58, 29162920,  DOI: 10.1021/acs.inorgchem.8b03388
  49. 49
    Schmidbaur, H.; Schier, A. Argentophilic Interactions. Angew. Chem., Int. Ed. 2015, 54, 746784,  DOI: 10.1002/anie.201405936
  50. 50
    Zhang, Q.-Y.; He, X.; Zhao, L. Macrocycle-Assisted Synthesis of Non-Stoichimetric Silver(I) Halide Electrocatalysts for Efficient Chlorine Evolution Reaction. Chem. Sci. 2017, 8, 56625668,  DOI: 10.1039/C7SC00575J
  51. 51
    Zhang, S.; Zhao, L. Macrocycle-Encircled Polynuclear Metal Clusters: Controllable Synthesis, Reactivity Studies, and Applications. Acc. Chem. Res. 2018, 51, 25352545,  DOI: 10.1021/acs.accounts.8b00283
  52. 52
    Desnoyer, A. N.; Nicolay, A.; Rios, P.; Ziegler, M. S.; Tilley, T. D. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Acc. Chem. Res. 2020, 53, 19441956,  DOI: 10.1021/acs.accounts.0c00382
  53. 53
    Jansze, S. M. Ligand Aspect Ratio as a Decisive Factor for the Self-Assembly of Coordination Cages. J. Am. Chem. Soc. 2016, 138, 20462054,  DOI: 10.1021/jacs.5b13190
  54. 54
    Giuseppone, N.; Schmitt, J.-L.; Allouche, L.; Lehn, J.-M. DOSY NMR Experiments as a Tool for the Analysis of Constitutional and Motional Dynamic Processes: Implementation for the Driven Evolution of Dynamic Combinatorial Libraries of Helical Strands. Angew. Chem., Int. Ed. 2008, 47, 22352239,  DOI: 10.1002/anie.200703168
  55. 55
    Zhang, Z. Intra- and Intermolecular Self-Assembly of a 20-nm-Wide Supramolecular Hexagonal Grid. Nat. Chem. 2020, 12, 468474,  DOI: 10.1038/s41557-020-0454-z
  56. 56

    Although the coordinative flexibility shown by the napthyridine–silver system limits the degree of certainty of these modeling results, the large difference in energy between the tetrahedral architecture and alternate structures lends credence to the assignment of the Ag8L6 structure as a tetrahedron.

  57. 57
    For example:von Krbek, L. K. S.; Roberts, D. A.; Pilgrim, B. S.; Schalley, C. A.; Nitschke, J. R. Multivalent Crown-ether Receptors Enable Allosteric Regulation of Anion Exchange in an Fe4L6 Tetrahedron. Angew. Chem., Int. Ed. 2018, 57, 1412114124,  DOI: 10.1002/anie.201808534
  58. 58
    Clegg, J. K.; Cremers, J.; Hogben, A. J.; Breiner, B.; Smulders, M. M. J.; Thoburn, J. D.; Nitschke, J. R. A Stimuli Responsive System of Self-Assembled Anion-Binding Fe4L68+ Cages. Chem. Sci. 2013, 4, 6876,  DOI: 10.1039/C2SC21486E
  59. 59
    Fernández-Galán, R.; Manzano, B. R.; Otero, A.; Lanfranchi, M.; Pellinghelli, M. A. 19F and 31P NMR Evidence for Silver Hexafluorophosphate Hydrolysis in Solution. New Palladium Difluorophosphate Complexes and X-ray Structure Determination of [Pd(η3-2-Me-C3H4)(PO2F2)(PCy3)]. Inorg. Chem. 1994, 33, 23092312,  DOI: 10.1021/ic00088a039
  60. 60
    Salomon, M. Solubilities of the Silver Halides in Benzonitrile and Trichloroacetonitrile Mixtures with Propylene Carbonate. Can. J. Chem. 1976, 54, 14871492,  DOI: 10.1139/v76-213
  61. 61

    Mass spectrometry of these silver complexes is challenging, presumably due to the dynamic nature of the naphthyridine–silver interactions. We see extensive fragmentation of all complexes under even mild conditions. By tuning ionization conditions and through choice of counterion, we were able to gather data on these architectures in both LRMS and HRMS. We found that using hexafluorophosphate as the counterion was particularly effective for obtaining good quality mass spectra.

  62. 62
    Lehn, J.-M. Toward Complex matter: Supramolecular Chemistry and Self-Organization. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 47634768,  DOI: 10.1073/pnas.072065599
  63. 63
    Toyota, S.; Woods, C. R.; Benaglia, M.; Haldimann, R.; Wärnmark, K.; Hardcastle, K.; Siegel, J. S. Tetranuclear Copper(I)-Biphenanthroline Gridwork: Violation of the Principle of Maximal Donor Coordination Caused by Intercalation and CH-to-N Forces. Angew. Chem., Int. Ed. 2001, 40, 751754,  DOI: 10.1002/1521-3773(20010216)40:4<751::AID-ANIE7510>3.0.CO;2-4
  64. 64

    A minor isomer was also resolved in the crystallographic data, whereby an exterior sulfate coordinates via three oxygen atoms instead. Please see SI Section 12 for further details.

  65. 65
    Fatila, E. M.; Twum, E. B.; Sengupta, A.; Pink, M.; Karty, J. A.; Raghavachari, K.; Flood, A. H. Anion Stabilize Each Other Inside Macrocyclic Hosts. Angew. Chem., Int. Ed. 2016, 55, 1405714062,  DOI: 10.1002/anie.201608118
  66. 66

    These silver–naphthyridine systems proved to be extremely stable to light, which was unexpected. Samples could be left exposed to ambient light for 2–3 months with no sign of decomposition by NMR, or precipitation.

Cited By

This article is cited by 20 publications.

  1. Charlie T. McTernan, Jack A. Davies, Jonathan R. Nitschke. Beyond Platonic: How to Build Metal–Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chemical Reviews 2022, 122 (11) , 10393-10437. https://doi.org/10.1021/acs.chemrev.1c00763
  2. Udit Kumar, Buthanapalli Ramakrishna, Jisna Varghese, Pitchavel Vidhyapriya, Natarajan Sakthivel, Bala. Manimaran. Self-Assembled Manganese(I)-Based Selenolato-Bridged Tetranuclear Metallorectangles: Host–Guest Interaction, Anticancer, and CO-Releasing Studies. Inorganic Chemistry 2021, 60 (17) , 13284-13298. https://doi.org/10.1021/acs.inorgchem.1c01636
  3. Xue-Jun Zhang, Lei Wang, Xiu-Du Zhang, Yue Zhao. A novel Ag3L2 coordination cage derived from a tripodal oxazoline ligand: synthesis, structure and catalysis. Inorganic Chemistry Communications 2023, 153 , 110792. https://doi.org/10.1016/j.inoche.2023.110792
  4. Sandra Fernández-Fariña, Isabel Velo-Heleno, Miguel Martínez-Calvo, Marcelino Maneiro, Rosa Pedrido, Ana M. González-Noya. Schiff Bases Functionalized with T-Butyl Groups as Adequate Ligands to Extended Assembly of Cu(II) Helicates. International Journal of Molecular Sciences 2023, 24 (10) , 8654. https://doi.org/10.3390/ijms24108654
  5. Samuel E. Clark, Andrew W. Heard, Charlie T. McTernan, Tanya K. Ronson, Barbara Rossi, Petr Rozhin, Silvia Marchesan, Jonathan R. Nitschke. A Double‐Walled Tetrahedron with Ag I 4 Vertices Binds Different Guests in Distinct Sites**. Angewandte Chemie 2023, 135 (16) https://doi.org/10.1002/ange.202301612
  6. Samuel E. Clark, Andrew W. Heard, Charlie T. McTernan, Tanya K. Ronson, Barbara Rossi, Petr Rozhin, Silvia Marchesan, Jonathan R. Nitschke. A Double‐Walled Tetrahedron with Ag I 4 Vertices Binds Different Guests in Distinct Sites**. Angewandte Chemie International Edition 2023, 62 (16) https://doi.org/10.1002/anie.202301612
  7. Heechan Kim, Juhwan Shin, Seyong Kim, Dongwhan Lee. Helical fluxionality: numerical frustration drives concerted low-barrier screw motions of a tricopper cluster. Chemical Science 2023, 14 (12) , 3265-3269. https://doi.org/10.1039/D3SC00851G
  8. Ayan Dhara, Rachel E. Fadler, Yusheng Chen, Laura A. Köttner, David Van Craen, Veronica Carta, Amar H. Flood. Orthogonal, modular anion–cation and cation–anion self-assembly using pre-programmed anion binding sites. Chemical Science 2023, 14 (10) , 2585-2595. https://doi.org/10.1039/D2SC05121D
  9. Aleksandra Sarwa, Agata Białońska, Mateusz Garbicz, Bartosz Szyszko. Plenates: Anion‐Dependent Self‐Assembly of the Pyrrole Cage Encapsulating Silver(I) Clusters. Chemistry – A European Journal 2023, 29 (12) https://doi.org/10.1002/chem.202203850
  10. Yang Liu, Zhiyuan Jiang, Yuming Guan, Qixia Bai, Zhe Zhang, Yiming Li, He Zhao, Ting-Zheng Xie, Ming Wang, Pingshan Wang, Tun Wu. Halide ion directed templation effect of quadruple-stranded helicates. Cell Reports Physical Science 2022, 1 , 101056. https://doi.org/10.1016/j.xcrp.2022.101056
  11. Shaochuan Li, Caiping Liu, Qihui Chen, Feilong Jiang, Daqiang Yuan, Qing-Fu Sun, Maochun Hong. Adaptive coordination assemblies based on a flexible tetraazacyclododecane ligand for promoting carbon dioxide fixation. Chemical Science 2022, 13 (31) , 9016-9022. https://doi.org/10.1039/D2SC03093D
  12. Selina Hollstein, Oleksandr Shyshov, Marko Hanževački, Jie Zhao, Tamara Rudolf, Christof M. Jäger, Max von Delius. Dynamisch kovalente Selbstassemblierung von Chlorid‐ und Ionenpaar‐templierten Kryptaten. Angewandte Chemie 2022, 134 (28) https://doi.org/10.1002/ange.202201831
  13. Selina Hollstein, Oleksandr Shyshov, Marko Hanževački, Jie Zhao, Tamara Rudolf, Christof M. Jäger, Max von Delius. Dynamic Covalent Self‐Assembly of Chloride‐ and Ion‐Pair‐Templated Cryptates. Angewandte Chemie International Edition 2022, 61 (28) https://doi.org/10.1002/anie.202201831
  14. Jiao‐Jiao Li, Chun‐Yu Liu, Zong‐Jie Guan, Zhen Lei, Quan‐Ming Wang. Anion‐Directed Regulation of Structures and Luminescence of Heterometallic Clusters. Angewandte Chemie 2022, 134 (25) https://doi.org/10.1002/ange.202201549
  15. Jiao‐Jiao Li, Chun‐Yu Liu, Zong‐Jie Guan, Zhen Lei, Quan‐Ming Wang. Anion‐Directed Regulation of Structures and Luminescence of Heterometallic Clusters. Angewandte Chemie International Edition 2022, 61 (25) https://doi.org/10.1002/anie.202201549
  16. Seong Min Jo, Tae Hwan Noh. Acetonitrile coordination to silver(I) ions of 1‐D coordination polymers with 1,3‐di(nicotinoyloxy)‐2‐methylenepropane. Bulletin of the Korean Chemical Society 2022, 43 (4) , 602-608. https://doi.org/10.1002/bkcs.12500
  17. Bin Chen, Julian J. Holstein, André Platzek, Laura Schneider, Kai Wu, Guido H. Clever. Cooperativity of steric bulk and H-bonding in coordination sphere engineering: heteroleptic Pd II cages and bowls by design. Chemical Science 2022, 13 (6) , 1829-1834. https://doi.org/10.1039/D1SC06931D
  18. Yongle Ding, Chengshuo Shen, Fuwei Gan, Jinghao Wang, Guoli Zhang, Lingling Li, Mouhai Shu, Bangshang Zhu, Jeanne Crassous, Huibin Qiu. Tunable construction of transition metal-coordinated helicene cages. Chinese Chemical Letters 2021, 32 (12) , 3988-3992. https://doi.org/10.1016/j.cclet.2021.05.033
  19. Jingjing Jiao, Jinqiao Dong, Yingguo Li, Yong Cui. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angewandte Chemie 2021, 133 (30) , 16704-16711. https://doi.org/10.1002/ange.202104111
  20. Jingjing Jiao, Jinqiao Dong, Yingguo Li, Yong Cui. Fine‐Tuning of Chiral Microenvironments within Triple‐Stranded Helicates for Enhanced Enantioselectivity. Angewandte Chemie International Edition 2021, 60 (30) , 16568-16575. https://doi.org/10.1002/anie.202104111
  • Abstract

    Figure 1

    Figure 1. Self-assembly of Ag4L3 and Ag8L6 architectures. Conditions: (a) AgNTf2 (2 equiv), 2 (1 equiv), 1 (2 equiv), d3-MeCN, 5 min; (b) AgNTf2 (2 equiv), 3 or 4 (1 equiv), 1 (2 equiv), d3-MeCN, 5 min. Structures of 5 and 6 are MM3-optimized models. (c) DOSY NMR of 5 and 6.

    Figure 2

    Figure 2. (a) Synthesis of six-stranded helicates 9 and 10, formed only during self-assembly from dianiline 3. (i) Tetrabutylammonium iodide (0.34 equiv), 5 min; (ii) tetramethylammonium sulfate (1.0 equiv), 6 h. Structures of 5 and 6 are MM3 optimized models, and those of 9 and 10 are based on crystallographic data (vide infra). Simplified representation of six-stranded helicate (b) 9 and (c) 10.

    Figure 3

    Figure 3. (a) X-ray crystal structure of 9; (b) schematic view of 9. (c) X-ray crystal structure of 10; (d) schematic view of 10. (e) End-on view of crystal structure of 9 showing cluster geometry. (f) End-on view of crystal structure of 10 showing the silver cluster and nonclassical hydrogen bonds to the exterior sulfate. (g) View from within the crystal structure of 10, showing nonclassical hydrogen bonds to the internal sulfate.

    Figure 4

    Figure 4. (a) Comparison of 1H NMR spectra of 10 (top), 11 (middle), and 9 (bottom), showing the similarity between the spectra of 9 and 11. Simplified (b) schematic and (c) cartoon views of six-stranded helicate 11.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 66 other publications.

    1. 1
      Danon, J. J.; Krüger, A.; Leigh, D. A.; Lemonnier, J.-F.; Stephens, A. J.; Vitorica-Yrezabal, I. J.; Woltering, S. L. Braiding a Molecular Knot with Eight Crossings. Science 2017, 355, 159162,  DOI: 10.1126/science.aal1619
    2. 2
      Wang, H. Assembling Pentatopic Terpyridine Ligands with Three Types of Coordination Moieties into a Giant Supramolecular Hexagonal Prism: Synthesis, Self-Assembly, Characterization, and Antimicrobial Study. J. Am. Chem. Soc. 2019, 141, 1610816116,  DOI: 10.1021/jacs.9b08484
    3. 3
      Fujita, D.; Ueda, Y.; Sato, S.; Yokoyama, H.; Mizuno, N.; Kumasaka, T.; Fujita, M. Self-Assembly of M30L60 Icosidodecahedron. Chem 2016, 1, 91101,  DOI: 10.1016/j.chempr.2016.06.007
    4. 4
      Niki, K.; Tsutsui, T.; Yamashina, M.; Akita, M.; Yoshizawa, M. Recognition and Stabilization of Unsaturated Fatty Acids by a Polyaromatic Receptor. Angew. Chem., Int. Ed. 2020, 59, 1048910492,  DOI: 10.1002/anie.202003253
    5. 5
      Howlader, P.; Mukherjee, P. S. Face and Edge Directed Self-Assembly of Pd12 Tetrahedral Nano-Cages and their Self-Sorting. Chem. Sci. 2016, 7, 58935899,  DOI: 10.1039/C6SC02012G
    6. 6
      Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. A Supramolecular Microenvironment Strategy for Transition Metal Catalysis. Science 2015, 350, 12351238,  DOI: 10.1126/science.aad3087
    7. 7
      Zhang, D.; Ronson, T. K.; Lavendomme, R.; Nitschke, J. R. Selective Separation of Polyaromatic Hydrocarbons by Phase Transfer of Coordination Cages. J. Am. Chem. Soc. 2019, 141, 1894918953,  DOI: 10.1021/jacs.9b10741
    8. 8
      Zhu, J.; Haynes, C. J. E.; Kieffer, M.; Greenfield, J. L.; Greenhalgh, R. D.; Nitschke, J. R.; Keyser, U. F. FeII4L4 Tetrahedron Binds to Nonpaired DNA Bases. J. Am. Chem. Soc. 2019, 141, 1135811362,  DOI: 10.1021/jacs.9b03566
    9. 9
      Hotze, A. C. G.; Kariuki, B. M.; Hannon, M. J. Dinuclear Double-Stranded Metallosupramolecular Ruthenium Complexes: Potential Anticancer Drugs. Angew. Chem., Int. Ed. 2006, 45, 48394842,  DOI: 10.1002/anie.200601351
    10. 10
      Chen, B.; Holstein, J. J.; Horiuchi, S.; Hiller, W. G.; Clever, G. H. Pd(II) Coordination Sphere Engineering: Pyridine Cages, Quinoline Bowls, and Heteroleptic Pills Binding One or Two Fullerenes. J. Am. Chem. Soc. 2019, 141, 89078913,  DOI: 10.1021/jacs.9b02207
    11. 11
      Rizzuto, F. J.; von Krbek, L. K. S.; Nitschke, J. R. Strategies for Binding Multiple Guests in Metal-Organic Cages. Nat. Chem. Rev. 2019, 3, 204222,  DOI: 10.1038/s41570-019-0085-3
    12. 12
      Takezawa, H.; Shitozawa, K.; Fujita, M. Enhanced Reactivity of Twisted Amides Inside a Molecular Cage. Nat. Chem. 2020, 12, 574578,  DOI: 10.1038/s41557-020-0455-y
    13. 13
      Chepelin, O. Luminescent, Enantiopure, Phenylatopyridine Iridium-Based Coordination Capsules. J. Am. Chem. Soc. 2012, 134, 1933419337,  DOI: 10.1021/ja309031h
    14. 14
      Mosquera, J.; Ronson, T. K.; Nitschke, J. R. Subcomponent Flexibility Enables Conversion between D4-Symmetric CdII4L4 Assemblies. J. Am. Chem. Soc. 2016, 138, 18121815,  DOI: 10.1021/jacs.5b12955
    15. 15
      Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward, M. D. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 2016, 8, 231236,  DOI: 10.1038/nchem.2452
    16. 16
      Liu, Y.; Zhang, R.; He, C.; Dang, D. B.; Duan, C. Y. A Palladium(II) Triangle as Building Blocks of Microporous Molecular Materials: Structures and Catalytic Performance. Chem. Commun. 2010, 46, 746748,  DOI: 10.1039/B916916D
    17. 17
      Carpenter, J. P.; McTernan, C. T.; Ronson, T. K.; Nitschke, J. R. Anion Pairs Template a Trigonal Prism with Disilver Vertices. J. Am. Chem. Soc. 2019, 141, 1140911413,  DOI: 10.1021/jacs.9b05432
    18. 18
      Huang, S.; Lin, Y.; Hor, T. S. A.; Jin, J. Cp*Rh-based Heterometallic Metallarectangles: Size-Dependent Borromean Link Structures and Catalytic Acyl Transfer. J. Am. Chem. Soc. 2013, 135, 81258128,  DOI: 10.1021/ja402630g
    19. 19
      Yue, N. L. S.; Jennings, M. C.; Puddephatt, R. J. Disilver(I) Macrocycles: Variation of Cavity Size with Anion Binding. Inorg. Chem. 2005, 44, 11251131,  DOI: 10.1021/ic048549c
    20. 20
      Dong, Y.-B.; Geng, Y.; Ma, J.-P.; Huang, R.-Q. Organometallic Silver(I) Supramolecular Complexes Generated from Multidentate Furan-Containing Symmetric and Unsymmetric Fulvene Ligands and Silver(I) Salts. Inorg. Chem. 2005, 44, 16931703,  DOI: 10.1021/ic048518h
    21. 21
      Wang, Q.; Gonell, S.; Leenders, S. H. A. M.; Dürr, M.; Ivanović-Burmazović, I.; Reek, J. N. H. Self-Assembled Nanospheres with Multiple Endohedral Binding Sites Pre-Organize Catalysts and Substrates for Highly Efficient Reactions. Nat. Chem. 2016, 8, 225230,  DOI: 10.1038/nchem.2425
    22. 22
      Lisboa, L. S.; Findlay, J. A.; Wright, L. J.; Hartinger, C. G.; Crowley, J. D. A Reduced Symmetry Heterobimetallic [PdPtL4]4+ Cage: Assembly, Guest Binding and Stimulus-Induced Switching. Angew. Chem., Int. Ed. 2020, 59, 1110111107,  DOI: 10.1002/anie.202003220
    23. 23
      Ueda, Y.; Ito, H.; Fujita, D.; Fujita, M. Permeable Self-Assembled Molecular Containers for Catalyst Isolation Enabling Two-Step Cascade Reactions. J. Am. Chem. Soc. 2017, 139, 60906093,  DOI: 10.1021/jacs.7b02745
    24. 24
      Holloway, L. R.; Bogie, P. M.; Lyon, Y.; Ngai, C.; Miller, T. F.; Julian, R. R.; Hooley, R. J. Tandem Reactivity of a Self-Assembled Cage Catalyst with Endohedral Acid Groups. J. Am. Chem. Soc. 2018, 140, 80788081,  DOI: 10.1021/jacs.8b03984
    25. 25
      Hua, B.; Shao, L.; Zhang, Z.; Liu, J.; Huang, F. Cooperative Silver Ion-Pair Recognition by Peralkylated Pillar[5]arenes. J. Am. Chem. Soc. 2019, 141, 1500815012,  DOI: 10.1021/jacs.9b08257
    26. 26
      Sawada, T.; Fujita, M. Folding and Assembly of Metal-Linked Peptidic Nanostructures. Chem. 2020, 6, 18611876,  DOI: 10.1016/j.chempr.2020.07.002
    27. 27
      Sawada, T.; Inomata, Y.; Shimokawa, K.; Fujita, M. A Metal-Peptide Capsule by Multiple Ring Threading. Nat. Commun. 2019, 10, 5687,  DOI: 10.1038/s41467-019-13594-4
    28. 28
      Inomata, Y.; Sawada, T.; Fujita, M. Metal-Peptide Torus Knots from Flexible Short Peptides. Chem 2020, 6, 294,  DOI: 10.1016/j.chempr.2019.12.009
    29. 29
      Barendt, T. A.; Docker, A.; Marques, I.; Félix, V.; Beer, P. D. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle. Angew. Chem., Int. Ed. 2016, 55, 1106911076,  DOI: 10.1002/anie.201604327
    30. 30
      Langton, M. J.; Beer, P. D. Rotaxane and Catenane Host Structures for Sensing Charged Guest Species. Acc. Chem. Res. 2014, 47, 19351949,  DOI: 10.1021/ar500012a
    31. 31
      Kishi, N.; Akita, M.; Kamiya, M.; Hayashi, S.; Hsu, H.-F.; Yoshizawa, M. Facile Catch and Release of Fullerenes Using a Photoresponsive Molecular Tube. J. Am. Chem. Soc. 2013, 135, 1297612979,  DOI: 10.1021/ja406893y
    32. 32
      Riddell, I. A.; Smulders, M. M. J.; Clegg, J. K.; Hristova, Y. R.; Breiner, B.; Thoburn, J. D.; Nitschke, J. R. Anion-induced Reconstitution of a Self-Assembly System to Express a Chloride-Binding Co10L15 Pentagonal Prism. Nat. Chem. 2012, 4, 751756,  DOI: 10.1038/nchem.1407
    33. 33
      Zhang, W.; Yang, D.; Zhao, J.; Hou, L.; Sessler, J. L.; Yang, Z.-J.; Wu, B. Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage. J. Am. Chem. Soc. 2018, 140, 52485256,  DOI: 10.1021/jacs.8b01488
    34. 34
      Custelcean, R. Anion Encapsulation and Dynamics in Self-Assembled Coordination Cages. Chem. Soc. Rev. 2014, 43, 18131824,  DOI: 10.1039/C3CS60371G
    35. 35
      Bowman-James, K. Alfred Werner Revisited: The Coordination Chemistry of Anions. Acc. Chem. Res. 2005, 38, 671678,  DOI: 10.1021/ar040071t
    36. 36
      Custelcean, R.; Bonnesen, P. V.; Duncan, N. C.; Zhang, X.; Watson, L. A.; Van Berkel, G.; Parson, W. B.; Hay, B. P. Urea-Functionalized M4L6 Cage Receptors: Anion-Templated Self-Assembly and Selective Guest Exchange in Aqueous Solutions. J. Am. Chem. Soc. 2012, 134, 85258534,  DOI: 10.1021/ja300677w
    37. 37
      Liu, Y.; Zhao, W.; Chen, C.-H.; Flood, A. H. Chloride Capture Using a C-H Hydrogen-Bonding Cage. Science 2019, 365, 159161,  DOI: 10.1126/science.aaw5145
    38. 38
      Liu, Y.; Sengupta, A.; Raghavachari, K.; Flood, A. M. Anion Binding in Solution: Beyond the Electrostatic Regime. Chem 2017, 3, 411417,  DOI: 10.1016/j.chempr.2017.08.003
    39. 39
      Zhao, W.; Qiao, B.; Tropp, J.; Pink, M.; Azoulay, J. D.; Flood, A. H. Linear Supramolecular Polymers Driven by Anion-Anion Dimerization of Difunctional Phosphonate Monomers Inside Cyanostar Macrocycles. J. Am. Chem. Soc. 2019, 141, 49804989,  DOI: 10.1021/jacs.9b00248
    40. 40
      Wu, X.; Wang, P.; Turner, P.; Lewis, W.; Catal, O.; Thomas, D. S.; Gale, P. A. Tetraurea Macrocycles: Aggregation-Driven Binding of Chloride in Aqueous Solutions. Chem. 2019, 5, 12101222,  DOI: 10.1016/j.chempr.2019.02.023
    41. 41
      Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 80388155,  DOI: 10.1021/acs.chemrev.5b00099
    42. 42
      Chen, L.; Berry, S. N.; Wu, X.; Howe, E. N. W.; Gale, P. A. Advances in Anion Receptor Chemistry. Chem. 2020, 6, 61141,  DOI: 10.1016/j.chempr.2019.12.002
    43. 43
      Custelcean, R. Urea-Functionalized Crystalline Capsules for Recognition and Separation of Tetrahedral Oxoanions. Chem. Commun. 2013, 49, 21732182,  DOI: 10.1039/c2cc38252k
    44. 44
      Schäfer, S.; Gamer, M. T.; Lebedkin, S.; Weigend, F.; Kappes, M. M.; Roesky, P. W. Bis(6-methylene-2,2’-bipyridine)phenylphosphine – A Flexible Ligand for the Construction of Trinuclear Coinage-Metal Complexes. Chem. - Eur. J. 2017, 23, 1219812209,  DOI: 10.1002/chem.201701091
    45. 45
      Luo, G.-G.; Guo, Q.-L.; Wang, Z.; Sun, C.-F.; Lin, J.-Q.; Sun, D. New Protective Ligands for Atomically Precise Silver Nanoclusters. Dalton Trans. 2020, 49, 54065415,  DOI: 10.1039/D0DT00477D
    46. 46
      Wang, X. Discrete Ag6L6 Coordination Nanotubular Structures Based on a T-Shaped Pyridyl Diphosphine. Chem. Commun. 2011, 47, 38493851,  DOI: 10.1039/c0cc05235c
    47. 47
      Zhang, Y.-W.; Bai, S.; Wang, Y.-Y.; Han, Y.-F. A Strategy for the Construction of Triply Interlocked Organometallic Cages by Rational Design of Poly-NHC Precursors. J. Am. Chem. Soc. 2020, 142, 1361413621,  DOI: 10.1021/jacs.0c06470
    48. 48
      Jin, G.-X.; Zhu, G.-Y.; Sun, Y.-Y.; Shi, Q.-X.; Liang, L.-P.; Wang, H.-Y.; Wu, Z.-W.; Ma, J.-P. [Ag-Ag]2+ Unit-Encapsulated Trimetallic Cages: One-Pot Syntheses and Modulation of Argentophilic Interactions by the Uncoordinated Substituents. Inorg. Chem. 2019, 58, 29162920,  DOI: 10.1021/acs.inorgchem.8b03388
    49. 49
      Schmidbaur, H.; Schier, A. Argentophilic Interactions. Angew. Chem., Int. Ed. 2015, 54, 746784,  DOI: 10.1002/anie.201405936
    50. 50
      Zhang, Q.-Y.; He, X.; Zhao, L. Macrocycle-Assisted Synthesis of Non-Stoichimetric Silver(I) Halide Electrocatalysts for Efficient Chlorine Evolution Reaction. Chem. Sci. 2017, 8, 56625668,  DOI: 10.1039/C7SC00575J
    51. 51
      Zhang, S.; Zhao, L. Macrocycle-Encircled Polynuclear Metal Clusters: Controllable Synthesis, Reactivity Studies, and Applications. Acc. Chem. Res. 2018, 51, 25352545,  DOI: 10.1021/acs.accounts.8b00283
    52. 52
      Desnoyer, A. N.; Nicolay, A.; Rios, P.; Ziegler, M. S.; Tilley, T. D. Bimetallics in a Nutshell: Complexes Supported by Chelating Naphthyridine-Based Ligands. Acc. Chem. Res. 2020, 53, 19441956,  DOI: 10.1021/acs.accounts.0c00382
    53. 53
      Jansze, S. M. Ligand Aspect Ratio as a Decisive Factor for the Self-Assembly of Coordination Cages. J. Am. Chem. Soc. 2016, 138, 20462054,  DOI: 10.1021/jacs.5b13190
    54. 54
      Giuseppone, N.; Schmitt, J.-L.; Allouche, L.; Lehn, J.-M. DOSY NMR Experiments as a Tool for the Analysis of Constitutional and Motional Dynamic Processes: Implementation for the Driven Evolution of Dynamic Combinatorial Libraries of Helical Strands. Angew. Chem., Int. Ed. 2008, 47, 22352239,  DOI: 10.1002/anie.200703168
    55. 55
      Zhang, Z. Intra- and Intermolecular Self-Assembly of a 20-nm-Wide Supramolecular Hexagonal Grid. Nat. Chem. 2020, 12, 468474,  DOI: 10.1038/s41557-020-0454-z
    56. 56

      Although the coordinative flexibility shown by the napthyridine–silver system limits the degree of certainty of these modeling results, the large difference in energy between the tetrahedral architecture and alternate structures lends credence to the assignment of the Ag8L6 structure as a tetrahedron.

    57. 57
      For example:von Krbek, L. K. S.; Roberts, D. A.; Pilgrim, B. S.; Schalley, C. A.; Nitschke, J. R. Multivalent Crown-ether Receptors Enable Allosteric Regulation of Anion Exchange in an Fe4L6 Tetrahedron. Angew. Chem., Int. Ed. 2018, 57, 1412114124,  DOI: 10.1002/anie.201808534
    58. 58
      Clegg, J. K.; Cremers, J.; Hogben, A. J.; Breiner, B.; Smulders, M. M. J.; Thoburn, J. D.; Nitschke, J. R. A Stimuli Responsive System of Self-Assembled Anion-Binding Fe4L68+ Cages. Chem. Sci. 2013, 4, 6876,  DOI: 10.1039/C2SC21486E
    59. 59
      Fernández-Galán, R.; Manzano, B. R.; Otero, A.; Lanfranchi, M.; Pellinghelli, M. A. 19F and 31P NMR Evidence for Silver Hexafluorophosphate Hydrolysis in Solution. New Palladium Difluorophosphate Complexes and X-ray Structure Determination of [Pd(η3-2-Me-C3H4)(PO2F2)(PCy3)]. Inorg. Chem. 1994, 33, 23092312,  DOI: 10.1021/ic00088a039
    60. 60
      Salomon, M. Solubilities of the Silver Halides in Benzonitrile and Trichloroacetonitrile Mixtures with Propylene Carbonate. Can. J. Chem. 1976, 54, 14871492,  DOI: 10.1139/v76-213
    61. 61

      Mass spectrometry of these silver complexes is challenging, presumably due to the dynamic nature of the naphthyridine–silver interactions. We see extensive fragmentation of all complexes under even mild conditions. By tuning ionization conditions and through choice of counterion, we were able to gather data on these architectures in both LRMS and HRMS. We found that using hexafluorophosphate as the counterion was particularly effective for obtaining good quality mass spectra.

    62. 62
      Lehn, J.-M. Toward Complex matter: Supramolecular Chemistry and Self-Organization. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 47634768,  DOI: 10.1073/pnas.072065599
    63. 63
      Toyota, S.; Woods, C. R.; Benaglia, M.; Haldimann, R.; Wärnmark, K.; Hardcastle, K.; Siegel, J. S. Tetranuclear Copper(I)-Biphenanthroline Gridwork: Violation of the Principle of Maximal Donor Coordination Caused by Intercalation and CH-to-N Forces. Angew. Chem., Int. Ed. 2001, 40, 751754,  DOI: 10.1002/1521-3773(20010216)40:4<751::AID-ANIE7510>3.0.CO;2-4
    64. 64

      A minor isomer was also resolved in the crystallographic data, whereby an exterior sulfate coordinates via three oxygen atoms instead. Please see SI Section 12 for further details.

    65. 65
      Fatila, E. M.; Twum, E. B.; Sengupta, A.; Pink, M.; Karty, J. A.; Raghavachari, K.; Flood, A. H. Anion Stabilize Each Other Inside Macrocyclic Hosts. Angew. Chem., Int. Ed. 2016, 55, 1405714062,  DOI: 10.1002/anie.201608118
    66. 66

      These silver–naphthyridine systems proved to be extremely stable to light, which was unexpected. Samples could be left exposed to ambient light for 2–3 months with no sign of decomposition by NMR, or precipitation.

  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c11905.

    • Experimental procedure and details; MM3 models and calculated energies; mass spectrometry data; X-ray crystallography data (PDF)

    • X-ray data for 9 (CCDC 2024152) (CIF)

    • X-ray data for 10 (CCDC 2024153) (CIF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect