ACS Publications. Most Trusted. Most Cited. Most Read
High-Throughput Screening and Automated Data-Driven Analysis of the Triplet Photophysical Properties of Structurally Diverse, Heteroleptic Iridium(III) Complexes
My Activity

Figure 1Loading Img
    Article

    High-Throughput Screening and Automated Data-Driven Analysis of the Triplet Photophysical Properties of Structurally Diverse, Heteroleptic Iridium(III) Complexes
    Click to copy article linkArticle link copied!

    • Stephen DiLuzio
      Stephen DiLuzio
      Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    • Velabo Mdluli
      Velabo Mdluli
      Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    • Timothy U. Connell
      Timothy U. Connell
      Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    • Jacqueline Lewis
      Jacqueline Lewis
      Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    • Victoria VanBenschoten
      Victoria VanBenschoten
      Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    • Stefan Bernhard*
      Stefan Bernhard
      Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (3)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 2, 1179–1194
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.0c12290
    Published January 7, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Steady state emission spectra and excited state lifetimes were measured for 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes prepared via combinatorial parallelized synthesis; 72% of the complexes were found to be luminescent, and the emission maxima of the library spanned the visible spectrum (652–459 nm). Spectral profiles ranged from broad structureless bands to narrow emissions exhibiting vibrational substructure. Measured excited state lifetimes ranged between ∼0.1–14 μs. Automated emission spectral fitting with successive Gaussian functions revealed four distinct measured classes of excited states; in addition to well understood metal–ligand to ligand-charge transfer (3MLLCT) and ligand-centered (3LC) excited states, our classification also identified photophysical characteristics of less explored mixed 3MLLCT/3LC states. Electronic structure features obtained from DFT calculations performed on a large subset of these Ir(III) chromophores offered clear insights into the excited state properties and allowed the prediction of structure/luminescence relationships in this class of commonly used photocatalysts. Models with high prediction accuracy (R2 = 0.89) for emission color were developed on the basis of experimental data. Furthermore, different degrees of nuclear reorganization in the excited state were shown to significantly impact emission energy and excited state lifetimes.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.0c12290.

    • Raw spectroscopic data, and extracted features from Gaussian function fitting (PDF)

    • Raw spectroscopic data, and extracted features from Gaussian function fitting (XLSX)

    • Raw spectroscopic data, and extracted features from Gaussian function fitting (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 82 publications.

    1. Timothy Kench, Nasima Sultana Chowdhury, Khondaker Miraz Rahman, Ramon Vilar. Discovery of Phototoxic Metal Complexes with Antibacterial Properties via a Combinatorial Approach. Inorganic Chemistry 2025, Article ASAP.
    2. Felix Niemeier, Lisa-Marie Servos, Zisis Papadopoulos, Nicolás Montesdeoca, Kaixin Ni, Sascha Heinrich, Johannes Karges. Combinatorial Synthesis toward the Discovery of Highly Cytotoxic Fe(III) Complexes. Journal of Medicinal Chemistry 2025, 68 (2) , 1316-1327. https://doi.org/10.1021/acs.jmedchem.4c01875
    3. Joanna Palion-Gazda, Aleksandra Kwiecień, Katarzyna Choroba, Mateusz Penkala, Karol Erfurt, Barbara Machura. Effect of the Appended Morpholinyl Group on Photophysical Behavior of Mono- and Bis-cyclometalated Terpyridine Iridium(III) Chromophores. Inorganic Chemistry 2025, 64 (1) , 646-661. https://doi.org/10.1021/acs.inorgchem.4c03769
    4. Stephen DiLuzio, Mitchell Baumer, Rafael Guzman, Husain Kagalwala, Eric Lopato, Savannah Talledo, Joshua Kangas, Stefan Bernhard. Exploring the Photophysics and Photocatalytic Activity of Heteroleptic Rh(III) Transition-Metal Complexes Using High-Throughput Experimentation. Inorganic Chemistry 2024, 63 (31) , 14267-14277. https://doi.org/10.1021/acs.inorgchem.4c02420
    5. Ibrahim S. Alkhaibari, Xue Zhang, Jianzhang Zhao, Thomas M. Stonelake, Richard C. Knighton, Peter N. Horton, Simon J. Coles, Niklaas J. Buurma, Emma Richards, Simon J. A. Pope. Tuning Excited State Character in Iridium(III) Photosensitizers and Its Influence on TTA-UC. Inorganic Chemistry 2024, 63 (21) , 9931-9940. https://doi.org/10.1021/acs.inorgchem.4c01003
    6. Ivan Yu. Chernyshov, Evgeny A. Pidko. MACE: Automated Assessment of Stereochemistry of Transition Metal Complexes and Its Applications in Computational Catalysis. Journal of Chemical Theory and Computation 2024, 20 (5) , 2313-2320. https://doi.org/10.1021/acs.jctc.3c01313
    7. Anas Karuth, Gerardo M. Casanola-Martin, Levi Lystrom, Wenfang Sun, Dmitri Kilin, Svetlana Kilina, Bakhtiyor Rasulev. Combined Machine Learning, Computational, and Experimental Analysis of the Iridium(III) Complexes with Red to Near-Infrared Emission. The Journal of Physical Chemistry Letters 2024, 15 (2) , 471-480. https://doi.org/10.1021/acs.jpclett.3c02533
    8. Jana Kasparkova, Alba Hernández-García, Hana Kostrhunova, Marta Goicuría, Vojtěch Novohradsky, Delia Bautista, Lenka Markova, María Dolores Santana, Viktor Brabec, José Ruiz. Novel 2-(5-Arylthiophen-2-yl)-benzoazole Cyclometalated Iridium(III) dppz Complexes Exhibit Selective Phototoxicity in Cancer Cells by Lysosomal Damage and Oncosis. Journal of Medicinal Chemistry 2024, 67 (1) , 691-708. https://doi.org/10.1021/acs.jmedchem.3c01978
    9. Winald R. Kitzmann, David Hunger, Antti-Pekka M. Reponen, Christoph Förster, Roland Schoch, Matthias Bauer, Sascha Feldmann, Joris van Slageren, Katja Heinze. Electronic Structure and Excited-State Dynamics of the NIR-II Emissive Molybdenum(III) Analogue to the Molecular Ruby. Inorganic Chemistry 2023, 62 (39) , 15797-15808. https://doi.org/10.1021/acs.inorgchem.3c02186
    10. Miho Hatanaka, Hiromoto Kato, Minami Sakai, Kosuke Kariya, Shunsuke Nakatani, Takayoshi Yoshimura, Taichi Inagaki. Insights into the Luminescence Quantum Yields of Cyclometalated Iridium(III) Complexes: A Density Functional Theory and Machine Learning Approach. The Journal of Physical Chemistry A 2023, 127 (36) , 7630-7637. https://doi.org/10.1021/acs.jpca.3c02179
    11. Prashant Kumar, Manuel Pérez-Escribano, Davita M. E. van Raamsdonk, Daniel Escudero. Phosphorescent Properties of Heteroleptic Ir(III) Complexes: Uncovering Their Emissive Species. The Journal of Physical Chemistry A 2023, 127 (34) , 7241-7255. https://doi.org/10.1021/acs.jpca.3c04205
    12. Vojtech Novohradsky, Alicia Marco, Lenka Markova, Natalia Cutillas, José Ruiz, Viktor Brabec. Ir(III) Compounds Containing a Terdentate Ligand Are Potent Inhibitors of Proliferation and Effective Antimetastatic Agents in Aggressive Triple-Negative Breast Cancer Cells. Journal of Medicinal Chemistry 2023, 66 (14) , 9766-9783. https://doi.org/10.1021/acs.jmedchem.3c00586
    13. Aditya Nandy, Michael G. Taylor, Heather J. Kulik. Identifying Underexplored and Untapped Regions in the Chemical Space of Transition Metal Complexes. The Journal of Physical Chemistry Letters 2023, 14 (25) , 5798-5804. https://doi.org/10.1021/acs.jpclett.3c01214
    14. Felicity Draper, Egan H. Doeven, Jacqui L. Adcock, Paul S. Francis, Timothy U. Connell. Extending Photocatalyst Activity through Choice of Electron Donor. The Journal of Organic Chemistry 2023, 88 (10) , 6445-6453. https://doi.org/10.1021/acs.joc.2c02460
    15. Jaehee Lee, Woon Ju Song. Photocatalytic C–O Coupling Enzymes That Operate via Intramolecular Electron Transfer. Journal of the American Chemical Society 2023, 145 (9) , 5211-5221. https://doi.org/10.1021/jacs.2c12226
    16. Chenru Duan, Aditya Nandy, Gianmarco G. Terrones, David W. Kastner, Heather J. Kulik. Active Learning Exploration of Transition-Metal Complexes to Discover Method-Insensitive and Synthetically Accessible Chromophores. JACS Au 2023, 3 (2) , 391-401. https://doi.org/10.1021/jacsau.2c00547
    17. Emigdio E. Turner, Douglas J. Breen, Gilbert Kosgei, Laura A. Crandall, Gregory M. Curtin, Elena Jakubikova, Ryan M. O’Donnell, Christopher J. Ziegler, Jeffrey J. Rack. Manipulating Excited State Properties of Iridium Phenylpyridine Complexes with “Push–Pull” Substituents. Inorganic Chemistry 2022, 61 (47) , 18842-18849. https://doi.org/10.1021/acs.inorgchem.2c02269
    18. Eric M. Lopato, Savannah Talledo, Stephen DiLuzio, Velabo Mdluli, Zoe C. Simon, Kaitlyn M. McHugh, Jill E. Millstone, Stefan Bernhard. Photogeneration of Hydrogen from Glycerol and Other Oxygenates Using Molecular Photocatalysts and In Situ Produced Nanoparticulate Cocatalysts. ACS Sustainable Chemistry & Engineering 2022, 10 (43) , 14248-14261. https://doi.org/10.1021/acssuschemeng.2c04282
    19. Xijun Wang, Shuang Jiang, Wei Hu, Sheng Ye, Tairan Wang, Fan Wu, Li Yang, Xiyu Li, Guozhen Zhang, Xin Chen, Jun Jiang, Yi Luo. Quantitatively Determining Surface–Adsorbate Properties from Vibrational Spectroscopy with Interpretable Machine Learning. Journal of the American Chemical Society 2022, 144 (35) , 16069-16076. https://doi.org/10.1021/jacs.2c06288
    20. Sascha Ossinger, Alessandro Prescimone, Daniel Häussinger, Oliver S. Wenger. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorganic Chemistry 2022, 61 (27) , 10533-10547. https://doi.org/10.1021/acs.inorgchem.2c01438
    21. Joseph C. Bawden, Paul S. Francis, Stephen DiLuzio, David J. Hayne, Egan H. Doeven, Johnny Truong, Richard Alexander, Luke C. Henderson, Daniel E. Gómez, Massimiliano Massi, Blake I. Armstrong, Felicity A. Draper, Stefan Bernhard, Timothy U. Connell. Reinterpreting the Fate of Iridium(III) Photocatalysts─Screening a Combinatorial Library to Explore Light-Driven Side-Reactions. Journal of the American Chemical Society 2022, 144 (25) , 11189-11202. https://doi.org/10.1021/jacs.2c02011
    22. Alexander M. Deetz, Gerald J. Meyer. Resolving Halide Ion Stabilization through Kinetically Competitive Electron Transfers. JACS Au 2022, 2 (4) , 985-995. https://doi.org/10.1021/jacsau.2c00088
    23. Li-Li Wen, Chun-Xiu Zang, Ying Gao, Guang-Fu Li, Guo-Gang Shan, Xin-Long Wang, Kui-Zhan Shao, Wen-Fa Xie, Zhong-Min Su. Rational Design of Ir(III) Phosphors to Strategically Manage Charge Recombination for High-Performance White Organic Light-Emitting Diodes. Inorganic Chemistry 2022, 61 (8) , 3736-3745. https://doi.org/10.1021/acs.inorgchem.1c03897
    24. Nicholas E. S. Tay, Dan Lehnherr, Tomislav Rovis. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews 2022, 122 (2) , 2487-2649. https://doi.org/10.1021/acs.chemrev.1c00384
    25. Stephen DiLuzio, Timothy U. Connell, Velabo Mdluli, Jakub F. Kowalewski, Stefan Bernhard. Understanding Ir(III) Photocatalyst Structure–Activity Relationships: A Highly Parallelized Study of Light-Driven Metal Reduction Processes. Journal of the American Chemical Society 2022, 144 (3) , 1431-1444. https://doi.org/10.1021/jacs.1c12059
    26. Lucius Schmid, Felix Glaser, Raoul Schaer, Oliver S. Wenger. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. Journal of the American Chemical Society 2022, 144 (2) , 963-976. https://doi.org/10.1021/jacs.1c11667
    27. Eric M. Lopato, Stefan Bernhard. Exploring Multidimensional Chemical Spaces: Instrumentation and Chemical Systems for the Parallelization of Hydrogen Evolving Photocatalytic Reactions. Energy & Fuels 2021, 35 (23) , 18957-18981. https://doi.org/10.1021/acs.energyfuels.1c02168
    28. Sebastian Hammon, Mara Klarner, Gerald Hörner, Birgit Weber, Martin Friedrich, Jürgen Senker, Rhett Kempe, Thiago Branquinho de Queiroz, Stephan Kümmel. Combining Metal Nanoparticles with an Ir(III) Photosensitizer. The Journal of Physical Chemistry C 2021, 125 (46) , 25765-25773. https://doi.org/10.1021/acs.jpcc.1c05756
    29. Sophie A. Fitzgerald, Haleema Y. Otaif, Christopher E. Elgar, Natalia Sawicka, Peter N. Horton, Simon J. Coles, Joseph M. Beames, Simon J. A. Pope. Polysubstituted Ligand Framework for Color Tuning Phosphorescent Iridium(III) Complexes. Inorganic Chemistry 2021, 60 (20) , 15467-15484. https://doi.org/10.1021/acs.inorgchem.1c02121
    30. Hannah Sayre, Hunter H. Ripberger, Emmanuel Odella, Anna Zieleniewska, Daniel A. Heredia, Garry Rumbles, Gregory D. Scholes, Thomas A. Moore, Ana L. Moore, Robert R. Knowles. PCET-Based Ligand Limits Charge Recombination with an Ir(III) Photoredox Catalyst. Journal of the American Chemical Society 2021, 143 (33) , 13034-13043. https://doi.org/10.1021/jacs.1c01701
    31. Ding Peng, Lin Liu, Bin-Bin Xie, Lin Shen, Xuebo Chen, Wei-Hai Fang. Stacking machine learning models for predicting photophysical properties of iridium complexes. Journal of Photochemistry and Photobiology A: Chemistry 2025, 8 , 116374. https://doi.org/10.1016/j.jphotochem.2025.116374
    32. Davide Ruggeri, Matteo Hoch, Davide Spataro, Luciano Marchiò, Stefano Protti, Daniele Cauzzi, Matteo Tegoni, Matteo Lanzi, Giovanni Maestri. Tuning the Efficiency of Iridium(III) Complexes for Energy Transfer (EnT) Catalysis through Ligand Design. Chemistry – A European Journal 2025, 24 https://doi.org/10.1002/chem.202403309
    33. A. Welsh, D. Husbands, A. Frei. High‐Throughput Combinatorial Metal Complex Synthesis. Angewandte Chemie 2025, 137 (6) https://doi.org/10.1002/ange.202420204
    34. A. Welsh, D. Husbands, A. Frei. High‐Throughput Combinatorial Metal Complex Synthesis. Angewandte Chemie International Edition 2025, 64 (6) https://doi.org/10.1002/anie.202420204
    35. Vincenzo Inzillo, Alfonso Ariza Quintana. Implementation of 802.11ax and cell-free massive MIMO scenario for 6G wireless network analysis extending OMNeT++ simulator. SIMULATION 2025, 101 (2) , 117-143. https://doi.org/10.1177/00375497241266256
    36. Ilia Kevlishvili, Roland G. St. Michel, Aaron G. Garrison, Jacob W. Toney, Husain Adamji, Haojun Jia, Yuriy Román-Leshkov, Heather J. Kulik. Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes. Faraday Discussions 2025, 256 , 275-303. https://doi.org/10.1039/D4FD00087K
    37. Maniklal Shee, Julia Schleisiek, Nishith Maity, Gourav Das, Nicolás Montesdeoca, Minh‐Huong Ha‐Thi, Kiran R. Gore, Johannes Karges, N. D. Pradeep Singh. Exploring Excited‐State Intramolecular Proton‐Coupled Electron Transfer in Dinuclear Ir(III)‐Complex via Covalently Tagged Hydroquinone: Phototherapy Through Futile Redox Cycling. Small 2025, 21 (4) https://doi.org/10.1002/smll.202408437
    38. Shuai Wang, ChiYung Yam, LiHong Hu, Faan-Fung Hung, Shuguang Chen, Chi-Ming Che, GuanHua Chen. Multi-level Δ-learning for predicting the radiative decay rate constant of phosphorescent platinum( ii ) complexes. Journal of Materials Chemistry C 2025, 59 https://doi.org/10.1039/D4TC04046E
    39. Ryo Fukumoto, Eri Sakuda, Kenichiro Omoto, Shinnosuke Horiuchi, Yasuhiro Arikawa, Keisuke Umakoshi. Increased phosphorescence of cyclometalated Ir(III) complex with a planar triarylborane moiety upon fluoride anion binding. Chemistry Letters 2024, 53 (12) https://doi.org/10.1093/chemle/upae237
    40. Katarzyna Choroba, Joanna Palion-Gazda, Mateusz Penkala, Patrycja Rawicka, Barbara Machura. Tunability of triplet excited states and photophysical behaviour of bis-cyclometalated iridium( iii ) complexes with imidazo[4,5- f ][1,10]phenanthroline. Dalton Transactions 2024, 53 (44) , 17934-17947. https://doi.org/10.1039/D4DT01996B
    41. Kriti Kapil, Mingkang Sun, Ting-Chih Lin, Hironobu Murata, Grzegorz Szczepaniak, Khidong Kim, Stephen DiLuzio, Jaepil Jeong, Mitchell Baumer, Stefan Bernhard, Tomasz Kowalewski, Krzysztof Matyjaszewski. Heterogenous catalysis for oxygen tolerant photoredox atom transfer radical polymerization and small-molecule dehalogenation. Polymer Chemistry 2024, 15 (41) , 4264-4280. https://doi.org/10.1039/D4PY00899E
    42. Zhi‐Ping Yan, Meng‐Xi Mao, Qi‐Ming Liu, Li Yuan, Xu‐Feng Luo, Xiang‐Ji Liao, Wei Cai, You‐Xuan Zheng. Rigidity‐Enhanced Narrowband Iridium(III) Complexes with Finely‐Optimized Emission Spectra for Efficient Pure‐Red Electroluminescence. Advanced Functional Materials 2024, 34 (38) https://doi.org/10.1002/adfm.202402906
    43. Yudhajit Pal, Tahoe A. Fiala, Wesley B. Swords, Tehshik P. Yoon, J. R. Schmidt. Predicting Emission Spectra of Heteroleptic Iridium Complexes Using Artificial Chemical Intelligence. ChemPhysChem 2024, 25 (16) https://doi.org/10.1002/cphc.202400176
    44. Qi-Ming Liu, Xiao-Jia Liu, Xiao-Sheng Zhong, Zhong-Zhong Huo, Zhen Shen, You-Xuan Zheng. Efficient narrowband yellow organic light-emitting diodes based on iridium( iii ) complexes with the rigid indolo[3,2,1- jk ]carbazole unit. Dalton Transactions 2024, 53 (29) , 12199-12207. https://doi.org/10.1039/D4DT01018C
    45. Yating Ye, Juan‐Ramón Jiménez, María Mar Quesada‐Moreno, Amparo Navarro, Esther M. Ortega‐Naranjo, Angel Orte, Juan Manuel Herrera. Color‐Tunable Luminescence of Eu‐Doped LaF 3 Particles Sensitized by d–f Energy Transfer from a Two‐Photon Absorbing Ir(III) Complex. Advanced Optical Materials 2024, 12 (18) https://doi.org/10.1002/adom.202302954
    46. Zhiping Yan, Zhiheng Wang, Xuming Zhuang, Zhiqiang Li, Congcong Kai, Xiaoxian Song, Jie Liang, Hai Bi, Yue Wang. A Steric Interlocked Phosphorescent Iridium(III) Complex Toward Ultrapure Green Electroluminescence. Advanced Optical Materials 2024, 12 (18) https://doi.org/10.1002/adom.202303214
    47. Yen-An Young, Huong T. H. Nguyen, Hieu D. Nguyen, Tuhin Ganguly, Yennie H. Nguyen, Loi H. Do. A ratiometric substrate for rapid evaluation of transfer hydrogenation efficiency in solution. Dalton Transactions 2024, 53 (21) , 8887-8892. https://doi.org/10.1039/D4DT00891J
    48. Lifen Chen, Kim Quayle, Zoe M. Smith, Timothy U. Connell, Egan H. Doeven, David J. Hayne, Jacqui L. Adcock, David J.D. Wilson, Johnny Agugiaro, Michael L. Pattuwage, Natasha S. Adamson, Paul S. Francis. Chemiluminescence and electrochemiluminescence of water-soluble iridium(III) complexes containing a tetraethylene-glycol functionalised triazolylpyridine ligand. Analytica Chimica Acta 2024, 1304 , 342470. https://doi.org/10.1016/j.aca.2024.342470
    49. Timothy Kench, Arielle Rahardjo, Gianmarco G. Terrones, Adinarayana Bellamkonda, Thomas E. Maher, Marko Storch, Heather J. Kulik, Ramon Vilar. A Semi‐Automated, High‐Throughput Approach for the Synthesis and Identification of Highly Photo‐Cytotoxic Iridium Complexes. Angewandte Chemie 2024, 136 (18) https://doi.org/10.1002/ange.202401808
    50. Timothy Kench, Arielle Rahardjo, Gianmarco G. Terrones, Adinarayana Bellamkonda, Thomas E. Maher, Marko Storch, Heather J. Kulik, Ramon Vilar. A Semi‐Automated, High‐Throughput Approach for the Synthesis and Identification of Highly Photo‐Cytotoxic Iridium Complexes. Angewandte Chemie International Edition 2024, 63 (18) https://doi.org/10.1002/anie.202401808
    51. Mirco Scaccaglia, Michael P. Birbaumer, Silvana Pinelli, Giorgio Pelosi, Angelo Frei. Discovery of antibacterial manganese( i ) tricarbonyl complexes through combinatorial chemistry. Chemical Science 2024, 15 (11) , 3907-3919. https://doi.org/10.1039/D3SC05326A
    52. Shuai Wang, ChiYung Yam, Shuguang Chen, LiHong Hu, Liping Li, Faan‐Fung Hung, Jiaqi Fan, Chi‐Ming Che, GuanHua Chen. Predictions of photophysical properties of phosphorescent platinum( II ) complexes based on ensemble machine learning approach. Journal of Computational Chemistry 2024, 45 (6) , 321-330. https://doi.org/10.1002/jcc.27238
    53. Marcos E.G. do Carmo, Patricia A. de Matos, Pedro I.S. Maia, Antonio Eduardo H. Machado, Marcelo E. Beletti, Tayana M. Tsubone, Antonio Otavio T. Patrocinio. The photophysics of Ir(III) cyclometalated complexes containing the 2-(2-pyridyl)benzimidazole ancillary ligand: Protonation effect and their potential as specific lysosome probes in cells. Journal of Photochemistry and Photobiology A: Chemistry 2024, 448 , 115339. https://doi.org/10.1016/j.jphotochem.2023.115339
    54. Oscar H. Lloyd Williams, Olivia Rusli, Lida Ezzedinloo, Tyren M. Dodgen, Jack K. Clegg, Nicole J. Rijs. Automated Structural Activity Screening of β‐Diketonate Assemblies with High‐Throughput Ion Mobility‐Mass Spectrometry. Angewandte Chemie 2024, 136 (4) https://doi.org/10.1002/ange.202313892
    55. Oscar H. Lloyd Williams, Olivia Rusli, Lida Ezzedinloo, Tyren M. Dodgen, Jack K. Clegg, Nicole J. Rijs. Automated Structural Activity Screening of β‐Diketonate Assemblies with High‐Throughput Ion Mobility‐Mass Spectrometry. Angewandte Chemie International Edition 2024, 63 (4) https://doi.org/10.1002/anie.202313892
    56. Marina A. Kiseleva, Andrei V. Churakov, Ilya V. Taydakov, Mikhail T. Metlin, Sergey A. Kozyukhin, Stanislav I. Bezzubov. Aggregation-induced emission of cyclometalated rhodium( iii ) and iridium( iii ) phenylpyridine complexes with ancillary 1,3-diketones. Dalton Transactions 2023, 52 (47) , 17861-17872. https://doi.org/10.1039/D3DT02651E
    57. Peng Cui, Yuan Xue. Investigation of photocatalytic performance of GQD/Ir(III) complex nanocomposite: Effect of π-conjugation. Journal of Alloys and Compounds 2023, 960 , 170668. https://doi.org/10.1016/j.jallcom.2023.170668
    58. Maniklal Shee, Dan Zhang, Moumita Banerjee, Samrat Roy, Bipul Pal, Anakuthil Anoop, Youyong Yuan, N. D. Pradeep Singh. Interrogating bioinspired ESIPT/PCET-based Ir( iii )-complexes as organelle-targeted phototherapeutics: a redox-catalysis under hypoxia to evoke synergistic ferroptosis/apoptosis. Chemical Science 2023, 14 (36) , 9872-9884. https://doi.org/10.1039/D3SC03096B
    59. Sergei V. Tatarin, Daniil E. Smirnov, Ilya V. Taydakov, Mikhail T. Metlin, Victor V. Emets, Stanislav I. Bezzubov. Tailoring the π-system of benzimidazole ligands towards stable light-harvesting cyclometalated iridium( iii ) complexes. Dalton Transactions 2023, 52 (19) , 6435-6450. https://doi.org/10.1039/D3DT00200D
    60. Hongcui Yu, Bo Yu, Yajiao Song, Ping Hai. Recent advances of cyclometalated Ir(III) complexes for optical oxygen sensing. Inorganica Chimica Acta 2023, 550 , 121435. https://doi.org/10.1016/j.ica.2023.121435
    61. Winald R. Kitzmann, Katja Heinze. Charge‐Transfer und Spin‐Flip‐Zustände als sich ergänzende Gegensätze. Angewandte Chemie 2023, 135 (15) https://doi.org/10.1002/ange.202213207
    62. Winald R. Kitzmann, Katja Heinze. Charge‐Transfer and Spin‐Flip States: Thriving as Complements. Angewandte Chemie International Edition 2023, 62 (15) https://doi.org/10.1002/anie.202213207
    63. Campbell Frank Ross Mackenzie, Seung-Yeon Kwak, Sungmin Kim, Eli Zysman-Colman. The design and synthesis of green emissive iridium( iii ) complexes guided by calculations of the vibrationally-resolved emission spectra. Dalton Transactions 2023, 52 (13) , 4112-4121. https://doi.org/10.1039/D3DT00304C
    64. Steven J. Blom, Timothy U. Connell, Egan H. Doeven, David J. Hayne, Emily Kerr, Luke C. Henderson, Paul S. Francis. Cathodic co-reactant electrogenerated chemiluminescence of water-soluble heteroleptic iridium(III) complexes bearing N-methyl(pyridyl)pyridinium cyclometalating ligands. Journal of Electroanalytical Chemistry 2023, 933 , 117273. https://doi.org/10.1016/j.jelechem.2023.117273
    65. Yihan Zhang, Yongshuai Wang, Can Gao, Zhenjie Ni, Xiaotao Zhang, Wenping Hu, Huanli Dong. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chemical Society Reviews 2023, 52 (4) , 1331-1381. https://doi.org/10.1039/D2CS00720G
    66. Gianmarco G. Terrones, Chenru Duan, Aditya Nandy, Heather J. Kulik. Low-cost machine learning prediction of excited state properties of iridium-centered phosphors. Chemical Science 2023, 14 (6) , 1419-1433. https://doi.org/10.1039/D2SC06150C
    67. Carol Hua, Timothy U. Connell, . Controlling emission energy in metal–organic frameworks featuring cyclometalated iridium(III) linkers. Australian Journal of Chemistry 2023, 76 (10) , 686-695. https://doi.org/10.1071/CH23127
    68. A. Yu. Zakharov, I. V. Kovalenko, E. A. Meshcheriakova, E. V. Nykhrikova, A. O. Zharova, M. A. Kiseleva, P. Kalle, E. V. Tekshina, S. A. Kozyukhin, V. V. Emets, S. I. Bezzubov. The Effect of the Ancillary Ligand on Optical and Redox Properties of Cyclometalated Iridium(III) 2,5-Diphenyloxazole Complexes. Russian Journal of Coordination Chemistry 2022, 48 (12) , 846-858. https://doi.org/10.1134/S1070328422700051
    69. Wen-Jing Xiong, Xiao-Bin Zhang, Shao-Bin Dou, Zhe-Ming Quan, Dao-Wei Li, Zhi-Gang Niu, Gao-Nan Li. Green to red-emitting neutral iridium complexes with phenyl-indazole type cyclometalating ligand: Synthesis, photophysical properties and DFT calculations. Inorganica Chimica Acta 2022, 542 , 121100. https://doi.org/10.1016/j.ica.2022.121100
    70. Anand Narayanan Krishnamoorthy, Christian Wölke, Diddo Diddens, Moumita Maiti, Youssef Mabrouk, Peng Yan, Mariano Grünebaum, Martin Winter, Andreas Heuer, Isidora Cekic‐Laskovic. Data‐Driven Analysis of High‐Throughput Experiments on Liquid Battery Electrolyte Formulations: Unraveling the Impact of Composition on Conductivity**. Chemistry–Methods 2022, 2 (9) https://doi.org/10.1002/cmtd.202200008
    71. Akitaka Ito, Munetaka Iwamura, Eri Sakuda. Excited-state dynamics of luminescent transition metal complexes with metallophilic and donor–acceptor interactions. Coordination Chemistry Reviews 2022, 467 , 214610. https://doi.org/10.1016/j.ccr.2022.214610
    72. Liam Tom, Stephen Diluzio, Carol Hua, Timothy U. Connell. Understanding the role of cyclometalating ligand regiochemistry on the photophysics of charged heteroleptic iridium(III) complexes. Journal of Coordination Chemistry 2022, 75 (11-14) , 1722-1743. https://doi.org/10.1080/00958972.2022.2099272
    73. J. D. Earley, A. Zieleniewska, H. H. Ripberger, N. Y. Shin, M. S. Lazorski, Z. J. Mast, H. J. Sayre, J. K. McCusker, G. D. Scholes, R. R. Knowles, O. G. Reid, G. Rumbles. Ion-pair reorganization regulates reactivity in photoredox catalysts. Nature Chemistry 2022, 14 (7) , 746-753. https://doi.org/10.1038/s41557-022-00911-6
    74. Husain N. Kagalwala, Jeni Gerberich, Chancellor J. Smith, Ralph P. Mason, Alexander R. Lippert. Chemiluminescent 1,2‐Dioxetane Iridium Complexes for Near‐Infrared Oxygen Sensing. Angewandte Chemie 2022, 134 (12) https://doi.org/10.1002/ange.202115704
    75. Husain N. Kagalwala, Jeni Gerberich, Chancellor J. Smith, Ralph P. Mason, Alexander R. Lippert. Chemiluminescent 1,2‐Dioxetane Iridium Complexes for Near‐Infrared Oxygen Sensing. Angewandte Chemie International Edition 2022, 61 (12) https://doi.org/10.1002/anie.202115704
    76. Timothy Noël, Eli Zysman-Colman. The promise and pitfalls of photocatalysis for organic synthesis. Chem Catalysis 2022, 2 (3) , 468-476. https://doi.org/10.1016/j.checat.2021.12.015
    77. Walter D. Guerra, Hannah J. Sayre, Hunter H. Ripberger, Emmanuel Odella, Gregory D. Scholes, Thomas A. Moore, Robert R. Knowles, Ana L. Moore. Ir(III)-Naphthoquinone complex as a platform for photocatalytic activity. Journal of Photochemistry and Photobiology 2022, 9 , 100098. https://doi.org/10.1016/j.jpap.2021.100098
    78. Po‐Yu Ho, Sin‐Ying Lee, Chuen Kam, Junfei Zhu, Guo‐Gang Shan, Yuning Hong, Wai‐Yeung Wong, Sijie Chen. Fluorescence Imaging and Photodynamic Inactivation of Bacteria Based on Cationic Cyclometalated Iridium(III) Complexes with Aggregation‐Induced Emission Properties. Advanced Healthcare Materials 2021, 10 (24) https://doi.org/10.1002/adhm.202100706
    79. Anna Kamecka, Andrzej Kapturkiewicz, Łukasz Pipczyński. Heteroleptic luminescent [Ir(C^N)2(N^N)]+ complexes containing 1-phenyl-1H-pyrazole or 1-(2,4-difluorophenyl)-1H-pyrazole as cyclometalating and α-diimines as ancillary ligands. Inorganic Chemistry Communications 2021, 131 , 108764. https://doi.org/10.1016/j.inoche.2021.108764
    80. Andrzej Kapturkiewicz, Anna Kamecka. Luminescence properties of [Ir(C^N) 2 (N^N)] + complexes: relations between DFT computation results and emission band-shape analysis data. RSC Advances 2021, 11 (47) , 29308-29322. https://doi.org/10.1039/D1RA05430A
    81. Sergei V. Tatarin, Paulina Kalle, Ilya V. Taydakov, Evgenia A. Varaksina, Vladislav M. Korshunov, Stanislav I. Bezzubov. Sterically hindered phenanthroimidazole ligands drive the structural flexibility and facile ligand exchange in cyclometalated iridium( iii ) complexes. Dalton Transactions 2021, 50 (20) , 6889-6900. https://doi.org/10.1039/D1DT00820J
    82. Suman Adhikari, Tirtha Bhattacharjee, Sharmila Bhattacharjee, Constantin Gabriel Daniliuc, Antonio Frontera, Eric M. Lopato, Stefan Bernhard. Nickel( ii ) complexes based on dithiolate–polyamine binary ligand systems: crystal structures, hirshfeld surface analysis, theoretical study, and catalytic activity study on photocatalytic hydrogen generation. Dalton Transactions 2021, 50 (16) , 5632-5643. https://doi.org/10.1039/D1DT00352F

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 2, 1179–1194
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.0c12290
    Published January 7, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    6055

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.