ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Catalytic Asymmetric Synthesis of Unprotected β2-Amino Acids

  • Chendan Zhu
    Chendan Zhu
    Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
    More by Chendan Zhu
  • Francesca Mandrelli
    Francesca Mandrelli
    Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
  • Hui Zhou
    Hui Zhou
    Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
    More by Hui Zhou
  • Rajat Maji
    Rajat Maji
    Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
    More by Rajat Maji
  • , and 
  • Benjamin List*
    Benjamin List
    Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
    *[email protected]
Cite this: J. Am. Chem. Soc. 2021, 143, 9, 3312–3317
Publication Date (Web):March 1, 2021
https://doi.org/10.1021/jacs.1c00249

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0.
  • Open Access

Article Views

14584

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (1)»

Abstract

We report here a scalable, catalytic one-pot approach to enantiopure and unmodified β2-amino acids. A newly developed confined imidodiphosphorimidate (IDPi) catalyzes a broadly applicable reaction of diverse bis-silyl ketene acetals with a silylated aminomethyl ether, followed by hydrolytic workup, to give free β2-amino acids in high yields, purity, and enantioselectivity. Importantly, both aromatic and aliphatic β2-amino acids can be obtained using this method. Mechanistic studies are consistent with the aminomethylation to proceed via silylium-based asymmetric counteranion-directed catalysis (Si-ACDC) and a transition state to explain the enantioselectivity is suggested on the basis of density functional theory calculation.

This publication is licensed under

CC-BY 4.0.
  • cc licence
  • by licence

Among the various classes of amino acids, β2-amino acids hold a particularly prominent place and occur in an increasing number of pharmaceuticals, natural products, and drug candidates. (1−11) However, while chemists, in recent years, have delivered several methods toward the asymmetric synthesis of β2-amino acids, (12−39) catalytic approaches that directly deliver the free, unmodified amino acid, without requiring separate redox- or protecting group manipulations, to our knowledge, have not yet been developed. Our inspirational blueprint to address this challenge is a hypothetical chiral acid catalyzed direct three-component-Mannich reaction of carboxylic acids with formaldehyde and ammonia (eq 1).

Unfortunately, except with malonic acid derivatives and nonenantioselectively so, (40,41) such a “dream-reaction” has not yet been realized, arguably due to the current inability of chemists to catalytically enolize carboxylic acids. (42−44) An attractive, even though less direct alternative would be a Mukaiyama-style reaction of preformed bis-silyl ketene acetals (bis-SKAs) with a formaldehyde imine equivalent. While this transformation has been described in a nonenantioselective fashion, (45) asymmetric versions are entirely unknown. Encouraged by our recent studies on silylium-based asymmetric counteranion-directed catalysis (Si-ACDC), (46−66) we envisaged to apply this approach to a TMSX*-catalyzed reaction of bis-SKAs with a silylated aminomethyl ether, followed by hydrolytic workup and extraction, which should deliver the free, unmodified β2-amino acids and enable a simple catalyst HX* recovery (eq 2, X* = enaniopure counteranion). Here we report on the realization of this concept with a general and highly enantioselective imidodiphosphorimidate (IDPi) catalyzed Mukaiyama Mannich-type reaction that delivers free β2-amino acids with either aromatic or aliphatic substituents.

We chose α-benzyl bis-SKA 1a as our model substrate and commercially available α-aminomethyl ether 2a as methylene imine equivalent to initiate our studies (Table 1). An initial catalyst exploration revealed that moderately acidic Brønsted acids, such as chiral phosphoric acids (CPAs), (67,68) even upon warming, did not give any of the desired product, while imidodiphosphoric (IDP) (69) acids promoted the reaction at 0 °C to give racemic product (see the Supporting Information). In contrast, the much more acidic IDPi catalysts provided both sufficient reactivity and promising enantioselectivity (at −40 °C in toluene). Among our IDPi libraries, spirocyclopentyl-3-fluorenyl substituted catalysts 3 turned out to be particularly promising in terms of reactivity and enantioselectivity. Extending the perfluoroalkyl sulfonyl chains in the inner core further increased the enantioselectivity (entries 1–4). With catalyst 3d, temperature and solvent were further optimized. Lowering the temperature to −60 °C led to a slight increase in enantioselectivity (entry 5). Importantly, with pentane as the solvent instead of toluene, the enantiomeric ratio significantly increased (entry 6). Furthermore, we tested IDPi catalysts 3eg, possessing an additional substituent at the fluorenyl group (entries 7–10). Ultimately, we identified the tert-butyl substituted IDPi catalyst 3h as the optimal one, giving an e.r. of 96:4 in almost quantitative yield (entry 10).

Table 1. Reaction Developmenta
a

Reactions were conducted on a 0.02 mmol scale: 1a:2 = 1.2:1.

b

Yields were determined by 1H NMR using mesitylene as internal standard.

c

After simplified workup, enantiomeric ratios (e.r.) were measured by HPLC. See the Supporting Information for further information.

We also studied the effect of the aminomethyl source on the conversion and stereochemical outcome (entries 11–14). Different ethers 2 with varying leaving groups were examined. Interestingly, while the alkoxy group had only an insignificant effect on the enantiocontrol, isopropyl ether 2c gave only poor conversion at −60 °C (entries 10–12). These results are consistent with the absence of the leaving group of ether 2 in the enantiodetermining step and point toward an efficient association of the bis(silyl)iminium ion with the IDPi anion. This hypothesis could indeed be validated with a remarkably broad scope of both aromatic and aliphatic bis-SKAs (Table 2). Various free β2-amino acids with electronically and sterically diverse substituents were obtained in excellent yields and enantioselectivities. For example, bis-SKAs 1ac with different methylene tether lengths between a phenyl group and carboxylic acid functionality afforded the desired products in similar excellent yields and enantioselectivities. Similarly, either electron-neutral or electron-donating groups at the β-phenyl ring of the bis-SKA gave the corresponding free β2-amino acids in >90% yields with around 95:5 e.r. (4de). Notably, β2-amino acids with electron-withdrawing groups (F, CF3, Cl), either at the ortho-, meta-, or para-position of the β-phenyl ring were generated in >90% yield with higher enantioselectivities (>97:3 e.r.) (4fj). Other substrates with aromatic and heteroaromatic groups, such as 1k with naphthyl and 1l bearing a thiophenyl substituent, were well tolerated, affording the aminomethylation products 4k and 4l in excellent yield and e.r..

Table 2. Substrate Scopea
a

Reactions were conducted on a 0.2 mmol scale: 1:2a = 1.2:1. Isolated yields with e.r. measured by HPLC. For derivatization, see Supporting Information.

b

e.r. measured by HPLC after derivatization.

c

3 mol % 3h. BzCl, benzoyl chloride; DCM, dichloromethane; TEA, triethylamine.

Directly aryl-substituted bis-SKAs 1mq were also examined and proved to be slightly less reactive, requiring 3 mol % of catalyst 3h to furnish the corresponding products in moderate to good yields and excellent enantioselectivities.

The scope of this transformation also includes simple, aliphatic β2-amino acids. For example, bis-SKAs 1ru, which were generated from propionic acid, butyric acid, valeric acid, and hexanoic acid, respectively, reacted smoothly, where the enantioselectivities increased with longer alkyl chains. Branched and cyclic alkyl groups (4vx) and a methoxy- (4y) and an olefin-substituted alkyl chain (4z) were all tolerated and provided the desired products in good to excellent yields and enantioselectivity. Interestingly, the enantiopure bis-SKA 1A and its enantiomer ent-1A reacted to products 4A and 4B in good yields and, in both cases, featuring excellent and catalyst-controlled diastereoselectivity. Limitations of our method include the use of bis-silyl ketene acetals derived from α,α-disubstituted carboxylic acids and of C-substituted imine sources, which display reduced reactivity and lead to lower diastereoselectivity and enantioselectivity (see the Supporting Information).

The absolute configuration of our obtained β2-amino acids was determined from X-ray crystallographic analysis of products 4h, 4i, and 4j. Furthermore, bromoalkyl substituted bis-SKA 1C gave γ-aminobutyric acid uptake inhibitor (S)-(+)-nipecotic acid (70)5 in a one-pot operation in 84% yield and 97:3 e.r. when treating the initial reaction product with triethylamine. The absolute configuration of amino acid 5 was determined by converting it to the corresponding benzamide 6, crystals of which were subjected to an X-ray crystallographic analysis. 1H NMR investigation of the crude reaction mixture revealed the existence of silylated product 4C, confirming that cyclization occurs only upon base treatment. In fact, oligomers were detected with concomitant formation of a small amount of compound 5 if the reaction mixture was treated with only water. Instead, treatment with benzoyl chloride and aqueous potassium carbonate enabled the access to the corresponding α-amidomethylated δ-valerolactone 7.

The practicality of our method was illustrated with two scale-up experiments, involving an extremely concise product purification and catalyst recovery. Using 1 mol % of catalyst 3h, 12 mmol of bis-SKA 1a and 10 mmol of imine precursor 2a gave 1.77 g of the free β2-amino acid 4a in 99% isolated yield with an e.r. of 95.5:4.5. The workup of the reaction mixture included a simple extraction with water and washing with dichloromethane without further purification. Gratifyingly, catalyst 3h could be easily recovered in 96% yield from the organic phase via flash chromatography and acidification. Similarly, 2.84 g of the aliphatic free β2-amino acid 4u was obtained in 98% isolated yield with an e.r. of 95:5 from 20 mmol of reagent 2a using only 0.5 mol % of catalyst 3h, which was recovered in 95% yield from the organic phase after flash chromatography and acidification.

Optionally, the crude products can be readily derivatized in situ into a variety of synthetically useful building blocks such as the corresponding N-Boc- or N-Fmoc-protected β2-amino acids 8 and 9 by treating the reaction mixture with an appropriate derivatization reagent.

On the basis of the observation that the alkyl group of ethers 2 had an insignificant effect on the enantioselectivity (Table 1, entries 11–14), coupled with literature results, (45,58−66) we envision a catalytic cycle as shown in Figure 1a. Accordingly, the reaction commences with the in situ silylation of the IDPi catalyst 3 by bis-SKA 1 to furnish the N-silylated catalyst I and/or its diastereomeric O–Si-silatropomers. (58−66) α-Aminomethyl ether 2 then reacts with catalyst I, generating the methylene iminium ion-IDPi anion pair II, simultaneously liberating TMSOMe. (45) Subsequently, bis-SKA 1 reacts with the cationic methylene iminium ion in the anionic catalyst pocket to give ion pair III. Intra-ion-pair silyl transfer from the cationic product back onto its counteranion then furnishes the silylated product IV and re-establishes the silylated catalyst I. Finally, hydrolytic workup and extraction of the reaction mixture delivers the free β2-amino acid 4. On the basis of a detailed conformational search and subsequent Density Functional Theory (DFT) optimization of ion pair II, we tentatively propose a sterical hindrance-based selectivity model (Figure 1b), where re-facial addition of bis-SKA 1 to methylene iminium-IDPi anion pair II leads to the observed enantiomer (see the Supporting Information).

Figure 1

Figure 1. (a) Proposed catalytic cycle. (b) Suggested re-facial approach of the SKA onto the DFT optimized iminium-IDPi ion pair II.

We have developed a traceless and scalable approach to enantiopure free β2-amino acids via catalytic asymmetric aminomethylation of bis-silyl ketene acetals. A variety of aromatic and aliphatic bis-SKAs from carboxylic acids with diverse electronics and sterics were tolerated in this transformation and provided the corresponding amino acids in excellent yields and enantioselectivities. The purification process is extremely simple and concise and enables catalyst recovery. We conducted control experiments that are consistent with a mechanism that proceeds via Si-ACDC, while preliminary computational studies suggest steric effects to cause the observed enantioselectivity. As IDPi catalysts are currently being commercialized, the methodology reported here may facilitate the synthesis of pharmaceuticals, natural products, and peptidic foldamers.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c00249.

  • Experimental details and analytical data for all new compounds, crystallographic data for compounds 4h, 4i, and 4j, HPLC traces, NMR spectra, computational studies, optimized structures, and Cartesian coordinates (PDF)

Accession Codes

CCDC 20568352056839 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
  • Authors
    • Chendan Zhu - Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
    • Francesca Mandrelli - Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
    • Hui Zhou - Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
    • Rajat Maji - Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, GermanyOrcidhttp://orcid.org/0000-0003-2614-1795
  • Notes
    The authors declare the following competing financial interest(s): We have a patent on the catalyst class.

Acknowledgments

ARTICLE SECTIONS
Jump To

We thank the generous support from the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Leibniz Award to B.L.) and under Germany’s Excellence Strategy (EXC 2033-390677874-RESOLV), the European Research Council (ERC, European Union’s Horizon 2020 research and innovation program “C–H Acids for Organic Synthesis, CHAOS” Advanced Grant Agreement No. 694228), and the Horizon 2020 Marie Sklodowska-Curie Postdoctoral Fellowship (to R.M., Grant agreement No. 897130). The authors thank Benjamin Mitschke for his help during the preparation of this manuscript and several members of the group for crowd reviewing. We also thank the technicians of our group and the members of our NMR, MS, and chromatography groups for their excellent service.

References

ARTICLE SECTIONS
Jump To

This article references 70 other publications.

  1. 1
    Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. β-Peptides: From structure to function. Chem. Rev. 2001, 101, 32193232,  DOI: 10.1021/cr000045i
  2. 2
    Lelais, G.; Seebach, D. β2-Amino acids—Syntheses, occurrence in natural products, and components of β-peptides. Biopolymers 2004, 76, 206243,  DOI: 10.1002/bip.20088
  3. 3
    Aguilar, M. I.; Purcell, A. W.; Devi, R.; Lew, R.; Rossjohn, J.; Smitha, A. I.; Perlmutter, P. β-Amino acid-containing hybrid peptides—New opportunities in peptidomimetics. Org. Biomol. Chem. 2007, 5, 28842890,  DOI: 10.1039/b708507a
  4. 4
    Seebach, D.; Gardiner, J. β-Peptidic peptidomimetics. Acc. Chem. Res. 2008, 41, 13661375,  DOI: 10.1021/ar700263g
  5. 5
    Kudo, F.; Miyanaga, A.; Eguchi, T. Biosynthesis of natural products containing β-amino acids. Nat. Prod. Rep. 2014, 31, 10561073,  DOI: 10.1039/C4NP00007B
  6. 6
    Adkins, J. C.; Noble, S. Tiagabine—A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the management of epilepsy. Drugs 1998, 55, 437460,  DOI: 10.2165/00003495-199855030-00013
  7. 7
    Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. β-Peptide foldamers: Robust helix formation in a new family of β-amino acid oligomers. J. Am. Chem. Soc. 1996, 118, 1307113072,  DOI: 10.1021/ja963290l
  8. 8
    Eddinger, G. A.; Gellman, S. H. Differential effects of β3- versus β2-amino acid residues on the helicity and recognition properties of bim BH3-derived α/β-peptides. Angew. Chem., Int. Ed. 2018, 57, 1382913832,  DOI: 10.1002/anie.201806909
  9. 9
    Chaganty, S.; Golakoti, T.; Heltzel, C.; Moore, R. E.; Yoshida, W. Y. Isolation and structure determination of cryptophycins 38, 326, and 327 from the terrestrial cyanobacterium Nostoc sp GSV 224. J. Nat. Prod. 2004, 67, 14031406,  DOI: 10.1021/np0499665
  10. 10
    Neary, P.; Delaney, C. P. Alvimopan. Expert Opin. Invest. Drugs 2005, 14, 479488,  DOI: 10.1517/13543784.14.4.479
  11. 11
    Hoy, S. M. Netarsudil ophthalmic solution 0.02%: First global approval. Drugs 2018, 78, 389396,  DOI: 10.1007/s40265-018-0877-7
  12. 12
    Seebach, D.; Beck, A. K.; Capone, S.; Deniau, G.; Groselj, U.; Zass, E. Enantioselective preparation of β2-amino acid derivatives for β-peptide synthesis. Synthesis 2009, 2009, 132,  DOI: 10.1055/s-0028-1087490
  13. 13
    Noda, H.; Shibasaki, M. Recent advances in the catalytic asymmetric synthesis of β2- and β2,2-amino acids. Eur. J. Org. Chem. 2020, 2020, 23502361,  DOI: 10.1002/ejoc.201901596
  14. 14
    Bower, J. F.; Williams, J. M. J. Palladium catalysed asymmetric allylic substitution. Routes to β-amino acids. Synlett 1996, 1996, 685686,  DOI: 10.1055/s-1996-5560
  15. 15
    Schleich, S.; Helmchen, G. Pd-catalyzed asymmetric allylic alkylation of 3-acetoxy-N-(tert-butyloxycarbonyl)-1,2,3,6-tetrahydropyridine—Preparation of key intermediates for natural product synthesis. Eur. J. Org. Chem. 1999, 1999, 25152521,  DOI: 10.1002/(SICI)1099-0690(199910)1999:10<2515::AID-EJOC2515>3.0.CO;2-G
  16. 16
    Davies, H. M. L.; Venkataramani, C. Catalytic enantioselective synthesis of β2-amino acids. Angew. Chem., Int. Ed. 2002, 41, 21972199,  DOI: 10.1002/1521-3773(20020617)41:12<2197::AID-ANIE2197>3.0.CO;2-N
  17. 17
    Rimkus, A.; Sewald, N. First synthesis of β2-homoamino acid by enantioselective catalysis. Org. Lett. 2003, 5, 7980,  DOI: 10.1021/ol027252k
  18. 18
    Eilitz, U.; Lessmann, F.; Seidelmann, O.; Wendisch, V. Stereoselective synthesis of β2-amino acids by Michael addition of diorgano zinc reagents to nitro acrylates. Tetrahedron: Asymmetry 2003, 14, 189191,  DOI: 10.1016/S0957-4166(02)00788-7
  19. 19
    Duursma, A.; Minnaard, A. J.; Feringa, B. L. Highly enantioselective conjugate addition of dialkylzinc reagents to acyclic nitroalkenes: a catalytic route to β2-amino acids, aldehydes, and alcohols. J. Am. Chem. Soc. 2003, 125, 37003701,  DOI: 10.1021/ja029817d
  20. 20
    Sammis, G. M.; Jacobsen, E. N. Highly enantioselective, catalytic conjugate addition of cyanide to α,β-unsaturated Imides. J. Am. Chem. Soc. 2003, 125, 44424443,  DOI: 10.1021/ja034635k
  21. 21
    Sibi, M. P.; Tatamidani, H.; Patil, K. Enantioselective rhodium enolate protonations. A new methodology for the synthesis of β2-amino acids. Org. Lett. 2005, 7, 25712573,  DOI: 10.1021/ol050630b
  22. 22
    Davies, H. M. L.; Ni, A. W. Enantioselective synthesis of β-amino esters and its application to the synthesis of the enantiomers of the antidepressant Venlafaxine. Chem. Commun. 2006, 31103112,  DOI: 10.1039/B605047F
  23. 23
    Huang, H. M.; Liu, X. C.; Deng, J.; Qiu, M.; Zheng, Z. Rhodium-catalyzed enantioselective hydrogenation of β-phthalimide acrylates to synthesis of β2-amino acids. Org. Lett. 2006, 8, 33593362,  DOI: 10.1021/ol0612399
  24. 24
    Qiu, L. Q.; Prashad, M.; Hu, B.; Prasad, K.; Repic, O.; Blacklock, T. J.; Kwong, F. Y.; Kok, S. H. L.; Lee, H. W.; Chan, A. S. C. Enantioselective hydrogenation of α-aminomethylacrylates containing a free N–H group for the synthesis of β-amino acid derivatives. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1678716792,  DOI: 10.1073/pnas.0704461104
  25. 25
    Deng, J.; Hu, X. P.; Huang, J. D.; Yu, S. B.; Wang, D. Y.; Duan, Z. C.; Zheng, Z. Enantioselective synthesis of β2-amino acids via rh-catalyzed asymmetric hydrogenation with BoPhoz-type ligands: important influence of an N–H proton in the ligand on the enantioselectivity. J. Org. Chem. 2008, 73, 20152017,  DOI: 10.1021/jo702510m
  26. 26
    Guo, Y. J.; Shao, G. A.; Li, L. N.; Wu, W. H.; Li, R. H.; Li, J. J.; Song, J. A.; Qiu, L. Q.; Prashad, M.; Kwong, F. Y. A general approach to the synthesis of β2-amino acid derivatives via highly efficient catalytic asymmetric hydrogenation of α-aminomethylacrylates. Adv. Synth. Catal. 2010, 352, 15391553,  DOI: 10.1002/adsc.201000122
  27. 27
    Li, L. N.; Chen, B.; Ke, Y. Y.; Li, Q.; Zhuang, Y.; Duan, K.; Huang, Y. C.; Pang, J. Y.; Qiu, L. Q. Highly efficient synthesis of heterocyclic and alicyclic β2-amino acid derivatives by catalytic asymmetric hydrogenation. Chem. - Asian J. 2013, 8, 21672174,  DOI: 10.1002/asia.201300339
  28. 28
    Remarchuk, T.; Babu, S.; Stults, J.; Zanotti-Gerosa, A.; Roseblade, S.; Yang, S. H.; Huang, P.; Sha, C. B.; Wang, Y. C. An efficient catalytic asymmetric synthesis of a β2-amino acid on multikilogram scale. Org. Process Res. Dev. 2014, 18, 135141,  DOI: 10.1021/op4002966
  29. 29
    Li, S. K.; Xiao, T. F.; Li, D. D.; Zhang, X. M. First iridium-catalyzed highly enantioselective hydrogenation of β-nitroacrylates. Org. Lett. 2015, 17, 37823785,  DOI: 10.1021/acs.orglett.5b01758
  30. 30
    Jian, J. H.; Hsu, C. L.; Syu, J. F.; Kuo, T. S.; Tsai, M. K.; Wu, P. Y.; Wu, H. L. Access to β2-amino acids via enantioselective 1,4-arylation of β-nitroacrylates catalyzed by chiral rhodium catalysts. J. Org. Chem. 2018, 83, 1218412191,  DOI: 10.1021/acs.joc.8b00586
  31. 31
    Kang, Z. H.; Wang, Y. H.; Zhang, D.; Wu, R. B.; Xu, X. F.; Hu, W. H. Asymmetric counter-anion-directed aminomethylation: synthesis of chiral β-amino acids via trapping of an enol intermediate. J. Am. Chem. Soc. 2019, 141, 14731478,  DOI: 10.1021/jacs.8b12832
  32. 32
    Lin, W. L.; Zhang, K. F.; Baudoin, O. Regiodivergent enantioselective C–H functionalization of Boc-1,3-oxazinanes for the synthesis of β2- and β3-amino acids. Nat. Catal. 2019, 2, 882888,  DOI: 10.1038/s41929-019-0336-1
  33. 33
    Chi, Y.; Gellman, S. H. Enantioselective organocatalytic aminomethylation of aldehydes: a role for ionic interactions and efficient access to β2-amino acids. J. Am. Chem. Soc. 2006, 128, 68046805,  DOI: 10.1021/ja061731n
  34. 34
    Swiderska, M. A.; Stewart, J. D. Asymmetric bioreductions of β-nitro acrylates as a route to chiral β2-amino acids. Org. Lett. 2006, 8, 61316133,  DOI: 10.1021/ol062612f
  35. 35
    Martin, N. J. A.; Cheng, X.; List, B. Organocatalytic asymmetric transferhydrogenation of β-nitroacrylates: accessing β2-amino acids. J. Am. Chem. Soc. 2008, 130, 1386213863,  DOI: 10.1021/ja8069852
  36. 36
    Bernal, P.; Fernandez, R.; Lassaletta, J. M. Organocatalytic Asymmetric Cyanosilylation of Nitroalkenes. Chem. - Eur. J. 2010, 16, 77147718,  DOI: 10.1002/chem.201001107
  37. 37
    Tite, T.; Sabbah, M.; Levacher, V.; Briere, J. F. Organocatalysed decarboxylative protonation process from Meldrum’s acid: enantioselective synthesis of isoxazolidinones. Chem. Commun. 2013, 49, 1156911571,  DOI: 10.1039/c3cc47695b
  38. 38
    Xu, J. F.; Chen, X. K.; Wang, M.; Zheng, P. C.; Song, B. A.; Chi, Y. R. Aminomethylation of enals through carbene and acid cooperative catalysis: concise access to β2-amino acids. Angew. Chem., Int. Ed. 2015, 54, 51615165,  DOI: 10.1002/anie.201412132
  39. 39
    Wang, K.; Yu, J.; Shao, Y.; Tang, S.; Sun, J. Forming all-carbon quaternary stereocenters by organocatalytic aminomethylation: concise access to β2,2-amino acids. Angew. Chem., Int. Ed. 2020, 59, 2351623520,  DOI: 10.1002/anie.202009892
  40. 40
    Mannich, C.; Ganz, E. β-Aminodicarboxylic acids and aminopolycarboxylic acids. Ber. Dtsch. Chem. Ges. B 1922, 55B, 34863504,  DOI: 10.1002/cber.19220551017
  41. 41
    Rodionow, W. M.; Malewinskaja, E. T. On the presentation of aryl-β-amino fatty acids (I announcement). Ber. Dtsch. Chem. Ges. B 1926, 59, 29522958,  DOI: 10.1002/cber.19260591147
  42. 42
    Tanaka, T.; Yazaki, R.; Ohshima, T. Chemoselective catalytic α-oxidation of carboxylic acids: Iron/alkali metal cooperative redox active catalysis. J. Am. Chem. Soc. 2020, 142, 45174524,  DOI: 10.1021/jacs.0c00727
  43. 43
    Morita, Y.; Yamamoto, T.; Nagai, H.; Shimizu, Y.; Kanai, M. Chemoselective boron-catalyzed nucleophilic activation of carboxylic acids for Mannich-type reactions. J. Am. Chem. Soc. 2015, 137, 70757078,  DOI: 10.1021/jacs.5b04175
  44. 44
    Stivala, C. E.; Zakarian, A. Highly enantioselective direct alkylation of arylacetic acids with chiral lithium amides as traceless auxiliaries. J. Am. Chem. Soc. 2011, 133, 1193611936,  DOI: 10.1021/ja205107x
  45. 45
    Okano, K.; Morimoto, T.; Sekiya, M. Primary aminomethylation at the α-position of carboxylic-acids and esters. Trimethylsilyl triflate-catalyzed reaction of ketene silyl acetals with N,N-bis(trimethylsilyl)methoxymethylamine. Chem. Pharm. Bull. 1985, 33, 22282234,  DOI: 10.1248/cpb.33.2228
  46. 46
    Garcia-Garcia, P.; Lay, F.; Garcia-Garcia, P.; Rabalakos, C.; List, B. A powerful chiral counteranion motif for asymmetric catalysis. Angew. Chem., Int. Ed. 2009, 48, 43634366,  DOI: 10.1002/anie.200901768
  47. 47
    Mahlau, M.; List, B. Asymmetric counteranion-directed catalysis: Concept, definition, and applications. Angew. Chem., Int. Ed. 2013, 52, 518533,  DOI: 10.1002/anie.201205343
  48. 48
    Gandhi, S.; List, B. Catalytic asymmetric three-component synthesis of homoallylic amines. Angew. Chem., Int. Ed. 2013, 52, 25732576,  DOI: 10.1002/anie.201209776
  49. 49
    Wang, Q. G.; Leutzsch, M.; van Gemmeren, M.; List, B. Disulfoninnide-catalyzed asymmetric synthesis of β3-amino esters directly from N-Boc-amino sulfones. J. Am. Chem. Soc. 2013, 135, 1533415337,  DOI: 10.1021/ja408747m
  50. 50
    Wang, Q. G.; van Gemmeren, M.; List, B. Asymmetric disulfonimide-catalyzed synthesis of δ-amino-β-ketoester derivatives by vinylogous Mukaiyama-Mannich reactions. Angew. Chem., Int. Ed. 2014, 53, 1359213595,  DOI: 10.1002/anie.201407532
  51. 51
    James, T.; van Gemmeren, M.; List, B. Development and applications of disulfonimides in enantioselective review organocatalysis. Chem. Rev. 2015, 115, 93889409,  DOI: 10.1021/acs.chemrev.5b00128
  52. 52
    Tap, A.; Blond, A.; Wakchaure, V. N.; List, B. Chiral allenes via alkynylogous Mukaiyama aldol reaction. Angew. Chem., Int. Ed. 2016, 55, 89628965,  DOI: 10.1002/anie.201603649
  53. 53
    Zhang, Z. P.; Bae, H. Y.; Guin, J.; Rabalakos, C.; van Gemmeren, M.; Leutzsch, M.; Klussmann, M.; List, B. Asymmetric counteranion-directed Lewis acid organocatalysis for the scalable cyanosilylation of aldehydes. Nat. Commun. 2016, 7, 12478,  DOI: 10.1038/ncomms12478
  54. 54
    Gatzenmeier, T.; van Gemmeren, M.; Xie, Y. W.; Hofler, D.; Leutzsch, M.; List, B. Asymmetric Lewis acid organocatalysis of the Diels-Alder reaction by a silylated C–H acid. Science 2016, 351, 949952,  DOI: 10.1126/science.aae0010
  55. 55
    Mandrelli, F.; Blond, A.; James, T.; Kim, H.; List, B. Deracemizing α-branched carboxylic acids by catalytic asymmetric protonation of bis-silyl ketene acetals with water or methanol. Angew. Chem., Int. Ed. 2019, 58, 1147911482,  DOI: 10.1002/anie.201905623
  56. 56
    Zhang, Z. P.; Klussmann, M.; List, B. Kinetic study of disulfonimide-catalyzed cyanosilylation of aldehydes by using a method of progress rates. Synlett 2020, 31, 15931597,  DOI: 10.1055/s-0040-1707129
  57. 57
    Wakchaure, V. N.; Obradors, C.; List, B. Chiral bronsted acids catalyze asymmetric additions to substrates that are already protonated: Highly enantioselective disulfonimide-catalyzed Hantzsch ester reductions of NH-imine hydrochloride salts. Synlett 2020, 31, 17071712,  DOI: 10.1055/s-0040-1706413
  58. 58
    Kaib, P. S. J.; Schreyer, L.; Lee, S.; Properzi, R.; List, B. Extremely active organocatalysts enable a highly enantioselective addition of allyltrimethylsilane to aldehydes. Angew. Chem., Int. Ed. 2016, 55, 1320013203,  DOI: 10.1002/anie.201607828
  59. 59
    Lee, S.; Kaib, P. S. J.; List, B. Asymmetric catalysis via cyclic, aliphatic oxocarbenium ions. J. Am. Chem. Soc. 2017, 139, 21562159,  DOI: 10.1021/jacs.6b11993
  60. 60
    Bae, H. Y.; Hofler, D.; Kaib, P. S. J.; Kasaplar, P.; De, C. K.; Dohring, A.; Lee, S.; Kaupmees, K.; Leito, I.; List, B. Approaching sub-ppm-level asymmetric organocatalysis of a highly challenging and scalable carbon-carbon bond forming reaction. Nat. Chem. 2018, 10, 888894,  DOI: 10.1038/s41557-018-0065-0
  61. 61
    Gatzenmeier, T.; Kaib, P. S. J.; Lingnau, J. B.; Goddard, R.; List, B. The catalytic asymmetric Mukaiyama-Michael reaction of silyl ketene acetals with α,β-unsaturated methyl esters. Angew. Chem., Int. Ed. 2018, 57, 24642468,  DOI: 10.1002/anie.201712088
  62. 62
    Lee, S.; Bae, H. Y.; List, B. Can a ketone be more reactive than an aldehyde? Catalytic asymmetric synthesis of substituted tetrahydrofurans. Angew. Chem., Int. Ed. 2018, 57, 1216212166,  DOI: 10.1002/anie.201806312
  63. 63
    Gatzenmeier, T.; Turberg, M.; Yepes, D.; Xie, Y. W.; Neese, F.; Bistoni, G.; List, B. Scalable and highly diastereo- and enantioselective catalytic Diels-Alder reaction of α,β-unsaturated methyl esters. J. Am. Chem. Soc. 2018, 140, 1267112676,  DOI: 10.1021/jacs.8b07092
  64. 64
    Schreyer, L.; Kaib, P. S. J.; Wakchaure, V. N.; Obradors, C.; Properzi, R.; Lee, S.; List, B. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 2018, 362, 216219,  DOI: 10.1126/science.aau0817
  65. 65
    Schreyer, L.; Properzi, R.; List, B. IDPi catalysis. Angew. Chem., Int. Ed. 2019, 58, 1276112777,  DOI: 10.1002/anie.201900932
  66. 66
    Zhou, H.; Bae, H. Y.; Leutzsch, M.; Kennemur, J. L.; Becart, D.; List, B. The silicon-hydrogen exchange reaction: A catalytic sigma-bond metathesis approach to the enantioselective synthesis of enol silanes. J. Am. Chem. Soc. 2020, 142, 1369513700,  DOI: 10.1021/jacs.0c06677
  67. 67
    Akiyama, T. Stronger bronsted acids. Chem. Rev. 2007, 107, 57445758,  DOI: 10.1021/cr068374j
  68. 68
    Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chem. Commun. 2008, 40974112,  DOI: 10.1039/b807577h
  69. 69
    Čorić, I.; List, B. Asymmetric spiroacetalization catalysed by confined Bronsted acids. Nature 2012, 483, 315319,  DOI: 10.1038/nature10932
  70. 70
    Takahashi, K.; Miyoshi, S.; Kaneko, A.; Copenhagen, D. R. Actions of nipecotic acid and SKF89976A on GABA transporter in cone-driven horizontal cells dissociated from the catfish retina. Jpn. J. Physiol. 1995, 45, 457473,  DOI: 10.2170/jjphysiol.45.457

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 34 publications.

  1. Na Liu, Jinhui Feng, Xi Chen, Yuyang Luo, Tong Lv, Qiaqing Wu, Dunming Zhu. Reshaping the Substrate Binding Pocket of β-Amino Acid Dehydrogenase for the Synthesis of Aromatic β-Amino Acids. Organic Letters 2023, 25 (47) , 8469-8473. https://doi.org/10.1021/acs.orglett.3c03366
  2. Trisha Bhattacharya, Prabhat Kumar Baroliya, Shaeel A. Al-Thabaiti, Debabrata Maiti. Simplifying the Synthesis of Nonproteinogenic Amino Acids via Palladium-Catalyzed δ-Methyl C–H Olefination of Aliphatic Amines and Amino Acids. JACS Au 2023, 3 (7) , 1975-1983. https://doi.org/10.1021/jacsau.3c00215
  3. Hui Zhou, Roberta Properzi, Markus Leutzsch, Paola Belanzoni, Giovanni Bistoni, Nobuya Tsuji, Jung Tae Han, Chendan Zhu, Benjamin List. Organocatalytic DYKAT of Si-Stereogenic Silanes. Journal of the American Chemical Society 2023, 145 (9) , 4994-5000. https://doi.org/10.1021/jacs.3c00858
  4. Minghao Feng, Ivan Mosiagin, Daniel Kaiser, Boris Maryasin, Nuno Maulide. Deployment of Sulfinimines in Charge-Accelerated Sulfonium Rearrangement Enables a Surrogate Asymmetric Mannich Reaction. Journal of the American Chemical Society 2022, 144 (29) , 13044-13049. https://doi.org/10.1021/jacs.2c05368
  5. Norie Momiyama, Chanantida Jongwohan, Naoya Ohtsuka, Pawittra Chaibuth, Takeshi Fujinami, Kiyohiro Adachi, Toshiyasu Suzuki. Chiral Counteranion-Directed Catalytic Asymmetric Methylene Migration Reaction of Ene-Aldimines. The Journal of Organic Chemistry 2022, 87 (14) , 9399-9407. https://doi.org/10.1021/acs.joc.2c00742
  6. Hui Zhou, Jung Tae Han, Nils Nöthling, Monika M. Lindner, Judith Jenniches, Clemens Kühn, Nobuya Tsuji, Li Zhang, Benjamin List. Organocatalytic Asymmetric Synthesis of Si-Stereogenic Silyl Ethers. Journal of the American Chemical Society 2022, 144 (23) , 10156-10161. https://doi.org/10.1021/jacs.2c04261
  7. Lei-Ming Zou, Xian-Yun Huang, Chao Zheng, Yuan-Zheng Cheng, Shu-Li You. Chiral Brønsted Acid-Catalyzed Intramolecular Asymmetric Allylic Alkylation of Indoles with Primary Alcohols. Organic Letters 2022, 24 (19) , 3544-3548. https://doi.org/10.1021/acs.orglett.2c01253
  8. Jie Ouyang, Rajat Maji, Markus Leutzsch, Benjamin Mitschke, Benjamin List. Design of an Organocatalytic Asymmetric (4 + 3) Cycloaddition of 2-Indolylalcohols with Dienolsilanes. Journal of the American Chemical Society 2022, 144 (19) , 8460-8466. https://doi.org/10.1021/jacs.2c02216
  9. Bingfei Peng, Jiguo Ma, Jianhua Guo, Yating Gong, Ronghao Wang, Yi Zhang, Jinlong Zeng, Wen-Wen Chen, Kuiling Ding, Baoguo Zhao. A Powerful Chiral Super Brønsted C–H Acid for Asymmetric Catalysis. Journal of the American Chemical Society 2022, 144 (7) , 2853-2860. https://doi.org/10.1021/jacs.1c12723
  10. Tynchtyk Amatov, Nobuya Tsuji, Rajat Maji, Lucas Schreyer, Hui Zhou, Markus Leutzsch, Benjamin List. Confinement-Controlled, Either syn- or anti-Selective Catalytic Asymmetric Mukaiyama Aldolizations of Propionaldehyde Enolsilanes. Journal of the American Chemical Society 2021, 143 (36) , 14475-14481. https://doi.org/10.1021/jacs.1c07447
  11. Fenglin Hong, Timothy P. Aldhous, Paul D. Kemmitt, John F. Bower. A directed enolization strategy enables by-product-free construction of contiguous stereocentres en route to complex amino acids. Nature Chemistry 2024, 107 https://doi.org/10.1038/s41557-024-01473-5
  12. Lihan Zhu, Dongqi Wang. A central functional group-dependent stereoinduction mechanism for chiral super Brønsted C–H acid catalysis. Catalysis Science & Technology 2023, 13 (24) , 7136-7148. https://doi.org/10.1039/D3CY00886J
  13. Vikas Kumar Singh, Chendan Zhu, Chandra Kanta De, Markus Leutzsch, Lorenzo Baldinelli, Raja Mitra, Giovanni Bistoni, Benjamin List. Taming secondary benzylic cations in catalytic asymmetric S N 1 reactions. Science 2023, 382 (6668) , 325-329. https://doi.org/10.1126/science.adj7007
  14. Kenji Yatsuzuka, Midori Kawasaki, Ryuichi Shirai. Enantioselective [2,3]-Wittig Rearrangement of Carboxylic Acid Derived Enolates by Tetradentate Chiral Lithium Amide. Synlett 2023, 34 (14) , 1727-1731. https://doi.org/10.1055/a-2039-6352
  15. Caroline Dorsch, Christoph Schneider. Brønsted Acid Catalyzed Asymmetric Synthesis of cis ‐Tetrahydrocannabinoids**. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202302475
  16. Caroline Dorsch, Christoph Schneider. Brønsted Acid Catalyzed Asymmetric Synthesis of cis ‐Tetrahydrocannabinoids**. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202302475
  17. Jun Wei, Jian Zhang, Jun Kee Cheng, Shao-Hua Xiang, Bin Tan. Modular enantioselective access to β-amino amides by Brønsted acid-catalysed multicomponent reactions. Nature Chemistry 2023, 15 (5) , 647-657. https://doi.org/10.1038/s41557-023-01179-0
  18. Tianyu Zheng, Rui Chen, Jingxian Huang, Théo P. Gonçalves, Kuo-Wei Huang, Ying-Yeung Yeung. Cross-assembly confined bifunctional catalysis via non-covalent interactions for asymmetric halogenation. Chem 2023, 9 (5) , 1255-1269. https://doi.org/10.1016/j.chempr.2023.01.016
  19. Jun Kee Cheng, Shao‐Hua Xiang, Bin Tan. Imidodiphosphorimidates ( IDPis ): Catalyst Motifs with Unprecedented Reactivity and Selectivity. Chinese Journal of Chemistry 2023, 41 (6) , 685-694. https://doi.org/10.1002/cjoc.202200618
  20. Nobuya Tsuji, Pavel Sidorov, Chendan Zhu, Yuuya Nagata, Timur Gimadiev, Alexandre Varnek, Benjamin List. Predicting Highly Enantioselective Catalysts Using Tunable Fragment Descriptors**. Angewandte Chemie 2023, 135 (11) https://doi.org/10.1002/ange.202218659
  21. Nobuya Tsuji, Pavel Sidorov, Chendan Zhu, Yuuya Nagata, Timur Gimadiev, Alexandre Varnek, Benjamin List. Predicting Highly Enantioselective Catalysts Using Tunable Fragment Descriptors**. Angewandte Chemie International Edition 2023, 62 (11) https://doi.org/10.1002/anie.202218659
  22. Hirotsugu Suzuki, Sora Kondo, Koichiro Yamada, Takanori Matsuda. Diastereo‐ and Enantioselective Reductive Mannich‐type Reaction of α , β ‐Unsaturated Carboxylic Acids to Ketimines: A Direct Entry to Unprotected β 2,3,3 ‐Amino Acids. Chemistry – A European Journal 2023, 29 (4) https://doi.org/10.1002/chem.202202575
  23. Caroline Dorsch, Christoph Schneider. New Developments in Enantioselective Brønsted Acid Catalysis with Strong Hydrogen Bond Donors. 2023, 1-42. https://doi.org/10.1002/9783527832217.ch1
  24. Fujie Tanaka. The Bimolecular and Intramolecular Mannich and Related Reactions. 2023https://doi.org/10.1016/B978-0-323-96025-0.00016-8
  25. Takahiko Akiyama. ASYMMETRIC ACID ORGANOCATALYSIS. 2022, 29-80. https://doi.org/10.1002/9781119736424.ch2
  26. Oleg Grossmann, Rajat Maji, Miles H. Aukland, Sunggi Lee, Benjamin List. Katalytische asymmetrische Additionen von Enolsilanen an in situ erzeugte zyklische, aliphatische N ‐Acyliminiumionen. Angewandte Chemie 2022, 134 (9) https://doi.org/10.1002/ange.202115036
  27. Oleg Grossmann, Rajat Maji, Miles H. Aukland, Sunggi Lee, Benjamin List. Catalytic Asymmetric Additions of Enol Silanes to In Situ Generated Cyclic, Aliphatic N ‐Acyliminium Ions. Angewandte Chemie International Edition 2022, 61 (9) https://doi.org/10.1002/anie.202115036
  28. Ruslan A. Kovalevsky, Maxim V. Smirnov, Alexander S. Kucherenko, Kseniya A. Bykova, Elizaveta V. Shikina, Sergei G. Zlotin. Organocatalytic Asymmetric Double Addition of Kojic Acids to 2‐Nitroallylic Carbonates. European Journal of Organic Chemistry 2022, 2022 (3) https://doi.org/10.1002/ejoc.202101435
  29. Ruslan A. Kovalevsky, Alexander S. Kucherenko, Alexander A. Korlyukov, Sergei G. Zlotin. Asymmetric Conjugate Addition of 3‐Hydroxychromen‐4‐Ones to Electron‐Deficient Olefins Catalyzed by Recyclable C 2 ‐Symmetric Squaramide. Advanced Synthesis & Catalysis 2022, 364 (2) , 426-439. https://doi.org/10.1002/adsc.202101019
  30. Rui Niu, Yi He, Jun-Bing Lin. Catalytic asymmetric synthesis of α-stereogenic carboxylic acids: recent advances. Organic & Biomolecular Chemistry 2021, 20 (1) , 37-54. https://doi.org/10.1039/D1OB02038B
  31. Hui Zhou, Pinglu Zhang, Benjamin List. The Silicon–Hydrogen Exchange Reaction: Catalytic Kinetic Resolution of 2-Substituted Cyclic Ketones. Synlett 2021, 32 (19) , 1953-1956. https://doi.org/10.1055/a-1670-5829
  32. Xue Tian, Xinfang Xu, Tongfei Jing, Zhenghui Kang, Wenhao Hu. Enantioselective formal carbene insertion into C–N bond of aminal as a concise track to chiral α-amino-β2,2-amino acids and synthetic applications. Green Synthesis and Catalysis 2021, 2 (4) , 337-344. https://doi.org/10.1016/j.gresc.2021.10.007
  33. Xian-Zhou Zheng, Kai Chen, Jun-An Xiao, Jun Li, Sha-Sha Wang, Qing-Lan Zhao, Hao-Yue Xiang, Xiao-Qing Chen, Hua Yang. Unveiling the abnormal effect of temperature on enantioselectivity in the palladium-mediated decabonylative alkylation of MBH acetate. Organic Chemistry Frontiers 2021, 8 (18) , 5058-5063. https://doi.org/10.1039/D1QO00782C
  34. . Catalytic Asymmetric Aminomethylation of Bis-Silyl Ketene Acetals to β2-Amino Acids. Synfacts 2021, 0565. https://doi.org/10.1055/s-0040-1706180
  • Abstract

    Figure 1

    Figure 1. (a) Proposed catalytic cycle. (b) Suggested re-facial approach of the SKA onto the DFT optimized iminium-IDPi ion pair II.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 70 other publications.

    1. 1
      Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. β-Peptides: From structure to function. Chem. Rev. 2001, 101, 32193232,  DOI: 10.1021/cr000045i
    2. 2
      Lelais, G.; Seebach, D. β2-Amino acids—Syntheses, occurrence in natural products, and components of β-peptides. Biopolymers 2004, 76, 206243,  DOI: 10.1002/bip.20088
    3. 3
      Aguilar, M. I.; Purcell, A. W.; Devi, R.; Lew, R.; Rossjohn, J.; Smitha, A. I.; Perlmutter, P. β-Amino acid-containing hybrid peptides—New opportunities in peptidomimetics. Org. Biomol. Chem. 2007, 5, 28842890,  DOI: 10.1039/b708507a
    4. 4
      Seebach, D.; Gardiner, J. β-Peptidic peptidomimetics. Acc. Chem. Res. 2008, 41, 13661375,  DOI: 10.1021/ar700263g
    5. 5
      Kudo, F.; Miyanaga, A.; Eguchi, T. Biosynthesis of natural products containing β-amino acids. Nat. Prod. Rep. 2014, 31, 10561073,  DOI: 10.1039/C4NP00007B
    6. 6
      Adkins, J. C.; Noble, S. Tiagabine—A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the management of epilepsy. Drugs 1998, 55, 437460,  DOI: 10.2165/00003495-199855030-00013
    7. 7
      Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. β-Peptide foldamers: Robust helix formation in a new family of β-amino acid oligomers. J. Am. Chem. Soc. 1996, 118, 1307113072,  DOI: 10.1021/ja963290l
    8. 8
      Eddinger, G. A.; Gellman, S. H. Differential effects of β3- versus β2-amino acid residues on the helicity and recognition properties of bim BH3-derived α/β-peptides. Angew. Chem., Int. Ed. 2018, 57, 1382913832,  DOI: 10.1002/anie.201806909
    9. 9
      Chaganty, S.; Golakoti, T.; Heltzel, C.; Moore, R. E.; Yoshida, W. Y. Isolation and structure determination of cryptophycins 38, 326, and 327 from the terrestrial cyanobacterium Nostoc sp GSV 224. J. Nat. Prod. 2004, 67, 14031406,  DOI: 10.1021/np0499665
    10. 10
      Neary, P.; Delaney, C. P. Alvimopan. Expert Opin. Invest. Drugs 2005, 14, 479488,  DOI: 10.1517/13543784.14.4.479
    11. 11
      Hoy, S. M. Netarsudil ophthalmic solution 0.02%: First global approval. Drugs 2018, 78, 389396,  DOI: 10.1007/s40265-018-0877-7
    12. 12
      Seebach, D.; Beck, A. K.; Capone, S.; Deniau, G.; Groselj, U.; Zass, E. Enantioselective preparation of β2-amino acid derivatives for β-peptide synthesis. Synthesis 2009, 2009, 132,  DOI: 10.1055/s-0028-1087490
    13. 13
      Noda, H.; Shibasaki, M. Recent advances in the catalytic asymmetric synthesis of β2- and β2,2-amino acids. Eur. J. Org. Chem. 2020, 2020, 23502361,  DOI: 10.1002/ejoc.201901596
    14. 14
      Bower, J. F.; Williams, J. M. J. Palladium catalysed asymmetric allylic substitution. Routes to β-amino acids. Synlett 1996, 1996, 685686,  DOI: 10.1055/s-1996-5560
    15. 15
      Schleich, S.; Helmchen, G. Pd-catalyzed asymmetric allylic alkylation of 3-acetoxy-N-(tert-butyloxycarbonyl)-1,2,3,6-tetrahydropyridine—Preparation of key intermediates for natural product synthesis. Eur. J. Org. Chem. 1999, 1999, 25152521,  DOI: 10.1002/(SICI)1099-0690(199910)1999:10<2515::AID-EJOC2515>3.0.CO;2-G
    16. 16
      Davies, H. M. L.; Venkataramani, C. Catalytic enantioselective synthesis of β2-amino acids. Angew. Chem., Int. Ed. 2002, 41, 21972199,  DOI: 10.1002/1521-3773(20020617)41:12<2197::AID-ANIE2197>3.0.CO;2-N
    17. 17
      Rimkus, A.; Sewald, N. First synthesis of β2-homoamino acid by enantioselective catalysis. Org. Lett. 2003, 5, 7980,  DOI: 10.1021/ol027252k
    18. 18
      Eilitz, U.; Lessmann, F.; Seidelmann, O.; Wendisch, V. Stereoselective synthesis of β2-amino acids by Michael addition of diorgano zinc reagents to nitro acrylates. Tetrahedron: Asymmetry 2003, 14, 189191,  DOI: 10.1016/S0957-4166(02)00788-7
    19. 19
      Duursma, A.; Minnaard, A. J.; Feringa, B. L. Highly enantioselective conjugate addition of dialkylzinc reagents to acyclic nitroalkenes: a catalytic route to β2-amino acids, aldehydes, and alcohols. J. Am. Chem. Soc. 2003, 125, 37003701,  DOI: 10.1021/ja029817d
    20. 20
      Sammis, G. M.; Jacobsen, E. N. Highly enantioselective, catalytic conjugate addition of cyanide to α,β-unsaturated Imides. J. Am. Chem. Soc. 2003, 125, 44424443,  DOI: 10.1021/ja034635k
    21. 21
      Sibi, M. P.; Tatamidani, H.; Patil, K. Enantioselective rhodium enolate protonations. A new methodology for the synthesis of β2-amino acids. Org. Lett. 2005, 7, 25712573,  DOI: 10.1021/ol050630b
    22. 22
      Davies, H. M. L.; Ni, A. W. Enantioselective synthesis of β-amino esters and its application to the synthesis of the enantiomers of the antidepressant Venlafaxine. Chem. Commun. 2006, 31103112,  DOI: 10.1039/B605047F
    23. 23
      Huang, H. M.; Liu, X. C.; Deng, J.; Qiu, M.; Zheng, Z. Rhodium-catalyzed enantioselective hydrogenation of β-phthalimide acrylates to synthesis of β2-amino acids. Org. Lett. 2006, 8, 33593362,  DOI: 10.1021/ol0612399
    24. 24
      Qiu, L. Q.; Prashad, M.; Hu, B.; Prasad, K.; Repic, O.; Blacklock, T. J.; Kwong, F. Y.; Kok, S. H. L.; Lee, H. W.; Chan, A. S. C. Enantioselective hydrogenation of α-aminomethylacrylates containing a free N–H group for the synthesis of β-amino acid derivatives. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1678716792,  DOI: 10.1073/pnas.0704461104
    25. 25
      Deng, J.; Hu, X. P.; Huang, J. D.; Yu, S. B.; Wang, D. Y.; Duan, Z. C.; Zheng, Z. Enantioselective synthesis of β2-amino acids via rh-catalyzed asymmetric hydrogenation with BoPhoz-type ligands: important influence of an N–H proton in the ligand on the enantioselectivity. J. Org. Chem. 2008, 73, 20152017,  DOI: 10.1021/jo702510m
    26. 26
      Guo, Y. J.; Shao, G. A.; Li, L. N.; Wu, W. H.; Li, R. H.; Li, J. J.; Song, J. A.; Qiu, L. Q.; Prashad, M.; Kwong, F. Y. A general approach to the synthesis of β2-amino acid derivatives via highly efficient catalytic asymmetric hydrogenation of α-aminomethylacrylates. Adv. Synth. Catal. 2010, 352, 15391553,  DOI: 10.1002/adsc.201000122
    27. 27
      Li, L. N.; Chen, B.; Ke, Y. Y.; Li, Q.; Zhuang, Y.; Duan, K.; Huang, Y. C.; Pang, J. Y.; Qiu, L. Q. Highly efficient synthesis of heterocyclic and alicyclic β2-amino acid derivatives by catalytic asymmetric hydrogenation. Chem. - Asian J. 2013, 8, 21672174,  DOI: 10.1002/asia.201300339
    28. 28
      Remarchuk, T.; Babu, S.; Stults, J.; Zanotti-Gerosa, A.; Roseblade, S.; Yang, S. H.; Huang, P.; Sha, C. B.; Wang, Y. C. An efficient catalytic asymmetric synthesis of a β2-amino acid on multikilogram scale. Org. Process Res. Dev. 2014, 18, 135141,  DOI: 10.1021/op4002966
    29. 29
      Li, S. K.; Xiao, T. F.; Li, D. D.; Zhang, X. M. First iridium-catalyzed highly enantioselective hydrogenation of β-nitroacrylates. Org. Lett. 2015, 17, 37823785,  DOI: 10.1021/acs.orglett.5b01758
    30. 30
      Jian, J. H.; Hsu, C. L.; Syu, J. F.; Kuo, T. S.; Tsai, M. K.; Wu, P. Y.; Wu, H. L. Access to β2-amino acids via enantioselective 1,4-arylation of β-nitroacrylates catalyzed by chiral rhodium catalysts. J. Org. Chem. 2018, 83, 1218412191,  DOI: 10.1021/acs.joc.8b00586
    31. 31
      Kang, Z. H.; Wang, Y. H.; Zhang, D.; Wu, R. B.; Xu, X. F.; Hu, W. H. Asymmetric counter-anion-directed aminomethylation: synthesis of chiral β-amino acids via trapping of an enol intermediate. J. Am. Chem. Soc. 2019, 141, 14731478,  DOI: 10.1021/jacs.8b12832
    32. 32
      Lin, W. L.; Zhang, K. F.; Baudoin, O. Regiodivergent enantioselective C–H functionalization of Boc-1,3-oxazinanes for the synthesis of β2- and β3-amino acids. Nat. Catal. 2019, 2, 882888,  DOI: 10.1038/s41929-019-0336-1
    33. 33
      Chi, Y.; Gellman, S. H. Enantioselective organocatalytic aminomethylation of aldehydes: a role for ionic interactions and efficient access to β2-amino acids. J. Am. Chem. Soc. 2006, 128, 68046805,  DOI: 10.1021/ja061731n
    34. 34
      Swiderska, M. A.; Stewart, J. D. Asymmetric bioreductions of β-nitro acrylates as a route to chiral β2-amino acids. Org. Lett. 2006, 8, 61316133,  DOI: 10.1021/ol062612f
    35. 35
      Martin, N. J. A.; Cheng, X.; List, B. Organocatalytic asymmetric transferhydrogenation of β-nitroacrylates: accessing β2-amino acids. J. Am. Chem. Soc. 2008, 130, 1386213863,  DOI: 10.1021/ja8069852
    36. 36
      Bernal, P.; Fernandez, R.; Lassaletta, J. M. Organocatalytic Asymmetric Cyanosilylation of Nitroalkenes. Chem. - Eur. J. 2010, 16, 77147718,  DOI: 10.1002/chem.201001107
    37. 37
      Tite, T.; Sabbah, M.; Levacher, V.; Briere, J. F. Organocatalysed decarboxylative protonation process from Meldrum’s acid: enantioselective synthesis of isoxazolidinones. Chem. Commun. 2013, 49, 1156911571,  DOI: 10.1039/c3cc47695b
    38. 38
      Xu, J. F.; Chen, X. K.; Wang, M.; Zheng, P. C.; Song, B. A.; Chi, Y. R. Aminomethylation of enals through carbene and acid cooperative catalysis: concise access to β2-amino acids. Angew. Chem., Int. Ed. 2015, 54, 51615165,  DOI: 10.1002/anie.201412132
    39. 39
      Wang, K.; Yu, J.; Shao, Y.; Tang, S.; Sun, J. Forming all-carbon quaternary stereocenters by organocatalytic aminomethylation: concise access to β2,2-amino acids. Angew. Chem., Int. Ed. 2020, 59, 2351623520,  DOI: 10.1002/anie.202009892
    40. 40
      Mannich, C.; Ganz, E. β-Aminodicarboxylic acids and aminopolycarboxylic acids. Ber. Dtsch. Chem. Ges. B 1922, 55B, 34863504,  DOI: 10.1002/cber.19220551017
    41. 41
      Rodionow, W. M.; Malewinskaja, E. T. On the presentation of aryl-β-amino fatty acids (I announcement). Ber. Dtsch. Chem. Ges. B 1926, 59, 29522958,  DOI: 10.1002/cber.19260591147
    42. 42
      Tanaka, T.; Yazaki, R.; Ohshima, T. Chemoselective catalytic α-oxidation of carboxylic acids: Iron/alkali metal cooperative redox active catalysis. J. Am. Chem. Soc. 2020, 142, 45174524,  DOI: 10.1021/jacs.0c00727
    43. 43
      Morita, Y.; Yamamoto, T.; Nagai, H.; Shimizu, Y.; Kanai, M. Chemoselective boron-catalyzed nucleophilic activation of carboxylic acids for Mannich-type reactions. J. Am. Chem. Soc. 2015, 137, 70757078,  DOI: 10.1021/jacs.5b04175
    44. 44
      Stivala, C. E.; Zakarian, A. Highly enantioselective direct alkylation of arylacetic acids with chiral lithium amides as traceless auxiliaries. J. Am. Chem. Soc. 2011, 133, 1193611936,  DOI: 10.1021/ja205107x
    45. 45
      Okano, K.; Morimoto, T.; Sekiya, M. Primary aminomethylation at the α-position of carboxylic-acids and esters. Trimethylsilyl triflate-catalyzed reaction of ketene silyl acetals with N,N-bis(trimethylsilyl)methoxymethylamine. Chem. Pharm. Bull. 1985, 33, 22282234,  DOI: 10.1248/cpb.33.2228
    46. 46
      Garcia-Garcia, P.; Lay, F.; Garcia-Garcia, P.; Rabalakos, C.; List, B. A powerful chiral counteranion motif for asymmetric catalysis. Angew. Chem., Int. Ed. 2009, 48, 43634366,  DOI: 10.1002/anie.200901768
    47. 47
      Mahlau, M.; List, B. Asymmetric counteranion-directed catalysis: Concept, definition, and applications. Angew. Chem., Int. Ed. 2013, 52, 518533,  DOI: 10.1002/anie.201205343
    48. 48
      Gandhi, S.; List, B. Catalytic asymmetric three-component synthesis of homoallylic amines. Angew. Chem., Int. Ed. 2013, 52, 25732576,  DOI: 10.1002/anie.201209776
    49. 49
      Wang, Q. G.; Leutzsch, M.; van Gemmeren, M.; List, B. Disulfoninnide-catalyzed asymmetric synthesis of β3-amino esters directly from N-Boc-amino sulfones. J. Am. Chem. Soc. 2013, 135, 1533415337,  DOI: 10.1021/ja408747m
    50. 50
      Wang, Q. G.; van Gemmeren, M.; List, B. Asymmetric disulfonimide-catalyzed synthesis of δ-amino-β-ketoester derivatives by vinylogous Mukaiyama-Mannich reactions. Angew. Chem., Int. Ed. 2014, 53, 1359213595,  DOI: 10.1002/anie.201407532
    51. 51
      James, T.; van Gemmeren, M.; List, B. Development and applications of disulfonimides in enantioselective review organocatalysis. Chem. Rev. 2015, 115, 93889409,  DOI: 10.1021/acs.chemrev.5b00128
    52. 52
      Tap, A.; Blond, A.; Wakchaure, V. N.; List, B. Chiral allenes via alkynylogous Mukaiyama aldol reaction. Angew. Chem., Int. Ed. 2016, 55, 89628965,  DOI: 10.1002/anie.201603649
    53. 53
      Zhang, Z. P.; Bae, H. Y.; Guin, J.; Rabalakos, C.; van Gemmeren, M.; Leutzsch, M.; Klussmann, M.; List, B. Asymmetric counteranion-directed Lewis acid organocatalysis for the scalable cyanosilylation of aldehydes. Nat. Commun. 2016, 7, 12478,  DOI: 10.1038/ncomms12478
    54. 54
      Gatzenmeier, T.; van Gemmeren, M.; Xie, Y. W.; Hofler, D.; Leutzsch, M.; List, B. Asymmetric Lewis acid organocatalysis of the Diels-Alder reaction by a silylated C–H acid. Science 2016, 351, 949952,  DOI: 10.1126/science.aae0010
    55. 55
      Mandrelli, F.; Blond, A.; James, T.; Kim, H.; List, B. Deracemizing α-branched carboxylic acids by catalytic asymmetric protonation of bis-silyl ketene acetals with water or methanol. Angew. Chem., Int. Ed. 2019, 58, 1147911482,  DOI: 10.1002/anie.201905623
    56. 56
      Zhang, Z. P.; Klussmann, M.; List, B. Kinetic study of disulfonimide-catalyzed cyanosilylation of aldehydes by using a method of progress rates. Synlett 2020, 31, 15931597,  DOI: 10.1055/s-0040-1707129
    57. 57
      Wakchaure, V. N.; Obradors, C.; List, B. Chiral bronsted acids catalyze asymmetric additions to substrates that are already protonated: Highly enantioselective disulfonimide-catalyzed Hantzsch ester reductions of NH-imine hydrochloride salts. Synlett 2020, 31, 17071712,  DOI: 10.1055/s-0040-1706413
    58. 58
      Kaib, P. S. J.; Schreyer, L.; Lee, S.; Properzi, R.; List, B. Extremely active organocatalysts enable a highly enantioselective addition of allyltrimethylsilane to aldehydes. Angew. Chem., Int. Ed. 2016, 55, 1320013203,  DOI: 10.1002/anie.201607828
    59. 59
      Lee, S.; Kaib, P. S. J.; List, B. Asymmetric catalysis via cyclic, aliphatic oxocarbenium ions. J. Am. Chem. Soc. 2017, 139, 21562159,  DOI: 10.1021/jacs.6b11993
    60. 60
      Bae, H. Y.; Hofler, D.; Kaib, P. S. J.; Kasaplar, P.; De, C. K.; Dohring, A.; Lee, S.; Kaupmees, K.; Leito, I.; List, B. Approaching sub-ppm-level asymmetric organocatalysis of a highly challenging and scalable carbon-carbon bond forming reaction. Nat. Chem. 2018, 10, 888894,  DOI: 10.1038/s41557-018-0065-0
    61. 61
      Gatzenmeier, T.; Kaib, P. S. J.; Lingnau, J. B.; Goddard, R.; List, B. The catalytic asymmetric Mukaiyama-Michael reaction of silyl ketene acetals with α,β-unsaturated methyl esters. Angew. Chem., Int. Ed. 2018, 57, 24642468,  DOI: 10.1002/anie.201712088
    62. 62
      Lee, S.; Bae, H. Y.; List, B. Can a ketone be more reactive than an aldehyde? Catalytic asymmetric synthesis of substituted tetrahydrofurans. Angew. Chem., Int. Ed. 2018, 57, 1216212166,  DOI: 10.1002/anie.201806312
    63. 63
      Gatzenmeier, T.; Turberg, M.; Yepes, D.; Xie, Y. W.; Neese, F.; Bistoni, G.; List, B. Scalable and highly diastereo- and enantioselective catalytic Diels-Alder reaction of α,β-unsaturated methyl esters. J. Am. Chem. Soc. 2018, 140, 1267112676,  DOI: 10.1021/jacs.8b07092
    64. 64
      Schreyer, L.; Kaib, P. S. J.; Wakchaure, V. N.; Obradors, C.; Properzi, R.; Lee, S.; List, B. Confined acids catalyze asymmetric single aldolizations of acetaldehyde enolates. Science 2018, 362, 216219,  DOI: 10.1126/science.aau0817
    65. 65
      Schreyer, L.; Properzi, R.; List, B. IDPi catalysis. Angew. Chem., Int. Ed. 2019, 58, 1276112777,  DOI: 10.1002/anie.201900932
    66. 66
      Zhou, H.; Bae, H. Y.; Leutzsch, M.; Kennemur, J. L.; Becart, D.; List, B. The silicon-hydrogen exchange reaction: A catalytic sigma-bond metathesis approach to the enantioselective synthesis of enol silanes. J. Am. Chem. Soc. 2020, 142, 1369513700,  DOI: 10.1021/jacs.0c06677
    67. 67
      Akiyama, T. Stronger bronsted acids. Chem. Rev. 2007, 107, 57445758,  DOI: 10.1021/cr068374j
    68. 68
      Terada, M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon–carbon bond forming reactions. Chem. Commun. 2008, 40974112,  DOI: 10.1039/b807577h
    69. 69
      Čorić, I.; List, B. Asymmetric spiroacetalization catalysed by confined Bronsted acids. Nature 2012, 483, 315319,  DOI: 10.1038/nature10932
    70. 70
      Takahashi, K.; Miyoshi, S.; Kaneko, A.; Copenhagen, D. R. Actions of nipecotic acid and SKF89976A on GABA transporter in cone-driven horizontal cells dissociated from the catfish retina. Jpn. J. Physiol. 1995, 45, 457473,  DOI: 10.2170/jjphysiol.45.457
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c00249.

    • Experimental details and analytical data for all new compounds, crystallographic data for compounds 4h, 4i, and 4j, HPLC traces, NMR spectra, computational studies, optimized structures, and Cartesian coordinates (PDF)

    Accession Codes

    CCDC 20568352056839 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect