ACS Publications. Most Trusted. Most Cited. Most Read
Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds
My Activity

Figure 1Loading Img
    Article

    Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 18, 7114–7123
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c02146
    Published April 28, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron–carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c02146.

    • Detailed description of experimental and computational methods and procedures, spectroscopic data for all new compounds, supplementary figures and tables, and Cartesian coordinates of DFT optimized structures (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 44 publications.

    1. Andrey P. Kroitor, Alexander A. Dmitrienko, Gayane A. Kirakosyan, Chantal Lorentz, Alexander G. Martynov, Yulia G. Gorbunova, Aslan Yu. Tsivadze, Alexander B. Sorokin. Designing Ruthenium Phthalocyanine with Chiral Pockets Formed by (1R,2S,5R)-Menthoxy Groups for Enantioselective Catalysis. ACS Catalysis 2025, 15 (6) , 4984-5001. https://doi.org/10.1021/acscatal.4c07696
    2. Reuben B. Leveson-Gower, Laura Tiessler-Sala, Henriette J. Rozeboom, Andy-Mark W. H. Thunnissen, Jean-Didier Maréchal, Gerard Roelfes. Evolutionary Specialization of a Promiscuous Designer Enzyme. ACS Catalysis 2025, 15 (3) , 1544-1552. https://doi.org/10.1021/acscatal.4c06409
    3. Kelsie E. Wentz, Alexandra F. Gittens, Rebekka S. Klausen. Precise Synthesis of Complex Si–Si Molecular Frameworks. Journal of the American Chemical Society 2025, 147 (4) , 2938-2959. https://doi.org/10.1021/jacs.4c12646
    4. Huan Lin, Qijie Mo, Yufei Wang, Chunying Chen, Li Zhang. Engineering Corrole and Porphyrin-Based Multivariate Metal–Organic Frameworks for Si–H Bond Insertion. Inorganic Chemistry 2024, 63 (51) , 24115-24121. https://doi.org/10.1021/acs.inorgchem.4c03547
    5. Rajwinder Kaur, Dylan J. Nikkel, Stacey D. Wetmore. Mechanism of Nucleic Acid Phosphodiester Bond Cleavage by Human Endonuclease V: MD and QM/MM Calculations Reveal a Versatile Metal Dependence. The Journal of Physical Chemistry B 2024, 128 (39) , 9455-9469. https://doi.org/10.1021/acs.jpcb.4c05846
    6. Feng Peng, Qi Shen, Lu-Ping Zou, Feng Cheng, Ya-Ping Xue, Yu-Guo Zheng. Design of NAMPTs with Superior Activity by Dual-Channel Protein Engineering Strategy. Journal of Agricultural and Food Chemistry 2024, 72 (24) , 13834-13845. https://doi.org/10.1021/acs.jafc.4c02698
    7. Yuanjun Chen, Ruixue Zhang, Zhiwen Chen, Jiangwen Liao, Xuedong Song, Xiao Liang, Yu Wang, Juncai Dong, Chandra Veer Singh, Dingsheng Wang, Yadong Li, F. Dean Toste, Jie Zhao. Heterogeneous Rhodium Single-Atom-Site Catalyst Enables Chemoselective Carbene N–H Bond Insertion. Journal of the American Chemical Society 2024, 146 (15) , 10847-10856. https://doi.org/10.1021/jacs.4c01408
    8. Yaoyun Wu, Yaozhong Cui, Wei Song, Wanqing Wei, Zhizhen He, Jinyang Tao, Dejing Yin, Xiulai Chen, Cong Gao, Jia Liu, Liming Liu, Jing Wu. Reprogramming the Transition States to Enhance C–N Cleavage Efficiency of Rhodococcus opacus l-Amino Acid Oxidase. JACS Au 2024, 4 (2) , 557-569. https://doi.org/10.1021/jacsau.3c00672
    9. Rajwinder Kaur, Stacey D. Wetmore. Is Metal Stabilization of the Leaving Group Required or Can Lysine Facilitate Phosphodiester Bond Cleavage in Nucleic Acids? A Computational Study of EndoV. Journal of Chemical Information and Modeling 2024, 64 (3) , 944-959. https://doi.org/10.1021/acs.jcim.3c01775
    10. Torben Rogge, Qingyang Zhou, Nicholas J. Porter, Frances H. Arnold, K. N. Houk. Iron Heme Enzyme-Catalyzed Cyclopropanations with Diazirines as Carbene Precursors: Computational Explorations of Diazirine Activation and Cyclopropanation Mechanism. Journal of the American Chemical Society 2024, 146 (5) , 2959-2966. https://doi.org/10.1021/jacs.3c06030
    11. Anuvab Das, Yueming Long, Ryan R. Maar, John M. Roberts, Frances H. Arnold. Expanding Biocatalysis for Organosilane Functionalization: Enantioselective Nitrene Transfer to Benzylic Si–C–H Bonds. ACS Catalysis 2024, 14 (1) , 148-152. https://doi.org/10.1021/acscatal.3c05370
    12. Hanna D. Clements, Autumn R. Flynn, Bryce T. Nicholls, Daria Grosheva, Sarah J. Lefave, Morgan T. Merriman, Todd K. Hyster, Matthew S. Sigman. Using Data Science for Mechanistic Insights and Selectivity Predictions in a Non-Natural Biocatalytic Reaction. Journal of the American Chemical Society 2023, 145 (32) , 17656-17664. https://doi.org/10.1021/jacs.3c03639
    13. Atif Mahammed, Zeev Gross. Milestones and Most Recent Advances in Corrole’s Science and Technology. Journal of the American Chemical Society 2023, 145 (23) , 12429-12445. https://doi.org/10.1021/jacs.3c00282
    14. Roel F.J. Epping, David Vesseur, Minghui Zhou, Bas de Bruin. Carbene Radicals in Transition-Metal-Catalyzed Reactions. ACS Catalysis 2023, 13 (8) , 5428-5448. https://doi.org/10.1021/acscatal.3c00591
    15. Rui Lai, Qiang Cui. How to Stabilize Carbenes in Enzyme Active Sites without Metal Ions. Journal of the American Chemical Society 2022, 144 (45) , 20739-20751. https://doi.org/10.1021/jacs.2c08515
    16. Casey Van Stappen, Yunling Deng, Yiwei Liu, Hirbod Heidari, Jing-Xiang Wang, Yu Zhou, Aaron P. Ledray, Yi Lu. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chemical Reviews 2022, 122 (14) , 11974-12045. https://doi.org/10.1021/acs.chemrev.2c00106
    17. Yue Fu, Heyu Chen, Wenzhen Fu, Marc Garcia-Borràs, Yang Yang, Peng Liu. Engineered P450 Atom-Transfer Radical Cyclases are Bifunctional Biocatalysts: Reaction Mechanism and Origin of Enantioselectivity. Journal of the American Chemical Society 2022, 144 (29) , 13344-13355. https://doi.org/10.1021/jacs.2c04937
    18. Binh Khanh Mai, Natalia M. Neris, Yang Yang, Peng Liu. C–N Bond Forming Radical Rebound Is the Enantioselectivity-Determining Step in P411-Catalyzed Enantioselective C(sp3)–H Amination: A Combined Computational and Experimental Investigation. Journal of the American Chemical Society 2022, 144 (25) , 11215-11225. https://doi.org/10.1021/jacs.2c02283
    19. Kaipeng Hou, Wei Huang, Miao Qi, Thomas H. Tugwell, Turki M. Alturaifi, Yuda Chen, Xingjie Zhang, Lei Lu, Samuel I. Mann, Peng Liu, Yang Yang, William F. DeGrado. De novo design of porphyrin-containing proteins as efficient and stereoselective catalysts. Science 2025, 388 (6747) , 665-670. https://doi.org/10.1126/science.adt7268
    20. Wenjin Pan, Xinlong Fan, Wantong Jiang, Sirui Xin, Ningzhi Wang, Qian Wang, Keyang Yu, Xinkun Ren. Engineering metalloenzymes for new-to-nature carbene and nitrene transfer biocatalysis. Chinese Journal of Catalysis 2025, 72 , 4-23. https://doi.org/10.1016/S1872-2067(25)64659-6
    21. Annika J. Weber, Celine Moser, Maria Alessandra Martini, Franziska J. Laß, Katharina Bleher, Claudia Muhle‐Goll, Christof M. Niemeyer, Kersten S. Rabe. Improving the Long‐term Enantioselectivity of a Silicon‐Carbon Bond‐Forming Enzyme. Chemistry – A European Journal 2025, 31 (19) https://doi.org/10.1002/chem.202404688
    22. Hang Liu, Xiahe Chen, Hongli Wu, Yuanbin She, Yun-Fang Yang. Cluster model study of the mechanism and origins of enantio- and chemoselectivity in non-heme iron enzyme-catalyzed C–H azidation. RSC Advances 2025, 15 (12) , 8931-8937. https://doi.org/10.1039/D5RA00632E
    23. Rahul L. Khade, Ronald Daisuke Adukure, Xinyi Zhao, Carolyn Wang, Rudi Fasan, Yong Zhang. A comprehensive mechanistic investigation of sustainable carbene N–H insertion catalyzed by engineered His-ligated heme proteins. Catalysis Science & Technology 2025, 15 (6) , 1802-1813. https://doi.org/10.1039/D4CY00999A
    24. Kridsadakorn Prakinee, Pimchai Chaiyen. Expanding beyond the capability of nature. Nature Chemical Biology 2025, 21 (1) , 32-34. https://doi.org/10.1038/s41589-024-01793-0
    25. Kerr Ding, Michael Chin, Yunlong Zhao, Wei Huang, Binh Khanh Mai, Huanan Wang, Peng Liu, Yang Yang, Yunan Luo. Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-50698-y
    26. Victor Sosa Alfaro, Hannah Palomino, Sophia Y. Liu, Cybele Lemuh Njimoh, Nicolai Lehnert. Combined experimental and molecular dynamics approach towards a rational design of the YfeX biocatalyst for enhanced carbene transferase reactivity. Catalysis Science & Technology 2024, 14 (18) , 5218-5233. https://doi.org/10.1039/D3CY01489D
    27. Francesca Peccati, Elizabeth L. Noey, K. N. Houk, Silvia Osuna, Gonzalo Jiménez‐Osés. Interplay Between Substrate Polarity and Protein Dynamics in Evolved Kemp Eliminases. ChemCatChem 2024, 16 (17) https://doi.org/10.1002/cctc.202400444
    28. Haoyany Sun, Junhong Pan, Wenying Zhao, Tong Zhou, Xizhong Song, Jun Lin, Yi Jin. Scandium-catalyzed chemoselective carbene insertion into N–H over S–H: access to o -alkylamine-diaryl disulfides. Chemical Communications 2024, 60 (28) , 3798-3801. https://doi.org/10.1039/D4CC00557K
    29. Qihang Guo, Xuzhong Shen, Zhan Lu. Recent Advances in Enantioselective Reactions of Terminal Unactivated Alkenes. Chinese Journal of Chemistry 2024, 42 (7) , 760-776. https://doi.org/10.1002/cjoc.202300529
    30. Bo Couture, Anwita Chattopadhyay, Rudi Fasan. Biocatalytic Carbene and Nitrene Transfer Reactions. 2024, 111-142. https://doi.org/10.1016/B978-0-32-390644-9.00103-7
    31. Dharmendra Kumar, Malleswara Rao Kuram. Copper‐Catalyzed Chemoselective Divergent Carbene Insertion into the N−H bonds of Tryptamines. Advanced Synthesis & Catalysis 2023, 365 (22) , 3935-3941. https://doi.org/10.1002/adsc.202300893
    32. Carla Calvó‐Tusell, Zhen Liu, Kai Chen, Frances H. Arnold, Marc Garcia‐Borràs. Reversing the Enantioselectivity of Enzymatic Carbene N−H Insertion Through Mechanism‐Guided Protein Engineering**. Angewandte Chemie 2023, 135 (35) https://doi.org/10.1002/ange.202303879
    33. Carla Calvó‐Tusell, Zhen Liu, Kai Chen, Frances H. Arnold, Marc Garcia‐Borràs. Reversing the Enantioselectivity of Enzymatic Carbene N−H Insertion Through Mechanism‐Guided Protein Engineering**. Angewandte Chemie International Edition 2023, 62 (35) https://doi.org/10.1002/anie.202303879
    34. Ritwika Chatterjee, Garima Jindal. Role of mutations in a chemoenzymatic enantiodivergent C(sp 3 )–H insertion: exploring the mechanism and origin of stereoselectivity. Chemical Science 2023, 14 (33) , 8810-8822. https://doi.org/10.1039/D3SC02788K
    35. Sabrina Gallus, Esther Mittmann, Annika J. Weber, Martin Peng, Christof M. Niemeyer, Kersten S. Rabe. An Immobilised Silicon‐Carbon Bond‐Forming Enzyme for Anaerobic Flow Biocatalysis. ChemCatChem 2023, 15 (9) https://doi.org/10.1002/cctc.202300061
    36. Lucas Schaus, Anuvab Das, Anders M. Knight, Gonzalo Jimenez‐Osés, K. N. Houk, Marc Garcia‐Borràs, Frances H. Arnold, Xiongyi Huang. Protoglobin‐Catalyzed Formation of cis ‐Trifluoromethyl‐Substituted Cyclopropanes by Carbene Transfer. Angewandte Chemie 2023, 135 (4) https://doi.org/10.1002/ange.202208936
    37. Lucas Schaus, Anuvab Das, Anders M. Knight, Gonzalo Jimenez‐Osés, K. N. Houk, Marc Garcia‐Borràs, Frances H. Arnold, Xiongyi Huang. Protoglobin‐Catalyzed Formation of cis ‐Trifluoromethyl‐Substituted Cyclopropanes by Carbene Transfer. Angewandte Chemie International Edition 2023, 62 (4) https://doi.org/10.1002/anie.202208936
    38. Peng Wu, Yang Gu, Langxing Liao, Yanfei Wu, Jiaoyu Jin, Zhanfeng Wang, Jiahai Zhou, Sason Shaik, Binju Wang. Coordination Switch Drives Selective C−S Bond Formation by the Non‐Heme Sulfoxide Synthases**. Angewandte Chemie 2022, 134 (50) https://doi.org/10.1002/ange.202214235
    39. Peng Wu, Yang Gu, Langxing Liao, Yanfei Wu, Jiaoyu Jin, Zhanfeng Wang, Jiahai Zhou, Sason Shaik, Binju Wang. Coordination Switch Drives Selective C−S Bond Formation by the Non‐Heme Sulfoxide Synthases**. Angewandte Chemie International Edition 2022, 61 (50) https://doi.org/10.1002/anie.202214235
    40. Rajwinder Kaur, Mohamed M. Aboelnga, Dylan J. Nikkel, Stacey D. Wetmore. The metal dependence of single-metal mediated phosphodiester bond cleavage: a QM/MM study of a multifaceted human enzyme. Physical Chemistry Chemical Physics 2022, 24 (47) , 29130-29140. https://doi.org/10.1039/D2CP04338F
    41. Victor Sosa Alfaro, Sodiq O. Waheed, Hannah Palomino, Anja Knorrscheidt, Martin Weissenborn, Christo Z. Christov, Nicolai Lehnert. YfeX – A New Platform for Carbene Transferase Development with High Intrinsic Reactivity. Chemistry – A European Journal 2022, 28 (65) https://doi.org/10.1002/chem.202201474
    42. Sara Gutiérrez, María Tomás-Gamasa, José Luis Mascareñas. Organometallic catalysis in aqueous and biological environments: harnessing the power of metal carbenes. Chemical Science 2022, 13 (22) , 6478-6495. https://doi.org/10.1039/D2SC00721E
    43. Yu Liu, Miao Zhan, Pengfei Li. Regio‐ and Diasteroselective C ‐Silylation of Enolate Enabled by a β‐Boronyl Group. Chinese Journal of Chemistry 2022, 40 (9) , 1028-1032. https://doi.org/10.1002/cjoc.202100792
    44. Zhen Liu, Carla Calvó-Tusell, Andrew Z. Zhou, Kai Chen, Marc Garcia-Borràs, Frances H. Arnold. Dual-function enzyme catalysis for enantioselective carbon–nitrogen bond formation. Nature Chemistry 2021, 13 (12) , 1166-1172. https://doi.org/10.1038/s41557-021-00794-z

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 18, 7114–7123
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c02146
    Published April 28, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    6276

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.