Virtual Homonuclear Decoupling in Direct Detection Nuclear Magnetic Resonance Experiments Using Deep Neural NetworksClick to copy article linkArticle link copied!
- Gogulan Karunanithy*Gogulan Karunanithy*(G.K.) Email: [email protected]Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom WC1E 6BTMore by Gogulan Karunanithy
- Harold W. MackenzieHarold W. MackenzieDepartment of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom WC1E 6BTMore by Harold W. Mackenzie
- D. Flemming Hansen*D. Flemming Hansen*(D.F.H.) Email: [email protected]Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom WC1E 6BTMore by D. Flemming Hansen
Abstract

Nuclear magnetic resonance (NMR) experiments are frequently complicated by the presence of homonuclear scalar couplings. For the growing body of biomolecular 13C-detected NMR methods, one-bond 13C–13C couplings significantly reduce sensitivity and resolution. The solution to this problem has typically been to perform virtual decoupling by recording multiple spectra and taking linear combinations. Here, we propose an alternative method of virtual decoupling using deep neural networks, which only requires a single spectrum and gives a significant boost in resolution while reducing the minimum effective phase cycles of the experiments by at least a factor of 2. We successfully apply this methodology to virtually decouple in-phase CON (13CO–15N) protein NMR spectra, 13C–13C correlation spectra of protein side chains, and 13Cα-detected protein 13Cα–13CO spectra where two large homonuclear couplings are present. The deep neural network approach effectively decouples spectra with a high degree of flexibility, including in cases where existing methods fail, and facilitates the use of simpler pulse sequences.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 28 publications.
- Xinyu Chen, Lingling Zhou, Yang Ni, Jiawei Liu, Qiyuan Fang, Yuqing Huang, Zhong Chen, Haojie Xia, Haolin Zhan. WPR-Net: A Deep Learning Protocol for Highly Accelerated NMR Spectroscopy with Faithful Weak Peak Reconstruction. Analytical Chemistry 2025, 97
(13)
, 7010-7019. https://doi.org/10.1021/acs.analchem.4c04830
- Zhengxian Yang, Xiaoxu Zheng, Xinjing Gao, Qing Zeng, Chuang Yang, Jie Luo, Chaoqun Zhan, Yanqin Lin. Deep Learning Methodology for Obtaining Ultraclean Pure Shift Proton Nuclear Magnetic Resonance Spectra. The Journal of Physical Chemistry Letters 2023, 14
(14)
, 3397-3402. https://doi.org/10.1021/acs.jpclett.3c00455
- Francois-Xavier Theillet. In-Cell Structural Biology by NMR: The Benefits of the Atomic Scale. Chemical Reviews 2022, 122
(10)
, 9497-9570. https://doi.org/10.1021/acs.chemrev.1c00937
- Yao Luo, Xiaoxu Zheng, Mengjie Qiu, Yaoping Gou, Zhengxian Yang, Xiaobo Qu, Zhong Chen, Yanqin Lin. Deep learning and its applications in nuclear magnetic resonance spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy 2025, 146-147 , 101556. https://doi.org/10.1016/j.pnmrs.2024.101556
- Haolin Zhan, Qiyuan Fang, Jiawei Liu, Xiaoqi Shi, Xinyu Chen, Yuqing Huang, Zhong Chen. Noise reduction of nuclear magnetic resonance spectroscopy using lightweight deep neural network. Acta Physico-Chimica Sinica 2025, 41
(2)
, 100017. https://doi.org/10.3866/PKU.WHXB202310045
- Teppei Ikeya, Yutaka Ito. Advances in NMR Data Acquisition and Processing for Protein Structure Determination. 2025, 77-111. https://doi.org/10.1007/978-981-97-6834-9_3
- Vaibhav Kumar Shukla, Gogulan Karunanithy, Pramodh Vallurupalli, D. Flemming Hansen. A combined NMR and deep neural network approach for enhancing the spectral resolution of aromatic side chains in proteins. Science Advances 2024, 10
(51)
https://doi.org/10.1126/sciadv.adr2155
- Gogulan Karunanithy, Vaibhav Kumar Shukla, D. Flemming Hansen. Solution-state methyl NMR spectroscopy of large non-deuterated proteins enabled by deep neural networks. Nature Communications 2024, 15
(1)
https://doi.org/10.1038/s41467-024-49378-8
- Amir Jahangiri, Vladislav Orekhov. Beyond traditional magnetic resonance processing with artificial intelligence. Communications Chemistry 2024, 7
(1)
https://doi.org/10.1038/s42004-024-01325-w
- James H. Prestegard, Geert-Jan Boons, Pradeep Chopra, John Glushka, John H. Grimes, Bernd Simon. Neural net analysis of NMR spectra from strongly-coupled spin systems. Journal of Magnetic Resonance 2024, 368 , 107792. https://doi.org/10.1016/j.jmr.2024.107792
- Uluk Rasulov, Harrison K. Wang, Thibault Viennet, Maxim A. Droemer, Srđan Matosin, Sebastian Schindler, Zhen-Yu J. Sun, Luca Mureddu, Geerten W. Vuister, Scott A. Robson, Haribabu Arthanari, Ilya Kuprov. Protein NMR assignment by isotope pattern recognition. Science Advances 2024, 10
(36)
https://doi.org/10.1126/sciadv.ado0403
- Haolin Zhan, Jiawei Liu, Qiyuan Fang, Xinyu Chen, Yang Ni, Lingling Zhou. Fast Pure Shift NMR Spectroscopy Using Attention‐Assisted Deep Neural Network. Advanced Science 2024, 11
(29)
https://doi.org/10.1002/advs.202309810
- Marco Schiavina, Lorenzo Bracaglia, Maria Anna Rodella, Rainer Kümmerle, Robert Konrat, Isabella C. Felli, Roberta Pierattelli. Optimal 13C NMR investigation of intrinsically disordered proteins at 1.2 GHz. Nature Protocols 2024, 19
(2)
, 406-440. https://doi.org/10.1038/s41596-023-00921-9
- David Rovnyak. Advances in non-uniform sampling NMR. 2024, 69-127. https://doi.org/10.1016/bs.arnmr.2024.01.001
- Thibault Viennet, Abhinav Dubey, Ricarda Törner, Maxim A. Droemer, Paul Coote, Dominique P. Frueh, Koh Takeuchi, Haribabu Arthanari. Decoding Atomic Addresses: Solution NMR Resonance Assignment of Proteins. 2023, 1-42. https://doi.org/10.1039/BK9781837670154-00001
- Piotr Klukowski, Roland Riek, Peter Güntert. Time-optimized protein NMR assignment with an integrative deep learning approach using AlphaFold and chemical shift prediction. Science Advances 2023, 9
(47)
https://doi.org/10.1126/sciadv.adi9323
- Vaibhav Kumar Shukla, Gabriella T. Heller, D. Flemming Hansen. Biomolecular NMR spectroscopy in the era of artificial intelligence. Structure 2023, 31
(11)
, 1360-1374. https://doi.org/10.1016/j.str.2023.09.011
- Alexandra Shchukina, Paweł Kasprzak, Mateusz Urbańczyk, Krzysztof Kazimierczuk. The Non-uniform Sampling of 2D NMR Data. 2023, 115-153. https://doi.org/10.1039/BK9781839168062-00115
- Pinelopi Moutzouri, Manuel Cordova, Bruno Simões de Almeida, Daria Torodii, Lyndon Emsley. Two‐dimensional Pure Isotropic Proton Solid State NMR. Angewandte Chemie 2023, 135
(21)
https://doi.org/10.1002/ange.202301963
- Pinelopi Moutzouri, Manuel Cordova, Bruno Simões de Almeida, Daria Torodii, Lyndon Emsley. Two‐dimensional Pure Isotropic Proton Solid State NMR. Angewandte Chemie International Edition 2023, 62
(21)
https://doi.org/10.1002/anie.202301963
- Manuel Cordova, Pinelopi Moutzouri, Bruno Simões de Almeida, Daria Torodii, Lyndon Emsley. Pure Isotropic Proton NMR Spectra in Solids using Deep Learning. Angewandte Chemie 2023, 135
(8)
https://doi.org/10.1002/ange.202216607
- Manuel Cordova, Pinelopi Moutzouri, Bruno Simões de Almeida, Daria Torodii, Lyndon Emsley. Pure Isotropic Proton NMR Spectra in Solids using Deep Learning. Angewandte Chemie International Edition 2023, 62
(8)
https://doi.org/10.1002/anie.202216607
- Nicolas Bolik-Coulon, Alexander I.M. Sever, Robert W. Harkness, James M. Aramini, Yuki Toyama, D. Flemming Hansen, Lewis E. Kay. Less is more: A simple methyl-TROSY based pulse scheme offers improved sensitivity in applications to high molecular weight complexes. Journal of Magnetic Resonance 2023, 346 , 107326. https://doi.org/10.1016/j.jmr.2022.107326
- Amir Jahangiri, Xiao Han, Dmitry Lesovoy, Tatiana Agback, Peter Agback, Adnane Achour, Vladislav Orekhov. NMR spectrum reconstruction as a pattern recognition problem. Journal of Magnetic Resonance 2023, 346 , 107342. https://doi.org/10.1016/j.jmr.2022.107342
- R. Andrew Atkinson. NMR of proteins and nucleic acids. 2022, 249-270. https://doi.org/10.1039/9781839167690-00249
- Peter Sagmeister, Robin Hierzegger, Jason D. Williams, C. Oliver Kappe, Stefan Kowarik. Artificial neural networks and data fusion enable concentration predictions for inline process analytics. Digital Discovery 2022, 1
(4)
, 405-412. https://doi.org/10.1039/D2DD00006G
- Gogulan Karunanithy, Tairan Yuwen, Lewis E. Kay, D. Flemming Hansen. Towards autonomous analysis of chemical exchange saturation transfer experiments using deep neural networks. Journal of Biomolecular NMR 2022, 76
(3)
, 75-86. https://doi.org/10.1007/s10858-022-00395-z
- Fa-An Chao, Yue Zhang, R. Andrew Byrd. Facilitating spectral analyses, simplification, and new tools through deep neural networks. Magnetic Resonance Letters 2022, 2
(1)
, 56-58. https://doi.org/10.1016/j.mrl.2021.12.001
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.