ACS Publications. Most Trusted. Most Cited. Most Read
Fusion Peptide of SARS-CoV-2 Spike Rearranges into a Wedge Inserted in Bilayered Micelles
My Activity

Figure 1Loading Img
    Article

    Fusion Peptide of SARS-CoV-2 Spike Rearranges into a Wedge Inserted in Bilayered Micelles
    Click to copy article linkArticle link copied!

    • Rama K. Koppisetti
      Rama K. Koppisetti
      Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 United States
    • Yan G. Fulcher
      Yan G. Fulcher
      Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 United States
    • Steven R. Van Doren*
      Steven R. Van Doren
      Department of Biochemistry, University of Missouri, Columbia, Missouri 65211 United States
      Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211 United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 33, 13205–13211
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c05435
    Published August 10, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The receptor binding and proteolysis of Spike of SARS-CoV-2 release its S2 subunit to rearrange and catalyze viral-cell fusion. This deploys the fusion peptide for insertion into the cell membranes targeted. We show that this fusion peptide transforms from intrinsic disorder in solution into a wedge-shaped structure inserted in bilayered micelles, according to chemical shifts, 15N NMR relaxation, and NOEs. The globular fold of three helices contrasts the open, extended forms of this region observed in the electron density of compact prefusion states. In the hydrophobic, narrow end of the wedge, helices 1 and 2 contact the fatty acyl chains of phospholipids, according to NOEs and proximity to a nitroxide spin label deep in the membrane mimic. The polar end of the wedge may engage and displace lipid head groups and bind Ca2+ ions for membrane fusion. Polar helix 3 protrudes from the bilayer where it might be accessible to antibodies.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c05435.

    • Experimental details, materials, methods, references for methods, results, and statistics of structural restraints and quality metrics (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 64 publications.

    1. Daniel Birtles, Wafa Abbas, Jinwoo Lee. Bis(Monoacylglycero)Phosphate Promotes Membrane Fusion Facilitated by the SARS-CoV-2 Fusion Domain. The Journal of Physical Chemistry B 2024, 128 (11) , 2675-2683. https://doi.org/10.1021/acs.jpcb.3c07863
    2. Ali H. Aldoukhi, Panayiotis Bilalis, Dana M. Alhattab, Alexander U. Valle-Pérez, Hepi H. Susapto, Rosario Pérez-Pedroza, Emiliano Backhoff-García, Sarah M. Alsawaf, Salwa Alshehri, Hattan Boshah, Abdulelah A. Alrashoudi, Waleed A. Aljabr, Manal Alaamery, May Alrashed, Rana M. Hasanato, Raed A. Farzan, Roua A. Alsubki, Manola Moretti, Malak S. Abedalthagafi, Charlotte A. E. Hauser. Fusing Peptide Epitopes for Advanced Multiplex Serological Testing for SARS-CoV-2 Antibody Detection. ACS Bio & Med Chem Au 2024, 4 (1) , 37-52. https://doi.org/10.1021/acsbiomedchemau.3c00010
    3. Juliana Debrito Carten, George Khelashvili, Miya K. Bidon, Marco R. Straus, Tiffany Tang, Javier A. Jaimes, Gary R. Whittaker, Harel Weinstein, Susan Daniel. A Mechanistic Understanding of the Modes of Ca2+ Ion Binding to the SARS-CoV-1 Fusion Peptide and Their Role in the Dynamics of Host Membrane Penetration. ACS Infectious Diseases 2024, 10 (2) , 398-411. https://doi.org/10.1021/acsinfecdis.3c00260
    4. Hallie N. Pennington, Daniel Birtles, Zoe W. Shi, Jinwoo Lee. A Salt Bridge and Disulfide Bond within the Lassa Virus Fusion Domain Are Required for the Initiation of Membrane Fusion. ACS Omega 2024, 9 (4) , 4920-4930. https://doi.org/10.1021/acsomega.3c08632
    5. Daniel Birtles, Jinwoo Lee. SARS-CoV-2 Fusion Domain Provides Clues toward the Molecular Mechanism for Membrane Fusion. Biochemistry 2023, 62 (21) , 3033-3035. https://doi.org/10.1021/acs.biochem.3c00501
    6. Kristina Niort, Julia Dancourt, Erwan Boedec, Zahra Al Amir Dache, Grégory Lavieu, David Tareste. Cholesterol and Ceramide Facilitate Membrane Fusion Mediated by the Fusion Peptide of the SARS-CoV-2 Spike Protein. ACS Omega 2023, 8 (36) , 32729-32739. https://doi.org/10.1021/acsomega.3c03610
    7. Filipe Coelho, Saidbakhrom Saidjalolov, Dimitri Moreau, Oliver Thorn-Seshold, Stefan Matile. Inhibition of Cell Motility by Cell-Penetrating Dynamic Covalent Cascade Exchangers: Integrins Participate in Thiol-Mediated Uptake. JACS Au 2023, 3 (4) , 1010-1016. https://doi.org/10.1021/jacsau.3c00113
    8. Zeng-Shuai Yan, Xiao-Lei Li, Yu-Qiang Ma, Hong-Ming Ding. Effect of the Graphene Nanosheet on Functions of the Spike Protein in Open and Closed States: Comparison between SARS-CoV-2 Wild Type and the Omicron Variant. Langmuir 2022, 38 (45) , 13972-13982. https://doi.org/10.1021/acs.langmuir.2c02316
    9. Xiaojie Xu, Guangle Li, Bingbing Sun, Yi Y. Zuo. S2 Subunit of SARS-CoV-2 Spike Protein Induces Domain Fusion in Natural Pulmonary Surfactant Monolayers. The Journal of Physical Chemistry Letters 2022, 13 (35) , 8359-8364. https://doi.org/10.1021/acs.jpclett.2c01998
    10. Bumhee Lim, Takehiro Kato, Celine Besnard, Amalia I. Poblador Bahamonde, Naomi Sakai, Stefan Matile. Pnictogen-Centered Cascade Exchangers for Thiol-Mediated Uptake: As(III)-, Sb(III)-, and Bi(III)-Expanded Cyclic Disulfides as Inhibitors of Cytosolic Delivery and Viral Entry. JACS Au 2022, 2 (5) , 1105-1114. https://doi.org/10.1021/jacsau.2c00017
    11. Takehiro Kato, Bumhee Lim, Yangyang Cheng, Anh-Tuan Pham, John Maynard, Dimitri Moreau, Amalia I. Poblador-Bahamonde, Naomi Sakai, Stefan Matile. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS Au 2022, 2 (4) , 839-852. https://doi.org/10.1021/jacsau.1c00573
    12. Rumiana Tenchov, Qiongqiong Angela Zhou. Intrinsically Disordered Proteins: Perspective on COVID-19 Infection and Drug Discovery. ACS Infectious Diseases 2022, 8 (3) , 422-432. https://doi.org/10.1021/acsinfecdis.2c00031
    13. Qingrong Zhang, Raissa S. L. Rosa, Ankita Ray, Kimberley Durlet, Gol Mohammad Dorrazehi, Rafael C. Bernardi, David Alsteens. Probing SARS-CoV-2 membrane binding peptide via single-molecule AFM-based force spectroscopy. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-024-55358-9
    14. Lauren Myburgh, Haiko Karsjens, Athanasios Blanas, Aafke de Ligt, Karlijn van Loon, Elisabeth J.M. Huijbers, Judy R. van Beijnum, Diederik J.M. Engbersen, Abdessalem Rekiki, Charlotte Mignon, Oxana Vratskikh, Arjan W. Griffioen. Targeting the early life stages of SARS-CoV-2 using a multi-peptide conjugate vaccine. Vaccine 2025, 54 , 126989. https://doi.org/10.1016/j.vaccine.2025.126989
    15. Zili Jia, Rongrong Wu, Yun Hao, Xiaolu Song, Shuai Hou, Changwei Shi, Yihao Cui, Lei Liu, Taofeng Zhu. Glycyrrhetinic Acid Prohibiting Fusion Peptides from Fusing with Cell Membrane. ChemNanoMat 2025, 11 (3) https://doi.org/10.1002/cnma.202400614
    16. Reed L. Berkowitz, David A. Ostrov. Structural and functional properties of the SARS-CoV-2 spike protein: Potential vaccine and drug development for COVID-19. 2025, 57-74. https://doi.org/10.1016/B978-0-443-19170-1.00013-9
    17. Maria Sumarokova, Rais Pavlov, Tatiana Lavushchenko, Egor Vasilenko, Grigory Kozhemyakin, Oleg Fedorov, Rodion Molotkovsky, Pavel Bashkirov. SARS-CoV-2 FP1 Destabilizes Lipid Membranes and Facilitates Pore Formation. International Journal of Molecular Sciences 2025, 26 (2) , 686. https://doi.org/10.3390/ijms26020686
    18. Daniel Birtles, Jinwoo Lee. Exploring the influence of anionic lipids in the host cell membrane on viral fusion. Biochemical Society Transactions 2024, 52 (6) , 2593-2602. https://doi.org/10.1042/BST20240833
    19. Ruipeng Lei, Enya Qing, Abby Odle, Meng Yuan, Chaminda D. Gunawardene, Timothy J. C. Tan, Natalie So, Wenhao O. Ouyang, Ian A. Wilson, Tom Gallagher, Stanley Perlman, Nicholas C. Wu, Lok-Yin Roy Wong. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-48104-8
    20. Shuvankar Dey, Purba Pahari, Srija Mukherjee, James B. Munro, Dibyendu Kumar Das. Conformational dynamics of SARS-CoV-2 Omicron spike trimers during fusion activation at single molecule resolution. Structure 2024, 32 (11) , 1910-1925.e6. https://doi.org/10.1016/j.str.2024.09.008
    21. Hujun Shen, Ling Chen, Hengxiu Yang. The critical role of aromatic residues in the binding of the SARS-CoV-2 fusion peptide to phospholipid bilayer membranes. Physical Chemistry Chemical Physics 2024, 26 (41) , 26342-26354. https://doi.org/10.1039/D4CP03045A
    22. Yang Chen, Zhao-Nan Chai, Yuan-Tao Zhang. Interaction mechanism of cold atmospheric plasmas and fusion peptides of spike protein in SARS-CoV-2 revealed by reactive molecular dynamics simulation. Physics of Plasmas 2024, 31 (9) https://doi.org/10.1063/5.0216072
    23. Daniel Birtles, Lijon Guiyab, Wafa Abbas, Jinwoo Lee. Positive residues of the SARS-CoV-2 fusion domain are key contributors to the initiation of membrane fusion. Journal of Biological Chemistry 2024, 300 (8) , 107564. https://doi.org/10.1016/j.jbc.2024.107564
    24. Yasunari Matsuzaka, Ryu Yashiro. Applications of reinforcement learning, machine learning, and virtual screening in SARS-CoV-2-related proteins. Computing and Artificial Intelligence 2024, 2 (2) , 1279. https://doi.org/10.59400/cai.v2i2.1279
    25. Jin Soo Shin, Yejin Jang, Dong-Su Kim, Eunhye Jung, Myoung Kyu Lee, Byungil Kim, Sunjoo Ahn, Yeonju Shin, Su San Jang, Chang Soo Yun, Jongman Yoo, Young Chang Lim, Soo Bong Han, Meehyein Kim, . Inhibition of endocytic uptake of severe acute respiratory syndrome coronavirus 2 and endo-lysosomal acidification by diphenoxylate. Antimicrobial Agents and Chemotherapy 2024, https://doi.org/10.1128/aac.00341-24
    26. Qiongqiong Ren, Zejun Fan, Rong Han, Meihui Sang, Changxing Ma, Xiaoli Zhao, Shenlin Wang. A strategy for producing isotopically labeled peptides with antimicrobial activity or with short in vivo lifetime in Escherichia coli. Peptide Science 2024, 116 (3) https://doi.org/10.1002/pep2.24340
    27. Sabrina Stäb, Nicholas M. Pearce, Dale E. Tronrud, Helen Ginn, Elisa Fadda, Gianluca Santoni, Andrea Thorn. Up, up, down, down: the structural biology of the SARS-CoV-2 spike protein and how it cheats the immune system. Crystallography Reviews 2024, 30 (2) , 74-117. https://doi.org/10.1080/0889311X.2024.2363756
    28. Chang-Kyu Heo, Won-Hee Lim, Jihyun Yang, Sumin Son, Sang Jick Kim, Doo-Jin Kim, Haryoung Poo, Eun-Wie Cho. Novel S2 subunit-specific antibody with broad neutralizing activity against SARS-CoV-2 variants of concern. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1307693
    29. Chunyun Sun, Huiyu Wang, Ji Yang, Desheng Kong, Yuning Chen, Haiyue Wang, Lingling Sun, Jianbo Lu, Min Teng, Liangzhi Xie. Mutation N856K in spike reduces fusogenicity and infectivity of Omicron BA.1. Signal Transduction and Targeted Therapy 2023, 8 (1) https://doi.org/10.1038/s41392-022-01281-8
    30. Timothy J. C. Tan, Zongjun Mou, Ruipeng Lei, Wenhao O. Ouyang, Meng Yuan, Ge Song, Raiees Andrabi, Ian A. Wilson, Collin Kieffer, Xinghong Dai, Kenneth A. Matreyek, Nicholas C. Wu. High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37786-1
    31. Kim Le, Shrute Kannappan, Truc Kim, Jung Heon Lee, Hye-Ra Lee, Kyeong Kyu Kim. Structural understanding of SARS-CoV-2 virus entry to host cells. Frontiers in Molecular Biosciences 2023, 10 https://doi.org/10.3389/fmolb.2023.1288686
    32. Mengdan Wu, Wei Li, Sheng Lin, Jiaqi Fan, Lele Cui, Yijuan Xiang, Kaiyu Li, Linwei Tang, Yanping Duan, Zimin Chen, Fanli Yang, Weiwei Shui, Guangwen Lu, Ying Lai. A Suitable Membrane Distance Regulated by the RBD_ACE2 Interaction is Critical for SARS‐CoV‐2 Spike‐Mediated Viral Invasion. Advanced Science 2023, 10 (28) https://doi.org/10.1002/advs.202301478
    33. Steven R. Van Doren, Benjamin S. Scott, Rama K. Koppisetti. SARS-CoV-2 fusion peptide sculpting of a membrane with insertion of charged and polar groups. Structure 2023, 31 (10) , 1184-1199.e3. https://doi.org/10.1016/j.str.2023.07.015
    34. Ji Woong Kim, Hyun Jung Kim, Kyun Heo, Yoonwoo Lee, Hui Jeong Jang, Ho-Young Lee, Jun Won Park, Yea Bin Cho, Ji Hyun Lee, Ha Gyeong Shin, Ha Rim Yang, Hye Lim Choi, Hyun Bo Shim, Sukmook Lee. A novel bispecific antibody dual-targeting approach for enhanced neutralization against fast-evolving SARS-CoV-2 variants. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1271508
    35. Hung Nguyen, Hoang Linh Nguyen, Pham Dang Lan, Nguyen Quoc Thai, Mateusz Sikora, Mai Suan Li. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chemical Society Reviews 2023, 52 (18) , 6497-6553. https://doi.org/10.1039/D1CS01170G
    36. Anders Frische, Vithiagaran Gunalan, Karen Angeliki Krogfelt, Anders Fomsgaard, Ria Lassaunière. A Candidate DNA Vaccine Encoding the Native SARS-CoV-2 Spike Protein Induces Anti-Subdomain 1 Antibodies. Vaccines 2023, 11 (9) , 1451. https://doi.org/10.3390/vaccines11091451
    37. L. Bar, P. Losada-Pérez, J. Troncoso. Effect of diphenylalanine on model phospholipid membrane organization. Journal of Molecular Liquids 2023, 384 , 122196. https://doi.org/10.1016/j.molliq.2023.122196
    38. Farshad C. Azimi, Trevor T. Dean, Karine Minari, Luis G. M. Basso, Tyler D. R. Vance, Vitor Hugo B. Serrão. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023, 13 (7) , 1130. https://doi.org/10.3390/biom13071130
    39. Michael Overduin, Troy A. Kervin, Zachary Klarenbach, Trixie Rae C. Adra, Rakesh K. Bhat. Comprehensive classification of proteins based on structures that engage lipids by COMPOSEL. Biophysical Chemistry 2023, 295 , 106971. https://doi.org/10.1016/j.bpc.2023.106971
    40. Sang Hoon Kim, Fiona L. Kearns, Mia A. Rosenfeld, Lane Votapka, Lorenzo Casalino, Micah Papanikolas, Rommie E. Amaro, Ronit Freeman. SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. Cell Reports Physical Science 2023, 4 (4) , 101346. https://doi.org/10.1016/j.xcrp.2023.101346
    41. Geetanjali Meher, Surajit Bhattacharjya, Hirak Chakraborty. Membrane cholesterol regulates the oligomerization and fusogenicity of SARS-CoV fusion peptide: implications in viral entry. Physical Chemistry Chemical Physics 2023, 25 (11) , 7815-7824. https://doi.org/10.1039/D2CP04741A
    42. Deepika Jaiswal, Ujjwal Kumar, Vineet Gaur, Dinakar M. Salunke. Epitope‐directed anti‐SARS‐CoV ‐2 scFv engineered against the key spike protein region could block membrane fusion. Protein Science 2023, 32 (3) https://doi.org/10.1002/pro.4575
    43. José Villalaín. SARS-CoV-2 Protein S Fusion Peptide Is Capable of Wrapping Negatively-Charged Phospholipids. Membranes 2023, 13 (3) , 344. https://doi.org/10.3390/membranes13030344
    44. Avijit Sardar, Tapas Bera, Santosh Kumar Samal, Nikesh Dewangan, Mithila Kamble, Samit Guha, Pradip K. Tarafdar. C‐Terminal Lipidation of SARS‐CoV‐2 Fusion Peptide Reinstates Superior Membrane Fusion Catalytic Ability. Chemistry – A European Journal 2023, 29 (10) https://doi.org/10.1002/chem.202203034
    45. Carlos Javier Baier, Francisco J. Barrantes. Role of cholesterol-recognition motifs in the infectivity of SARS-CoV-2 variants. Colloids and Surfaces B: Biointerfaces 2023, 222 , 113090. https://doi.org/10.1016/j.colsurfb.2022.113090
    46. Nigel J. Dimmock, Andrew J. Easton. Understanding the SARS-CoV-2 Virus Neutralizing Antibody Response: Lessons to Be Learned from HIV and Respiratory Syncytial Virus. Viruses 2023, 15 (2) , 504. https://doi.org/10.3390/v15020504
    47. Reza Nejat, Maziar Fayaz Torshizi, David J. Najafi. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines 2023, 11 (2) , 204. https://doi.org/10.3390/vaccines11020204
    48. Qian Ren, Shanwen Zhang, Huan Bao. Circularized fluorescent nanodiscs for probing protein–lipid interactions. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-03443-4
    49. Saman Yasamineh, Hesam Ghafouri Kalajahi, Pooneh Yasamineh, Yalda Yazdani, Omid Gholizadeh, Raheleh Tabatabaie, Hamed Afkhami, Fatemeh Davodabadi, Alireza Khanalipour farkhad, Daryoush Pahlevan, Akram Firouzi-Amandi, Kazem Nejati-Koshki, Mehdi Dadashpour. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01625-0
    50. Nathan McCann, Francis J. Castellino. Cell Entry and Unusual Replication of SARS-CoV-2. Current Drug Targets 2022, 23 (17) , 1539-1554. https://doi.org/10.2174/1389450124666221014102927
    51. Jozef Kowalewski. Nuclear spin relaxation. 2022, 34-76. https://doi.org/10.1039/9781839167690-00034
    52. Fikru B. Bedada, Gezahegn Gorfu, Shaolei Teng, Marguerite E. Neita. Insight into genomic organization of pathogenic coronaviruses, SARS-CoV-2: Implication for emergence of new variants, laboratory diagnosis and treatment options. Frontiers in Molecular Medicine 2022, 2 https://doi.org/10.3389/fmmed.2022.917201
    53. Daniel Birtles, Anna E. Oh, Jinwoo Lee. Exploring the pH dependence of the SARS‐CoV ‐2 complete fusion domain and the role of its unique structural features. Protein Science 2022, 31 (9) https://doi.org/10.1002/pro.4390
    54. Michael Overduin, Troy A. Kervin, Anh Tran. Progressive membrane-binding mechanism of SARS-CoV-2 variant spike proteins. iScience 2022, 25 (8) , 104722. https://doi.org/10.1016/j.isci.2022.104722
    55. Yun Hao, Rongrong Wu, Fenghua Wang, Liwei Zhang, Zengkai Wang, Xiaolu Song, Lei Liu. Functional Peptides from SARS-CoV-2 Binding with Cell Membrane: From Molecular Dynamics Simulations to Cell Demonstration. Cells 2022, 11 (11) , 1738. https://doi.org/10.3390/cells11111738
    56. Rico Ballmann, Sven-Kevin Hotop, Federico Bertoglio, Stephan Steinke, Philip Alexander Heine, M. Zeeshan Chaudhry, Dieter Jahn, Boas Pucker, Fausto Baldanti, Antonio Piralla, Maren Schubert, Luka Čičin-Šain, Mark Brönstrup, Michael Hust, Stefan Dübel. ORFeome Phage Display Reveals a Major Immunogenic Epitope on the S2 Subdomain of SARS-CoV-2 Spike Protein. Viruses 2022, 14 (6) , 1326. https://doi.org/10.3390/v14061326
    57. Nicholas Magazine, Tianyi Zhang, Yingying Wu, Michael C. McGee, Gianluca Veggiani, Weishan Huang. Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses 2022, 14 (3) , 640. https://doi.org/10.3390/v14030640
    58. Hallie N. Pennington, Jinwoo Lee. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Bioscience Reports 2022, 42 (2) https://doi.org/10.1042/BSR20211930
    59. John M. Errico, Lucas J. Adams, Daved H. Fremont. Antibody-mediated immunity to SARS-CoV-2 spike. 2022, 1-69. https://doi.org/10.1016/bs.ai.2022.07.001
    60. Alex L. Lai, Jack H. Freed. Negatively charged residues in the membrane ordering activity of SARS-CoV-1 and -2 fusion peptides. Biophysical Journal 2022, 121 (2) , 207-227. https://doi.org/10.1016/j.bpj.2021.12.024
    61. Anh Tran, Troy A. Kervin, Michael Overduin. Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Current Research in Structural Biology 2022, 4 , 146-157. https://doi.org/10.1016/j.crstbi.2022.05.001
    62. Zeng-Shuai Yan, Xiao-Lei Li, Hong-Ming Ding, Yu-Qiang Ma. Effect of the Graphene Nanosheet on Bio-Functions of the Spike Protein at Open and Closed States: The Comparison Between SARS-CoV-2 WT and Omicron Variant. SSRN Electronic Journal 2022, 1 https://doi.org/10.2139/ssrn.4138703
    63. Yuri Lazebnik. Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget 2021, 12 (25) , 2476-2488. https://doi.org/10.18632/oncotarget.28088
    64. Célia Caillet-Saguy, Nicolas Wolff. PDZ-Containing Proteins Targeted by the ACE2 Receptor. Viruses 2021, 13 (11) , 2281. https://doi.org/10.3390/v13112281

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 33, 13205–13211
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c05435
    Published August 10, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    4607

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.