ACS Publications. Most Trusted. Most Cited. Most Read
Low-Valent Metal Ions as MOF Pillars: A New Route Toward Stable and Multifunctional MOFs
My Activity

Figure 1Loading Img
    Article

    Low-Valent Metal Ions as MOF Pillars: A New Route Toward Stable and Multifunctional MOFs
    Click to copy article linkArticle link copied!

    • R. Eric Sikma
      R. Eric Sikma
      Department of Chemistry, University of Texas at Austin, 4.428 Welch Hall, 105 E. 24th Street Stop A5300, Austin, Texas 78712-0165, United States
    • Naman Katyal
      Naman Katyal
      Department of Chemistry, University of Texas at Austin, 4.428 Welch Hall, 105 E. 24th Street Stop A5300, Austin, Texas 78712-0165, United States
      More by Naman Katyal
    • Su-Kyung Lee
      Su-Kyung Lee
      Research Center for Nanocatalysis, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, Yusung, Daejeon 305-600, Korea
      More by Su-Kyung Lee
    • Joseph W. Fryer
      Joseph W. Fryer
      Austin-International Framework Undergraduate Exchange Program, College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
    • Catherine G. Romero
      Catherine G. Romero
      Austin-International Framework Undergraduate Exchange Program, College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
    • Samuel K. Emslie
      Samuel K. Emslie
      Department of Chemistry, University of Texas at Austin, 4.428 Welch Hall, 105 E. 24th Street Stop A5300, Austin, Texas 78712-0165, United States
      Austin-International Framework Undergraduate Exchange Program, College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
    • Elinor L. Taylor
      Elinor L. Taylor
      Austin-International Framework Undergraduate Exchange Program, College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, Texas 78712, United States
    • Vincent M. Lynch
      Vincent M. Lynch
      Department of Chemistry, University of Texas at Austin, 4.428 Welch Hall, 105 E. 24th Street Stop A5300, Austin, Texas 78712-0165, United States
    • Jong-San Chang*
      Jong-San Chang
      Research Center for Nanocatalysis, Korea Research Institute of Chemical Technology (KRICT), P.O. Box 107, Yusung, Daejeon 305-600, Korea
      *[email protected]
    • Graeme Henkelman*
      Graeme Henkelman
      Department of Chemistry, University of Texas at Austin, 4.428 Welch Hall, 105 E. 24th Street Stop A5300, Austin, Texas 78712-0165, United States
      *[email protected]
    • Simon M. Humphrey*
      Simon M. Humphrey
      Department of Chemistry, University of Texas at Austin, 4.428 Welch Hall, 105 E. 24th Street Stop A5300, Austin, Texas 78712-0165, United States
      *[email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 34, 13710–13720
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c05564
    Published August 19, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    PCM-102 is a new organophosphine metal–organic framework (MOF) featuring diphosphine pockets that consist of pairs of offset trans-oriented P(III) donors. Postsynthetic addition of M(I) salts (M = Cu, Ag, Au) to PCM-102 induces single-crystal to single-crystal transformations and the formation of trans-[P2M]+ solid-state complexes (where P = framework-based triarylphosphines). While the unmetalated PCM-102 has low porosity, the addition of secondary Lewis acids to install rigid P–M–P pillars is shown to dramatically increase both stability and selective gas uptake properties, with N2 Brunauer–Emmett–Teller surface areas >1500 m2 g–1. The Ag(I) analogue can also be obtained via a simple, one-pot peri-synthetic route and is an ideal sacrificial precursor for materials with mixed bimetallic MA/MB pillars via postsynthetic, solvent-assisted metal exchange. Notably, the M-PCM-102 family of MOFs contain periodic trans-[P2M]+ sites that are free of counter anions, unlike traditional analogous molecular complexes, since the precursor PCM-102 MOF is monoanionic, enabling access to charge-neutral metal-pillared materials. Four M-PCM-102 materials were evaluated for the separation of C2 hydrocarbons. The separation performance was found to be tunable based on the metal(s) incorporated, and density functional theory was employed to elucidate the nature of the unusual observed sorption preference, C2H2 > C2H6 > C2H4.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c05564.

    • Data including additional experimental details and methods, TGA, MAS NMR, TEM, SEM-EDS, and XPS spectra, PXRD patterns, ICP-OES and BVS data, additional molecular drawings, SCXRD data and Bader charge analysis (PDF)

    Accession Codes

    CCDC 20813062081311 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 57 publications.

    1. Ning Yang, Hong-Xin Li, Logan Ritter, Guo-Tong Du, Xin-Ai Guo, Brian Space, Dong-Xu Xue. A Propeller-Like Ligand-Directed Construction of a Tetranuclear Cerium-Organic Framework for Single-Step Ethylene Purification from Ternary C2 Mixtures. Inorganic Chemistry 2024, 63 (31) , 14755-14760. https://doi.org/10.1021/acs.inorgchem.4c02473
    2. Xiankui Xu, Shen Lu, Zhonghai Zhang. Hydrogel/MOF Dual-Modified Photoelectrochemical Biosensor for Antibiofouling and Biocompatible Dopamine Detection. Langmuir 2024, 40 (20) , 10718-10725. https://doi.org/10.1021/acs.langmuir.4c00727
    3. R. Eric Sikma, Kimberly S. Butler, Dayton J. Vogel, Jacob A. Harvey, Dorina F. Sava Gallis. Quest for Multifunctionality: Current Progress in the Characterization of Heterometallic Metal–Organic Frameworks. Journal of the American Chemical Society 2024, 146 (9) , 5715-5734. https://doi.org/10.1021/jacs.3c05425
    4. Kazuma Kikuchi, Hiroi Sei, Kohei Okubo, Norimitsu Tohnai, Kouki Oka, Shun Dekura, Takashi Kikuchi, Hiroaki Imoto, Kensuke Naka. Breathing Metal–Organic Frameworks Supported by an Arsenic-Bridged 4,4′-Bipyridine Ligand. Inorganic Chemistry 2024, 63 (9) , 4337-4343. https://doi.org/10.1021/acs.inorgchem.3c04570
    5. Ya-Nan Zhou, Si-Jia Zhao, Wen-Xing Leng, Xu Zhang, Dong-Yan Liu, Jia-Hui Zhang, Zhen-Gang Sun, Yan-Yu Zhu, Han-Wen Zheng, Cheng-Qi Jiao. Dual-Functional Eu–Metal–Organic Framework with Ratiometric Fluorescent Broad-Spectrum Sensing of Benzophenone-like Ultraviolet Filters and High Proton Conduction. Inorganic Chemistry 2023, 62 (32) , 12730-12740. https://doi.org/10.1021/acs.inorgchem.3c01224
    6. Juanjuan Xue, Fan Yang, Jing Jin, Yan Li, Dan Wu, Guo-Ping Yang, Yao-Yu Wang. Design and Synthesis of Four Newly Water-Stable Pb-Based Heterometallic Organic Frameworks: How Do the Second Metals (Zn, Cd, Co, and Mn) Optimize Their Fluorescent and Catalytic Properties?. Crystal Growth & Design 2022, 22 (4) , 2628-2636. https://doi.org/10.1021/acs.cgd.2c00073
    7. Xiao-Wen Gu, Jia-Xin Wang, Enyu Wu, Hui Wu, Wei Zhou, Guodong Qian, Banglin Chen, Bin Li. Immobilization of Lewis Basic Sites into a Stable Ethane-Selective MOF Enabling One-Step Separation of Ethylene from a Ternary Mixture. Journal of the American Chemical Society 2022, 144 (6) , 2614-2623. https://doi.org/10.1021/jacs.1c10973
    8. Madison R. Esposito, Rajashree Newar, Min Kim, Seth M. Cohen. Incorporation of low-valent metal ions in metal-organic frameworks and coordination polymers. Coordination Chemistry Reviews 2025, 531 , 216491. https://doi.org/10.1016/j.ccr.2025.216491
    9. Chhatan Das, Arunava Misra, Mohabul Alam Mondal, Partha Mahata. A Cd-based crystalline network material: catalytic properties and post-synthetic metal-ion metathesis with enhanced stability and gas sorption behaviour. Dalton Transactions 2025, 54 (8) , 3235-3245. https://doi.org/10.1039/D4DT03287J
    10. Miaoyu Liu, Xiao-Wen Gu, Chenyan Lin, Baixue Dong, Zhongjie He, Bo Xie, Xu Zhang, Bin Li, Hui-Min Wen, Jun Hu. Highly efficient separation of C 2 H 2 from CO 2 and C 2 H 4 enabled by an anion-pillared metalloporphyrin MOF with sandwich-like binding sites. Journal of Materials Chemistry A 2025, 13 (2) , 1034-1041. https://doi.org/10.1039/D4TA07584F
    11. Yan Han, Linyao Wang, Yuanbin Zhang, Banglin Chen. Metal–organic frameworks for one-step ethylene purification from multi-component hydrocarbon mixtures. Coordination Chemistry Reviews 2025, 523 , 216291. https://doi.org/10.1016/j.ccr.2024.216291
    12. Zhen-Wei Zhang, Da-Shuai Zhang, Wei Wang, Xiao-Ting Liu, Hui Hu, Yong-Zheng Zhang, Longlong Geng, Bin Li, Yuchen Deng, Rongmin Wei, Xiuling Zhang, Yuexing Zhang, Ze Chang. Construction of through-space charge transfer donor-acceptor coordination polymers through the combination of planar electron-deficient/rich ligands. Chinese Chemical Letters 2025, 50 , 110710. https://doi.org/10.1016/j.cclet.2024.110710
    13. Houqiang Ji, Yuxin Liu, Guangyu Du, Tianyu Huang, Ying Zhu, Yangyang Sun, Huan Pang. Synthesis and Utilization of MXene/MOF Hybrid Composite Materials. Chemical Research in Chinese Universities 2024, 40 (6) , 943-963. https://doi.org/10.1007/s40242-024-4179-1
    14. Xiaoshun Wei, Xuechun Yang, Yun Guo, Guohao Li, Yinzhong Liu, Lingli Cheng, Zheng Jiao. Room temperature detection of n-butanol Ce-doped MOF:ZnO sensor under UV activation. Ceramics International 2024, 50 (21) , 41943-41955. https://doi.org/10.1016/j.ceramint.2024.08.192
    15. Yining Liu, Mengying Wang, Zuozhong Liang, Haoquan Zheng. Surfactant-metal-organic framework complexes and their derivatives: advances in electrocatalysis. Science China Chemistry 2024, 67 (10) , 3209-3222. https://doi.org/10.1007/s11426-024-2027-2
    16. Mijung Lee, Kyung‐Ryul Oh, Ga‐Young Cha, Se‐Min Jeong, Su‐Kyung Lee, Young Kyu Hwang. Immobilization of Silver(I) Ions on Amino‐Functionalized Chromium(III) Terephthalate with Organophosphine and its C−H Carboxylation of a Heteroaromatic Compound. ChemPlusChem 2024, 89 (8) https://doi.org/10.1002/cplu.202400096
    17. Mikhail E. Buzoverov., Elmira Kh. Lermontova, Olga S. Volkova, Anna A. Vorobyova, Tatyana Yu. Glazunova. A Self‐Assembly of New Cobalt Coordinating Polymer Based on Fluorinated Secondary Building Unit and Pyrazine. European Journal of Inorganic Chemistry 2024, 27 (20) https://doi.org/10.1002/ejic.202400150
    18. Hai-Yu Li, Xiang-Jing Kong, Song-De Han, Jiandong Pang, Tao He, Guo-Ming Wang, Xian-He Bu. Metalation of metal–organic frameworks: fundamentals and applications. Chemical Society Reviews 2024, 53 (11) , 5626-5676. https://doi.org/10.1039/D3CS00873H
    19. Koh Sugamata, Sho Kobayashi, Natsuki Amanokura, Akihiro Shirai, Mao Minoura. Phosphoramide‐Based Metal‐Organic Frameworks for Effective Gas Adsorption. Chemistry – A European Journal 2024, 30 (31) https://doi.org/10.1002/chem.202400962
    20. Mingxu Liu, Yong Peng, Weibin Chen, Shuang Cao, Shougang Chen, Fan Lu Meng, Yongcheng Jin, Chun-Chao Hou, Ruqiang Zou, Qiang Xu. Metal-organic frameworks for carbon-neutral catalysis: State of the art, challenges, and opportunities. Coordination Chemistry Reviews 2024, 506 , 215726. https://doi.org/10.1016/j.ccr.2024.215726
    21. Yun-Long Hou, Caoyu Yang, Zhongjie Yang, Huaqun Zhou, Leiming Guo, Jun Guo, Xiaofei Zhang. Building robust metal-organic frameworks with premade ligands. Coordination Chemistry Reviews 2024, 505 , 215690. https://doi.org/10.1016/j.ccr.2024.215690
    22. Xin Zhang, Yi Li, Jian-Rong Li. Metal-organic frameworks for multicomponent gas separation. Trends in Chemistry 2024, 6 (1) , 22-36. https://doi.org/10.1016/j.trechm.2023.11.001
    23. Juan L. Obeso, Michael T. Huxley, José Antonio de los Reyes, Simon M. Humphrey, Ilich A. Ibarra, Ricardo A. Peralta. Low‐Valent Metals in Metal‐Organic Frameworks Via Post‐Synthetic Modification. Angewandte Chemie 2023, 135 (49) https://doi.org/10.1002/ange.202309025
    24. Juan L. Obeso, Michael T. Huxley, José Antonio de los Reyes, Simon M. Humphrey, Ilich A. Ibarra, Ricardo A. Peralta. Low‐Valent Metals in Metal‐Organic Frameworks Via Post‐Synthetic Modification. Angewandte Chemie International Edition 2023, 62 (49) https://doi.org/10.1002/anie.202309025
    25. Enyu Wu, Xiao-Wen Gu, Di Liu, Xu Zhang, Hui Wu, Wei Zhou, Guodong Qian, Bin Li. Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-41692-x
    26. Junpeng Yuan, Xianglong Liu, Min Li, Hui Wang. Design of nanoporous materials for trace removal of benzene through high throughput screening. Separation and Purification Technology 2023, 324 , 124558. https://doi.org/10.1016/j.seppur.2023.124558
    27. Hui‐Min Wen, Chenyi Yu, Miaoyu Liu, Chenyan Lin, Beiyu Zhao, Hui Wu, Wei Zhou, Banglin Chen, Jun Hu. Construction of Negative Electrostatic Pore Environments in a Scalable, Stable and Low‐Cost Metal‐organic Framework for One‐Step Ethylene Purification from Ternary Mixtures. Angewandte Chemie 2023, 135 (44) https://doi.org/10.1002/ange.202309108
    28. Hui‐Min Wen, Chenyi Yu, Miaoyu Liu, Chenyan Lin, Beiyu Zhao, Hui Wu, Wei Zhou, Banglin Chen, Jun Hu. Construction of Negative Electrostatic Pore Environments in a Scalable, Stable and Low‐Cost Metal‐organic Framework for One‐Step Ethylene Purification from Ternary Mixtures. Angewandte Chemie International Edition 2023, 62 (44) https://doi.org/10.1002/anie.202309108
    29. Rosemary J. Young, Michael T. Huxley, Lingjun Wu, Jack Hart, James O'Shea, Christian J. Doonan, Neil R. Champness, Christopher J. Sumby. Studying manganese carbonyl photochemistry in a permanently porous metal–organic framework. Chemical Science 2023, 14 (35) , 9409-9417. https://doi.org/10.1039/D3SC03553K
    30. Arun Pal, Shyam Chand Pal, Hui Cui, Rui-Biao Lin, Dipankar Singha, Malay Kumar Rana, Banglin Chen, Madhab C. Das. A microporous water stable MOF for consistent and selective C2H2/C2H4 separation. Separation and Purification Technology 2023, 320 , 124208. https://doi.org/10.1016/j.seppur.2023.124208
    31. Xiao-Wen Gu, Enyu Wu, Jia-Xin Wang, Hui-Min Wen, Banglin Chen, Bin Li, Guodong Qian. Programmed fluorine binding engineering in anion-pillared metal-organic framework for record trace acetylene capture from ethylene. Science Advances 2023, 9 (31) https://doi.org/10.1126/sciadv.adh0135
    32. Madeleine C. Oliver, Liangliang Huang. Advances in Metal–Organic Frameworks for the Removal of Chemical Warfare Agents: Insights into Hydrolysis and Oxidation Reaction Mechanisms. Nanomaterials 2023, 13 (15) , 2178. https://doi.org/10.3390/nano13152178
    33. Yanchao Song, Shiyuan Zhu, Lizhen Liu, Shengchang Xiang, Zizhu Yao, Zhangjing Zhang. Increasing porosity in hydrogen-bonded organic frameworks for low- κ interlayer dielectric. Inorganic Chemistry Frontiers 2023, 10 (15) , 4503-4509. https://doi.org/10.1039/D3QI00570D
    34. Sen Mei, Lixi Chen, Hailong Zhang, Zhiwei Li, Liwei Cheng, Junhao Lu, Xiaoqi Li, Qian Yang, Yanlong Wang, Zhiyong Liu, Zhifang Chai, Shuao Wang. Assembling a Heterobimetallic Actinide Metal‐Organic Framework by a Reaction‐Induced Preorganization Strategy. Angewandte Chemie 2023, 135 (29) https://doi.org/10.1002/ange.202306360
    35. Sen Mei, Lixi Chen, Hailong Zhang, Zhiwei Li, Liwei Cheng, Junhao Lu, Xiaoqi Li, Qian Yang, Yanlong Wang, Zhiyong Liu, Zhifang Chai, Shuao Wang. Assembling a Heterobimetallic Actinide Metal‐Organic Framework by a Reaction‐Induced Preorganization Strategy. Angewandte Chemie International Edition 2023, 62 (29) https://doi.org/10.1002/anie.202306360
    36. Kyle J. Korman, Michael R. Dworzak, Glenn P. A. Yap, Eric D. Bloch. Porous Salts as Platforms for Heterogeneous Catalysis. Small 2023, 19 (30) https://doi.org/10.1002/smll.202207507
    37. Junfeng Chen, Jiaqi Yang, Yongyue Zhao, Yiqun Wu, Jiarui Tian, Jinyu Liu, Renjun Wang, Yuewei Yang, Yanyan Liu. Research progress in the application of metal organic frameworks and its complex in microbial fuel cells: Present status, opportunities, future directions and prospects. International Journal of Hydrogen Energy 2023, 48 (62) , 23956-23966. https://doi.org/10.1016/j.ijhydene.2023.03.245
    38. Kareem Yusuf, Osama Shekhah, Ahmad Aqel, Seetah Alharbi, Ali S. Alghamdi, Reem M. Aljohani, Zeid A. ALOthman, Mohamed Eddaoudi. Feasible ethylene separation from a ternary mixture using zeolite-like metal-organic framework@divinylbenzene composite monolith. Microporous and Mesoporous Materials 2023, 357 , 112630. https://doi.org/10.1016/j.micromeso.2023.112630
    39. Shengxian Cheng, Jing Ouyang, Muqing Li, Yingxue Diao, Jiachen Yao, Fengxing Li, Yat‐For Lee, Herman Ho‐Yung SUNG, Ian Williams, Zhengtao Xu, Yangjian Quan. Charge Separation in Metal‐Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie 2023, 135 (25) https://doi.org/10.1002/ange.202300993
    40. Shengxian Cheng, Jing Ouyang, Muqing Li, Yingxue Diao, Jiachen Yao, Fengxing Li, Yat‐For Lee, Herman Ho‐Yung SUNG, Ian Williams, Zhengtao Xu, Yangjian Quan. Charge Separation in Metal‐Organic Framework Enables Heterogeneous Thiol Catalysis. Angewandte Chemie International Edition 2023, 62 (25) https://doi.org/10.1002/anie.202300993
    41. Samuel E. Griffin, Grant P. Domecus, Clarissa E. Flores, R. Eric Sikma, Lauren Benz, Seth M. Cohen. A Coordination Polymer of Vaska's Complex as a Heterogeneous Catalyst for the Reductive Formation of Enamines from Amides. Angewandte Chemie 2023, 135 (23) https://doi.org/10.1002/ange.202301611
    42. Samuel E. Griffin, Grant P. Domecus, Clarissa E. Flores, R. Eric Sikma, Lauren Benz, Seth M. Cohen. A Coordination Polymer of Vaska's Complex as a Heterogeneous Catalyst for the Reductive Formation of Enamines from Amides. Angewandte Chemie International Edition 2023, 62 (23) https://doi.org/10.1002/anie.202301611
    43. Luyao Wang, Hengcong Huang, Xiaoyu Zhang, Hongshuo Zhao, Fengting Li, Yifan Gu. Designed metal-organic frameworks with potential for multi-component hydrocarbon separation. Coordination Chemistry Reviews 2023, 484 , 215111. https://doi.org/10.1016/j.ccr.2023.215111
    44. Fang-Jing Guo, Ning Yang, Hong-Xin Li, Han Fang, Dong-Xu Xue. Adenine-mediated amide-containing metal-organic framework toward one-step ethylene purification from a ternary mixture. Chinese Journal of Structural Chemistry 2023, 42 (2) , 100012. https://doi.org/10.1016/j.cjsc.2023.100012
    45. Xing Rong, Qing Cao, Yan Gao, Tao Luan, Yanteng Li, Quanyou Man, Zhanchao Zhang, Baoming Chen. Synergistic Catalytic Performance of Toluene Degradation Based on Non-Thermal Plasma and Mn/Ce-Based Bimetal-Organic Frameworks. Molecules 2022, 27 (21) , 7363. https://doi.org/10.3390/molecules27217363
    46. Shan-Qing Yang, Tong-Liang Hu. Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coordination Chemistry Reviews 2022, 468 , 214628. https://doi.org/10.1016/j.ccr.2022.214628
    47. Minoo Bagheri, Mohammad Yaser Masoomi. Quasi-metal organic frameworks: Preparation, applications and future perspectives. Coordination Chemistry Reviews 2022, 468 , 214643. https://doi.org/10.1016/j.ccr.2022.214643
    48. Jia-Xin Wang, Cong-Cong Liang, Xiao-Wen Gu, Hui-Min Wen, Chenghao Jiang, Bin Li, Guodong Qian, Banglin Chen. Recent advances in microporous metal–organic frameworks as promising adsorbents for gas separation. Journal of Materials Chemistry A 2022, 10 (35) , 17878-17916. https://doi.org/10.1039/D2TA04835C
    49. Qi Ding, Zhaoqiang Zhang, Yulong Liu, Kungang Chai, Rajamani Krishna, Sui Zhang. One‐Step Ethylene Purification from Ternary Mixtures in a Metal–Organic Framework with Customized Pore Chemistry and Shape. Angewandte Chemie 2022, 134 (35) https://doi.org/10.1002/ange.202208134
    50. Qi Ding, Zhaoqiang Zhang, Yulong Liu, Kungang Chai, Rajamani Krishna, Sui Zhang. One‐Step Ethylene Purification from Ternary Mixtures in a Metal–Organic Framework with Customized Pore Chemistry and Shape. Angewandte Chemie International Edition 2022, 61 (35) https://doi.org/10.1002/anie.202208134
    51. R. Eric Sikma, Krista P. Balto, Joshua S. Figueroa, Seth M. Cohen. Metal–Organic Frameworks with Low‐Valent Metal Nodes. Angewandte Chemie 2022, 134 (33) https://doi.org/10.1002/ange.202206353
    52. R. Eric Sikma, Krista P. Balto, Joshua S. Figueroa, Seth M. Cohen. Metal–Organic Frameworks with Low‐Valent Metal Nodes. Angewandte Chemie International Edition 2022, 61 (33) https://doi.org/10.1002/anie.202206353
    53. Zhiwen Fan, Yingbing Zou, Chulong Liu, Shengchang Xiang, Zhangjing Zhang. Hydrogen‐Bonded Organic Frameworks: Functionalized Construction Strategy by Nitrogen‐Containing Functional Group. Chemistry – A European Journal 2022, 28 (42) https://doi.org/10.1002/chem.202200422
    54. Anh N. Hong, Huajun Yang, Xianhui Bu, Pingyun Feng. Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem 2022, 4 (4) , 100080. https://doi.org/10.1016/j.enchem.2022.100080
    55. Hao-Tian Wang, Qiang Chen, Xin Zhang, Yan-Long Zhao, Ming-Ming Xu, Rui-Biao Lin, Hongliang Huang, Lin-Hua Xie, Jian-Rong Li. Two isostructural metal–organic frameworks with unique nickel clusters for C 2 H 2 /C 2 H 6 /C 2 H 4 mixture separation. Journal of Materials Chemistry A 2022, 10 (23) , 12497-12502. https://doi.org/10.1039/D2TA01466A
    56. Peixin Zhang, Yao Zhong, Yan Zhang, Zhenliang Zhu, Yuan Liu, Yun Su, Jingwen Chen, Shixia Chen, Zheling Zeng, Huabin Xing, Shuguang Deng, Jun Wang. Synergistic binding sites in a hybrid ultramicroporous material for one-step ethylene purification from ternary C 2 hydrocarbon mixtures. Science Advances 2022, 8 (23) https://doi.org/10.1126/sciadv.abn9231
    57. Tao Zhang, Jian-Wei Cao, Shu-Yi Zhang, He Feng, Ye Li, Yu Wang, Juan Chen, Teng Wang, Kai-Jie Chen. General pore features for one-step C 2 H 4 production from a C2 hydrocarbon mixture. Chemical Communications 2022, 58 (32) , 4954-4957. https://doi.org/10.1039/D2CC00177B

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 34, 13710–13720
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c05564
    Published August 19, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    5631

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.