ACS Publications. Most Trusted. Most Cited. Most Read
Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis
My Activity

Figure 1Loading Img
    Article

    Protodeboronation of (Hetero)Arylboronic Esters: Direct versus Prehydrolytic Pathways and Self-/Auto-Catalysis
    Click to copy article linkArticle link copied!

    • Hannah L. D. Hayes
      Hannah L. D. Hayes
      EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
    • Ran Wei
      Ran Wei
      EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
      More by Ran Wei
    • Michele Assante
      Michele Assante
      School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
    • Katherine J. Geogheghan
      Katherine J. Geogheghan
      EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
    • Na Jin
      Na Jin
      EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
      More by Na Jin
    • Simone Tomasi
      Simone Tomasi
      Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
    • Gary Noonan
      Gary Noonan
      Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
      More by Gary Noonan
    • Andrew G. Leach
      Andrew G. Leach
      School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K.
    • Guy C. Lloyd-Jones*
      Guy C. Lloyd-Jones
      EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K.
      *[email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 36, 14814–14826
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c06863
    Published August 30, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The kinetics and mechanism of the base-catalyzed hydrolysis (ArB(OR)2 → ArB(OH)2) and protodeboronation (ArB(OR)2 → ArH) of a series of boronic esters, encompassing eight different polyols and 10 polyfluoroaryl and heteroaryl moieties, have been investigated by in situ and stopped-flow NMR spectroscopy (19F, 1H, and 11B), pH-rate dependence, isotope entrainment, 2H KIEs, and KS-DFT computations. The study reveals the phenomenological stability of boronic esters under basic aqueous–organic conditions to be highly nuanced. In contrast to common assumption, esterification does not necessarily impart greater stability compared to the corresponding boronic acid. Moreover, hydrolysis of the ester to the boronic acid can be a dominant component of the overall protodeboronation process, augmented by self-, auto-, and oxidative (phenolic) catalysis when the pH is close to the pKa of the boronic acid/ester.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c06863.

    • Experimental details, reaction profiles, kinetic simulations, characterization data and NMR spectra, and full computational details (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 64 publications.

    1. Nikolaos Hadjipaschalis, Sebastiano Ortalli, Zijun Chen, Robert S. Paton, Joseph Ford, Matthew Tredwell, Véronique Gouverneur. Ethyl Pinacol Boronates as Advantageous Precursors for Copper-Mediated Radiofluorination. Organic Letters 2025, 27 (24) , 6545-6550. https://doi.org/10.1021/acs.orglett.5c02055
    2. Aleksei A. Logvinov, Geert Rombouts, Matthieu Jouffroy, Steven P. Nolan. Suzuki–Miyaura Coupling of Pinacolboronic Esters Catalyzed by a Well-Defined Palladium N-Heterocyclic Carbene (NHC) Catalyst. ACS Medicinal Chemistry Letters 2025, 16 (6) , 1170-1174. https://doi.org/10.1021/acsmedchemlett.5c00206
    3. Jacob M. Ganley, Candice L. Joe, Eric M. Simmons. Development of Robust, Efficient and Scalable Transition Metal Catalyzed Transformations: Translation of Reactions from Micromole to Multi-Kilogram Scale Processes. ACS Catalysis 2025, 15 (10) , 8317-8336. https://doi.org/10.1021/acscatal.5c00836
    4. Hao Liang, James P. Morken. Direct Observation of Alkyl Group Transmetalation from Boron to Copper: Impact of Structure Modification and the Critical Role of Copper–Oxygen Preassociation in Stereospecificity. Journal of the American Chemical Society 2025, 147 (16) , 13126-13130. https://doi.org/10.1021/jacs.5c03197
    5. Kohei Hatakeyama, Tatsuki Kawahara, Yuya Kogure, Tatsuki Morimoto, Satoshi Ueno. Cooperative Ruthenium/Amine Catalysis of the Cross-Coupling of Ketones as Alkenyl Electrophiles. The Journal of Organic Chemistry 2025, 90 (12) , 4409-4420. https://doi.org/10.1021/acs.joc.5c00334
    6. Young-hwa Jin, Hayoung Kim, Yujeong Kwon, Jihong Lee, Jeong-Hun Sohn. Pyridyl Pyrimidylsulfones as Latent Pyridyl Nucleophiles in Palladium-Catalyzed Cross-Coupling Reactions. Organic Letters 2025, 27 (12) , 2930-2935. https://doi.org/10.1021/acs.orglett.5c00519
    7. Alexander A. Vinogradov, Shih-Yu Pan, Hiroaki Suga. Ligand-Enabled Selective Coupling of MIDA Boronates to Dehydroalanine-Containing Peptides and Proteins. Journal of the American Chemical Society 2025, 147 (9) , 7533-7544. https://doi.org/10.1021/jacs.4c16525
    8. Janis M. Zakis, Rebeka A. Lipina, Sharon Bell, Simon R. Williams, Maurus Mathis, Magnus J. Johansson, Joanna Wencel-Delord, Tomas Smejkal. High-Throughput Enabled Iridium-Catalyzed C–H Borylation Platform for Late-Stage Functionalization. ACS Catalysis 2025, 15 (4) , 3525-3534. https://doi.org/10.1021/acscatal.4c07711
    9. Matthew V. Joannou, Christopher Y. Bemis, Geoffrey E. Purdum, Candice L. Joe, Kyle Eckenroad, Sharla L. Wood, Shasha Zhang, Amy A. Sarjeant, Rebecca A. Green, Jeffrey Nye, Steven R. Wisniewski, Scott A. Savage. Development of an Inherently Safe and Scalable Nickel-Catalyzed Borylation Process of an Aryl Sulfamate. Organic Process Research & Development 2024, 28 (12) , 4513-4533. https://doi.org/10.1021/acs.oprd.4c00454
    10. Matthew G. Kung, Polpum Onnuch, Richard Y. Liu. Rapid and General Amination of Aryl Boronic Acids and Esters Using O-(Diphenylphosphinyl)hydroxylamine (DPPH). Organic Letters 2024, 26 (46) , 9847-9851. https://doi.org/10.1021/acs.orglett.4c03625
    11. Connor P. Delaney, Andrew F. Zahrt, Vincent M. Kassel, Scott E. Denmark. Effects of Ring Size and Steric Encumbrance on Boron-to-Palladium Transmetalation from Arylboronic Esters. The Journal of Organic Chemistry 2024, 89 (22) , 16170-16184. https://doi.org/10.1021/acs.joc.3c02629
    12. Annabel Flook, Guy C. Lloyd-Jones. Simple Parameters and Data Processing for Better Signal-to-Noise and Temporal Resolution in In Situ 1D NMR Reaction Monitoring. The Journal of Organic Chemistry 2024, 89 (22) , 16586-16593. https://doi.org/10.1021/acs.joc.4c01882
    13. Kazuki Tomota, Jialun Li, Hideya Tanaka, Masaaki Nakamoto, Takumi Tsushima, Hiroto Yoshida. Weak Base-Promoted Direct Cross-Coupling of Naphthalene-1,8-diaminato-substituted Arylboron Compounds. JACS Au 2024, 4 (10) , 3931-3941. https://doi.org/10.1021/jacsau.4c00665
    14. Mitchell T. Howell, Frank R. Fronczek, Evgueni E. Nesterov. MIDA Boronate Monomers in Suzuki–Miyaura Catalyst-Transfer Polymerization: The Pros and Cons. Macromolecules 2024, 57 (16) , 7847-7861. https://doi.org/10.1021/acs.macromol.4c01303
    15. Xue Wang, Thomas Fellowes, Mounib Bahri, Hang Qu, Boyu Li, Hongjun Niu, Nigel D. Browning, Weiwei Zhang, John W. Ward, Andrew I. Cooper. 2D to 3D Reconstruction of Boron-Linked Covalent–Organic Frameworks. Journal of the American Chemical Society 2024, 146 (20) , 14128-14135. https://doi.org/10.1021/jacs.4c02673
    16. Kevin Cheng, E. William Webb, Gregory D. Bowden, Jay S. Wright, Xia Shao, Melanie S. Sanford, Peter J. H. Scott. Photo- and Cu-Mediated 11C Cyanation of (Hetero)Aryl Thianthrenium Salts. Organic Letters 2024, 26 (16) , 3419-3423. https://doi.org/10.1021/acs.orglett.4c00929
    17. Yudha P. Budiman, Robin N. Perutz, Patrick G. Steel, Udo Radius, Todd B. Marder. Applications of Transition Metal-Catalyzed ortho-Fluorine-Directed C–H Functionalization of (Poly)fluoroarenes in Organic Synthesis. Chemical Reviews 2024, 124 (8) , 4822-4862. https://doi.org/10.1021/acs.chemrev.3c00793
    18. Jin Yang, Michelle C. Neary, Tianning Diao. ProPhos: A Ligand for Promoting Nickel-Catalyzed Suzuki-Miyaura Coupling Inspired by Mechanistic Insights into Transmetalation. Journal of the American Chemical Society 2024, 146 (9) , 6360-6368. https://doi.org/10.1021/jacs.4c00370
    19. Jonathan Trouvé, Purushothaman Rajeshwaran, Michele Tomasini, Antoine Perennes, Thierry Roisnel, Albert Poater, Rafael Gramage-Doria. Fast and Selective β-C–H Borylation of N-Heterocycles with a Supramolecular Iridium Catalyst: Circumventing Deactivation Pathways and Mechanistic Insights. ACS Catalysis 2023, 13 (12) , 7715-7729. https://doi.org/10.1021/acscatal.3c01742
    20. Kane A. C. Bastick, Allan J. B. Watson. Pd-Catalyzed Organometallic-Free Homologation of Arylboronic Acids Enabled by Chemoselective Transmetalation. ACS Catalysis 2023, 13 (10) , 7013-7018. https://doi.org/10.1021/acscatal.3c00921
    21. James I. Murray, Liang Zhang, Adam Simon, Maria V. Silva Elipe, Carolyn S. Wei, Seb Caille, Andrew T. Parsons. Kinetic and Mechanistic Investigations to Enable a Key Suzuki Coupling for Sotorasib Manufacture─What a Difference a Base Makes. Organic Process Research & Development 2023, 27 (1) , 198-205. https://doi.org/10.1021/acs.oprd.2c00332
    22. Madeleine C. Deem, Isabelle Cai, Joshua S. Derasp, Paloma L. Prieto, Yusuke Sato, Junliang Liu, Andrew J. Kukor, Jason E. Hein. Best Practices for the Collection of Robust Time Course Reaction Profiles for Kinetic Studies. ACS Catalysis 2023, 13 (2) , 1418-1430. https://doi.org/10.1021/acscatal.2c05045
    23. Wei Chen, Wanzhi Chen, Miaochang Liu, Huayue Wu. Construction of Heterobiaryl Skeletons through Pd-Catalyzed Cross-Coupling of Nitroarenes and Heterocyclic Arylborononate Esters with a Sterically Demanding NHC Ligand. Organic Letters 2022, 24 (38) , 6983-6987. https://doi.org/10.1021/acs.orglett.2c02796
    24. Donovan J. Robinson, Kacey G. Ortiz, Nathan P. O’Hare, Rashad R. Karimov. Dearomatization of Heteroarenium Salts with ArBpin Reagents. Application to the Total Synthesis of a Nuphar Alkaloid. Organic Letters 2022, 24 (19) , 3445-3449. https://doi.org/10.1021/acs.orglett.2c00976
    25. Naoki Oka, Tsuyoshi Yamada, Hironao Sajiki, Shuji Akai, Takashi Ikawa. Aryl Boronic Esters Are Stable on Silica Gel and Reactive under Suzuki–Miyaura Coupling Conditions. Organic Letters 2022, 24 (19) , 3510-3514. https://doi.org/10.1021/acs.orglett.2c01174
    26. Hyunwoo Park, Jaeho Lee, Soon-Hyeok Hwang, Daeun Kim, Soon Hyeok Hong, Tae-Lim Choi. Modulating the Rate of Controlled Suzuki–Miyaura Catalyst-Transfer Polymerization by Boronate Tuning. Macromolecules 2022, 55 (9) , 3476-3483. https://doi.org/10.1021/acs.macromol.2c00047
    27. Andrés García-Domínguez, Andrew G. Leach, Guy C. Lloyd-Jones. In Situ Studies of Arylboronic Acids/Esters and R3SiCF3 Reagents: Kinetics, Speciation, and Dysfunction at the Carbanion–Ate Interface. Accounts of Chemical Research 2022, 55 (9) , 1324-1336. https://doi.org/10.1021/acs.accounts.2c00113
    28. George E. Bell, James W. B. Fyfe, Eva M. Israel, Alexandra M. Z. Slawin, Matthew Campbell, Allan J. B. Watson. Synthesis of 2-BMIDA Indoles via Heteroannulation: Applications in Drug Scaffold and Natural Product Synthesis. Organic Letters 2022, 24 (16) , 3024-3027. https://doi.org/10.1021/acs.orglett.2c00959
    29. Connor P. Delaney, Daniel P. Marron, Alexander S. Shved, Richard N. Zare, Robert M. Waymouth, Scott E. Denmark. Potassium Trimethylsilanolate-Promoted, Anhydrous Suzuki–Miyaura Cross-Coupling Reaction Proceeds via the “Boronate Mechanism”: Evidence for the Alternative Fork in the Trail. Journal of the American Chemical Society 2022, 144 (10) , 4345-4364. https://doi.org/10.1021/jacs.1c08283
    30. Rikuro Takahashi, Tamae Seo, Koji Kubota, Hajime Ito. Palladium-Catalyzed Solid-State Polyfluoroarylation of Aryl Halides Using Mechanochemistry. ACS Catalysis 2021, 11 (24) , 14803-14810. https://doi.org/10.1021/acscatal.1c03731
    31. Gregory Gaube, Douglas L. Miller, Rowan A. McCallum, Nahiane Pipaón Fernández, David C. Leitch. Base-free palladium-catalyzed borylation of enol carboxylates and further reactivity toward deboronation and cross-coupling. Tetrahedron 2025, 182 , 134682. https://doi.org/10.1016/j.tet.2025.134682
    32. Jonas W. Meringdal, Dirk Menche. Suzuki–Miyaura (hetero-)aryl cross-coupling: recent findings and recommendations. Chemical Society Reviews 2025, 54 (12) , 5746-5765. https://doi.org/10.1039/D4CS01108B
    33. David M. Heard, Martin C. Lessard, Dennis G. Hall. Xanthopinacol Boronate: A Robust, Photochemically Assembled and Cleavable Boronic Ester for Orthogonal Chemistry. Angewandte Chemie International Edition 2025, 20 https://doi.org/10.1002/anie.202507571
    34. David M. Heard, Martin C. Lessard, Dennis G. Hall. Xanthopinacol Boronate: A Robust, Photochemically Assembled and Cleavable Boronic Ester for Orthogonal Chemistry. Angewandte Chemie 2025, 20 https://doi.org/10.1002/ange.202507571
    35. Fanny Faure, Margot Zambon, Yen Vo-Hoang, Patricia Licznar-Fajardo, Jean-Denis Docquier, Suzanne Peyrottes, Laurent Gavara. Functionalization at the C3 position of the cephalosporin pharmacophore by palladium-catalyzed cross-coupling reactions. New Journal of Chemistry 2025, 49 (16) , 6512-6516. https://doi.org/10.1039/D5NJ00243E
    36. Zhengzheng Lv, Xin Xia, Peisheng Cao, Qi Han, Hang Zhao, Ronghui Zhou, Peng Wu. Overcoming the drug retention barrier with photosensitive hydrogel for sustained photodynamic therapy of oral leukoplakia. Chinese Chemical Letters 2025, 39 , 111282. https://doi.org/10.1016/j.cclet.2025.111282
    37. Hao Fang, Alejandro García‐Eguizábal, Yu Jen Hsueh, Constantin G. Daniliuc, Ignacio Funes‐Ardoiz, John J. Molloy. Energy Transfer (EnT) Catalysis of Non‐Symmetrical Borylated Dienes: Origin of Reaction Selectivity in Competing EnT Processes. Angewandte Chemie 2025, 137 (6) https://doi.org/10.1002/ange.202418651
    38. Hao Fang, Alejandro García‐Eguizábal, Yu Jen Hsueh, Constantin G. Daniliuc, Ignacio Funes‐Ardoiz, John J. Molloy. Energy Transfer (EnT) Catalysis of Non‐Symmetrical Borylated Dienes: Origin of Reaction Selectivity in Competing EnT Processes. Angewandte Chemie International Edition 2025, 64 (6) https://doi.org/10.1002/anie.202418651
    39. Corrado Bacchiocchi, Manuel Petroselli. Correction: Elucidation of the mechanism of the esterification of boric acid with aliphatic diols: a computational study to help set the record straight. Chemical Communications 2025, 143 https://doi.org/10.1039/D4CC90447H
    40. Hiroki Andoh, Ryo Nakagawa, Tatsuya Akutagawa, Eiko Katata, Teruhisa Tsuchimoto. Direct Suzuki–Miyaura cross-coupling of C(sp 2 )–B(dan) bonds: designed in pursuit of usability. Organic Chemistry Frontiers 2025, 1 https://doi.org/10.1039/D5QO00230C
    41. Xue Wang, Qiang Zhu, Hang Qu, Xiang Zhou, Mounib Bahri, Bowen Liu, Thomas Fellowes, Rob Clowes, Hongjun Niu, Nigel D. Browning, Andrew I. Cooper. Influence of methyl substitution on linear diboronic acids: toward spiroborate covalent organic framework formation in N , N -diethylformamide. Journal of Materials Chemistry A 2025, 28 https://doi.org/10.1039/D5TA02297E
    42. Guanhua Wang, Hiyab T. Mekonnen, Alexander Shaw, Xiaoyang Liu, Carlos Villa, Arjun Raghuraman, Varinia Bernales, Sukaran Arora, Saket Bhargava, Justin M. Notestein, Linda J. Broadbelt. Modeling of protodeborylation of tris(pentafluorophenyl)borane (BCF) under conditions relevant to epoxide ring-opening reactions. Chemical Engineering Journal 2025, 506 , 159851. https://doi.org/10.1016/j.cej.2025.159851
    43. Hiroto Yoshida. Modulating Lewis acidity with boronamides and boronates: effect on behavior in borylation and cross-coupling. Chemistry Letters 2024, 53 (11) https://doi.org/10.1093/chemle/upae209
    44. Zhao Zhang, Edward G. Sheetz, Maren Pink, Nobuyuki Yamamoto, Amar H. Flood. Cone Angles Quantify and Predict the Affinity and Reactivity of Anion Complexes between Trifluoroborates and Rigid Macrocycles. Angewandte Chemie 2024, 136 (39) https://doi.org/10.1002/ange.202409070
    45. Zhao Zhang, Edward G. Sheetz, Maren Pink, Nobuyuki Yamamoto, Amar H. Flood. Cone Angles Quantify and Predict the Affinity and Reactivity of Anion Complexes between Trifluoroborates and Rigid Macrocycles. Angewandte Chemie International Edition 2024, 63 (39) https://doi.org/10.1002/anie.202409070
    46. Mélanie Bonnard, Sandra Pinet, Laurent Chabaud, Mathieu Pucheault. Post‐Functionalization of Organoboranes by Cu‐Catalyzed Azide Alkyne [3+2]‐Cycloaddition Reaction. European Journal of Organic Chemistry 2024, 2009 https://doi.org/10.1002/ejoc.202400580
    47. Minghao Zhang, Yunkai Yu, Binghui Yan, Xiuju Song, Yu Liu, Yixiong Feng, Weixiang Wu, Baoliang Chen, Buxing Han, Qingqing Mei. Full valorisation of waste PET into dimethyl terephthalate and cyclic arylboronic esters. Applied Catalysis B: Environment and Energy 2024, 352 , 124055. https://doi.org/10.1016/j.apcatb.2024.124055
    48. Wesley Wang, Nicholas H. Angello, Daniel J. Blair, Theodore Tyrikos-Ergas, William H. Krueger, Kameron N. S. Medine, Antonio J. LaPorte, Joshua M. Berger, Martin D. Burke. Rapid automated iterative small-molecule synthesis. Nature Synthesis 2024, 3 (8) , 1031-1038. https://doi.org/10.1038/s44160-024-00558-w
    49. Maëva Pichon, Fabienne Levi‐Acobas, Camélia Kitoun, Marcel Hollenstein. 2’,3’‐Protected Nucleotides as Building Blocks for Enzymatic de novo RNA Synthesis. Chemistry – A European Journal 2024, 30 (24) https://doi.org/10.1002/chem.202400137
    50. Polpum Onnuch, Kranthikumar Ramagonolla, Richard Y. Liu. Aminative Suzuki–Miyaura coupling. Science 2024, 383 (6686) , 1019-1024. https://doi.org/10.1126/science.adl5359
    51. Jialun Li, Hideya Tanaka, Taiki Imagawa, Takumi Tsushima, Masaaki Nakamoto, Jiajing Tan, Hiroto Yoshida. Ethynyl‐B(dan) in [3+2] Cycloaddition and Larock Indole Synthesis: Synthesis of Stable Boron‐Containing Heteroaromatic Compounds. Chemistry – A European Journal 2024, 30 (8) https://doi.org/10.1002/chem.202303403
    52. Liam Cribbin, Brendan Twamley, Nicolae Buga, John E O’ Brien, Raphael Bühler, Roland A Fischer, Mathias O Senge. C–C Coupling in sterically demanding porphyrin environments. Beilstein Journal of Organic Chemistry 2024, 20 , 2784-2798. https://doi.org/10.3762/bjoc.20.234
    53. Xuan Wen, Wenbin Xie, Yawen Li, Xiaoying Ma, Zhaoying Liu, Xiao Han, Kaikai Wen, Fengjiao Zhang, Yuze Lin, Qinqin Shi, Aidong Peng, Hui Huang. Room Temperature Anhydrous Suzuki–Miyaura Polymerization Enabled by C−S Bond Activation. Angewandte Chemie 2023, 135 (40) https://doi.org/10.1002/ange.202309922
    54. Xuan Wen, Wenbin Xie, Yawen Li, Xiaoying Ma, Zhaoying Liu, Xiao Han, Kaikai Wen, Fengjiao Zhang, Yuze Lin, Qinqin Shi, Aidong Peng, Hui Huang. Room Temperature Anhydrous Suzuki–Miyaura Polymerization Enabled by C−S Bond Activation. Angewandte Chemie International Edition 2023, 62 (40) https://doi.org/10.1002/anie.202309922
    55. Mitchell T. Howell, Peter Kei, Maksim V. Anokhin, Yaroslav Losovyj, Frank R. Fronczek, Evgueni E. Nesterov. Suzuki–Miyaura catalyst-transfer polymerization: new mechanistic insights. Polymer Chemistry 2023, 14 (37) , 4319-4337. https://doi.org/10.1039/D3PY00580A
    56. Kazuki Tomota, Yuki Izumi, Kazuki Nakanishi, Masaaki Nakamoto, Hiroto Yoshida. Efficient one-pot synthesis of dan-substituted organo- and silyl-boron compounds. Organic & Biomolecular Chemistry 2023, 21 (26) , 5347-5350. https://doi.org/10.1039/D3OB00613A
    57. Javier Teresa, Marina Velado, Roberto Fernández de la Pradilla, Alma Viso, Blanca Lozano, Mariola Tortosa. Enantioselective Suzuki cross-coupling of 1,2-diboryl cyclopropanes. Chemical Science 2023, 14 (6) , 1575-1581. https://doi.org/10.1039/D2SC05789A
    58. Alexander Düfert. Übergangsmetallkatalysierte Kupplungsreaktionen. 2023, 615-751. https://doi.org/10.1007/978-3-662-65244-2_6
    59. Zhijun Yuan, Yunshi Liang, Yiting He, Huiying Deng, Haiting Wu, Bohong Lin, Jing Zhang, . Fast protodeboronation of arylboronic acids and esters with AlCl3 at room temperature. Australian Journal of Chemistry 2023, 76 (4) , 194-200. https://doi.org/10.1071/CH23028
    60. M.A. Komkova, R.G. Valeev, Y.G. Kolyagin, E.A. Andreev, A.N. Beltukov, V.N. Nikitina, A.K. Yatsimirsky, A.A. Karyakin, A.A. Eliseev. Solid-state survey of boronate-substituted polyaniline: on the mechanism of conductivity, electroactivity, and interactions with polyols. Materials Today Chemistry 2022, 26 , 101070. https://doi.org/10.1016/j.mtchem.2022.101070
    61. Sourabh Mishra, Florian C. T. Modicom, Conor L. Dean, Stephen P. Fletcher. Catalytic asymmetric synthesis of carbocyclic C-nucleosides. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00773-6
    62. Nicholas H. Angello, Vandana Rathore, Wiktor Beker, Agnieszka Wołos, Edward R. Jira, Rafał Roszak, Tony C. Wu, Charles M. Schroeder, Alán Aspuru-Guzik, Bartosz A. Grzybowski, Martin D. Burke. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 2022, 378 (6618) , 399-405. https://doi.org/10.1126/science.adc8743
    63. Agnieszka Adamczyk-Woźniak, Andrzej Sporzyński. Merging Electron Deficient Boronic Centers with Electron-Withdrawing Fluorine Substituents Results in Unique Properties of Fluorinated Phenylboronic Compounds. Molecules 2022, 27 (11) , 3427. https://doi.org/10.3390/molecules27113427
    64. Nicolò Fontana, Noel Angel Espinosa-Jalapa, Michael Seidl, Jonathan O. Bauer. Hidden silylium-type reactivity of a siloxane-based phosphonium–hydroborate ion pair. Chemical Communications 2022, 58 (13) , 2144-2147. https://doi.org/10.1039/D1CC07016A

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 36, 14814–14826
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c06863
    Published August 30, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    12k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.