ACS Publications. Most Trusted. Most Cited. Most Read
Heavy-Atom Kinetic Isotope Effects: Primary Interest or Zero Point?
My Activity

Figure 1Loading Img
    Perspective

    Heavy-Atom Kinetic Isotope Effects: Primary Interest or Zero Point?
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 50, 21079–21099
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c07351
    Published December 6, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Chemists have many options for elucidating reaction mechanisms. Global kinetic analysis and classic transition-state probes (e.g., LFERs, Eyring) inevitably form the cornerstone of any strategy, yet their application to increasingly sophisticated synthetic methodologies often leads to a wide range of indistinguishable mechanistic proposals. Computational chemistry provides powerful tools for narrowing the field in such cases, yet wholly simulated mechanisms must be interpreted with great caution. Heavy-atom kinetic isotope effects (KIEs) offer an exquisite but underutilized method for reconciling the two approaches, anchoring the theoretician in the world of calculable observables and providing the experimentalist with atomistic insights. This Perspective provides a personal outlook on this synergy. It surveys the computation of heavy-atom KIEs and their measurement by NMR spectroscopy, discusses recent case studies, highlights the intellectual reward that lies in alignment of experiment and theory, and reflects on the changes required in chemical education in the area.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c07351.

    • Further references, discussion of the historical origins, and derivations of the equations (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 33 publications.

    1. Ian H. Williams. Apparent Kinetic Isotope Effects for Multi-Step Steady-State Reactions. The Journal of Physical Chemistry B 2025, 129 (14) , 3604-3609. https://doi.org/10.1021/acs.jpcb.5c00561
    2. Annabel Flook, Guy C. Lloyd-Jones. Simple Parameters and Data Processing for Better Signal-to-Noise and Temporal Resolution in In Situ 1D NMR Reaction Monitoring. The Journal of Organic Chemistry 2024, 89 (22) , 16586-16593. https://doi.org/10.1021/acs.joc.4c01882
    3. Siriphong Somprasong, Marta Castiñeira Reis, Syuzanna R. Harutyunyan. Grignard Reagent Addition to Pyridinium Salts: A Catalytic Approach to Chiral 1,4-Dihydropyridines. ACS Catalysis 2024, 14 (17) , 13030-13039. https://doi.org/10.1021/acscatal.4c03520
    4. Matthew J. Kania, Albert Reyes, Sharon R. Neufeldt. Oxidative Addition of (Hetero)aryl (Pseudo)halides at Palladium(0): Origin and Significance of Divergent Mechanisms. Journal of the American Chemical Society 2024, 146 (28) , 19249-19260. https://doi.org/10.1021/jacs.4c04496
    5. Victor O. Nyagilo, Sharath Chandra Mallojjala, Jennifer S. Hirschi. Transition State Analysis of Key Steps in Dual Photoredox-Cobalt-Catalyzed Elimination of Alkyl Bromides. ACS Catalysis 2024, 14 (7) , 4683-4689. https://doi.org/10.1021/acscatal.3c06324
    6. Abraham Colin-Molina, Tahereh Nematiaram, Andy Man Hong Cheung, Alessandro Troisi, C. Daniel Frisbie. The Conductance Isotope Effect in Oligophenylene Imine Molecular Wires Depends on the Number and Spacing of 13C-Labeled Phenylene Rings. ACS Nano 2024, 18 (10) , 7444-7454. https://doi.org/10.1021/acsnano.3c11327
    7. Julia R. Dorsheimer, Tomislav Rovis. Late-Stage Isotopic Exchange of Primary Amines. Journal of the American Chemical Society 2023, 145 (44) , 24367-24374. https://doi.org/10.1021/jacs.3c09442
    8. Julia C. Reisenbauer, Patrick Finkelstein, Marc-Olivier Ebert, Bill Morandi. Mechanistic Investigation of the Nickel-Catalyzed Transfer Hydrocyanation of Alkynes. ACS Catalysis 2023, 13 (17) , 11548-11555. https://doi.org/10.1021/acscatal.3c02977
    9. Harvey J. A. Dale, George R. Hodges, Guy C. Lloyd-Jones. Kinetics and Mechanism of Azole n−π*-Catalyzed Amine Acylation. Journal of the American Chemical Society 2023, 145 (32) , 18126-18140. https://doi.org/10.1021/jacs.3c06258
    10. Xinyu Xia, Yongli Gao. Determining Reaction Paths by Evaluating Kinetic Isotopic Effects with Density Functional Theory: Example of Methane Thermogenesis. Journal of Chemical Information and Modeling 2023, 63 (9) , 2742-2747. https://doi.org/10.1021/acs.jcim.3c00531
    11. Zhifeng Ma, Zeyin Yan, Xin Li, Lung Wa Chung. Quantum Tunneling in Reactions Modulated by External Electric Fields: Reactivity and Selectivity. The Journal of Physical Chemistry Letters 2023, 14 (5) , 1124-1132. https://doi.org/10.1021/acs.jpclett.2c03461
    12. Sharath Chandra Mallojjala, Rahul Sarkar, Rachael W. Karugu, Madhu Sudan Manna, Sayan Ray, Santanu Mukherjee, Jennifer S. Hirschi. Mechanism and Origin of Remote Stereocontrol in the Organocatalytic Enantioselective Formal C(sp2)–H Alkylation Using Nitroalkanes as Alkylating Agents. Journal of the American Chemical Society 2022, 144 (38) , 17399-17406. https://doi.org/10.1021/jacs.2c02941
    13. Sharath Chandra Mallojjala, Victor O. Nyagilo, Stephanie A. Corio, Alafate Adili, Anuradha Dagar, Kimberly A. Loyer, Daniel Seidel, Jennifer S. Hirschi. Probing the Free Energy Landscape of Organophotoredox-Catalyzed Anti-Markovnikov Hydrofunctionalization of Alkenes. Journal of the American Chemical Society 2022, 144 (38) , 17692-17699. https://doi.org/10.1021/jacs.2c07807
    14. Andrés García-Domínguez, Andrew G. Leach, Guy C. Lloyd-Jones. In Situ Studies of Arylboronic Acids/Esters and R3SiCF3 Reagents: Kinetics, Speciation, and Dysfunction at the Carbanion–Ate Interface. Accounts of Chemical Research 2022, 55 (9) , 1324-1336. https://doi.org/10.1021/acs.accounts.2c00113
    15. Chetan Joshi, Juliet M. Macharia, Joseph A. Izzo, Victor Wambua, Sungjin Kim, Jennifer S. Hirschi, Mathew J. Vetticatt. Isotope Effects Reveal the Catalytic Mechanism of the Archetypical Suzuki-Miyaura Reaction. ACS Catalysis 2022, 12 (5) , 2959-2966. https://doi.org/10.1021/acscatal.1c05802
    16. Jiaping Wu, Yufang Wang, Chaoying Fang, Yuhao Wang, Caiyang Kong, Xinghui Tao, Meihua Xie, Jitan Zhang. Amide Synthesis via Transaminative Amidation of Aromatic Aldehydes/Ketones: An Entry to 15 N Isotopologs. Advanced Synthesis & Catalysis 2025, 367 (9) https://doi.org/10.1002/adsc.202401592
    17. Hongyu Zhou, Xiaoguang Duan, Bingkun Huang, Shuang Zhong, Cheng Cheng, Virender K. Sharma, Shaobin Wang, Bo Lai. Isotope Techniques in Chemical Wastewater Treatment: Opportunities and Uncertainties. Angewandte Chemie International Edition 2025, 64 (19) https://doi.org/10.1002/anie.202422892
    18. Hongyu Zhou, Xiaoguang Duan, Bingkun Huang, Shuang Zhong, Cheng Cheng, Virender K. Sharma, Shaobin Wang, Bo Lai. Isotope Techniques in Chemical Wastewater Treatment: Opportunities and Uncertainties. Angewandte Chemie 2025, 137 (19) https://doi.org/10.1002/ange.202422892
    19. Claire Dooley, Francesco Ibba, Bence B. Botlik, Chiara Palladino, Christopher A. Goult, Yuan Gao, Andrew Lister, Robert S. Paton, Guy C. Lloyd-Jones, Véronique Gouverneur. Enantioconvergent nucleophilic substitution via synergistic phase-transfer catalysis. Nature Catalysis 2025, 8 (2) , 107-115. https://doi.org/10.1038/s41929-024-01288-0
    20. Siriphong Somprasong, Bin Wan, Syuzanna R. Harutyunyan. Enantioselective nickel-catalyzed electrochemical reductive conjugate alkenylation of α,β-unsaturated ketones. Chemical Science 2025, 16 (2) , 802-808. https://doi.org/10.1039/D4SC06891B
    21. Jorge A. González, Andrés Arribas, Puyang Tian, Sergio Díaz‐Alonso, José Luis Mascareñas, Fernando López, Cristina Nevado. Gold(III) Auracycles Featuring C(sp 3 )‐Au‐C(sp 2 ) Bonds: Synthesis and Mechanistic Insights into the Cycloauration Step. Angewandte Chemie 2024, 136 (36) https://doi.org/10.1002/ange.202402798
    22. Jorge A. González, Andrés Arribas, Puyang Tian, Sergio Díaz‐Alonso, José Luis Mascareñas, Fernando López, Cristina Nevado. Gold(III) Auracycles Featuring C(sp 3 )‐Au‐C(sp 2 ) Bonds: Synthesis and Mechanistic Insights into the Cycloauration Step. Angewandte Chemie International Edition 2024, 63 (36) https://doi.org/10.1002/anie.202402798
    23. Wanting Fu, Junkai Fu, Xi Wang, Yuanli Ding, Yang Li, Jing Tian, Jinbo Zhao, Meiyan Wang, Zikun Wang. Acid–solvent cluster-catalyzed general and regioselective Friedel–Crafts arylation of alcohols. Organic Chemistry Frontiers 2024, 11 (13) , 3602-3608. https://doi.org/10.1039/D4QO00555D
    24. Xinyu Xia, Yongli Gao. Compound-specific, intra-molecular, and clumped 13C fractionations in the thermal generation and decomposition of ethane and propane: A DFT and kinetic investigation. Geochimica et Cosmochimica Acta 2024, 375 , 50-63. https://doi.org/10.1016/j.gca.2024.05.001
    25. Massimo Bocus, Ruben Goeminne, Aran Lamaire, Maarten Cools-Ceuppens, Toon Verstraelen, Veronique Van Speybroeck. Nuclear quantum effects on zeolite proton hopping kinetics explored with machine learning potentials and path integral molecular dynamics. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36666-y
    26. Magda H. Barecka, Mikhail K. Kovalev, Marsha Zakir Muhamad, Hangjuan Ren, Joel W. Ager, Alexei A. Lapkin. CO2 electroreduction favors carbon isotope 12C over 13C and facilitates isotope separation. iScience 2023, 26 (10) , 107834. https://doi.org/10.1016/j.isci.2023.107834
    27. Brooks P. Leitner, Won D. Lee, Wanling Zhu, Xinyi Zhang, Rafael C. Gaspar, Zongyu Li, Joshua D. Rabinowitz, Rachel J. Perry, . Tissue-specific reprogramming of glutamine metabolism maintains tolerance to sepsis. PLOS ONE 2023, 18 (7) , e0286525. https://doi.org/10.1371/journal.pone.0286525
    28. Jacob M. Lovi, Sabyasachi Sen. Effects of the 10B/11B isotopic substitution on shear relaxation in supercooled B2O3 liquid: A validation of the elastic model of viscous flow. The Journal of Chemical Physics 2023, 158 (14) https://doi.org/10.1063/5.0147333
    29. Benjamin W.J. Chen. Equilibrium and kinetic isotope effects in heterogeneous catalysis: A density functional theory perspective. Catalysis Communications 2023, 177 , 106654. https://doi.org/10.1016/j.catcom.2023.106654
    30. Siriphong Somprasong, Marta Castiñeira Reis, Syuzanna R. Harutyunyan. Catalytic Access to Chiral δ ‐Lactams via Nucleophilic Dearomatization of Pyridine Derivatives. Angewandte Chemie 2023, 135 (9) https://doi.org/10.1002/ange.202217328
    31. Siriphong Somprasong, Marta Castiñeira Reis, Syuzanna R. Harutyunyan. Catalytic Access to Chiral δ ‐Lactams via Nucleophilic Dearomatization of Pyridine Derivatives. Angewandte Chemie International Edition 2023, 62 (9) https://doi.org/10.1002/anie.202217328
    32. Choon Wee Kee. Molecular Understanding and Practical In Silico Catalyst Design in Computational Organocatalysis and Phase Transfer Catalysis—Challenges and Opportunities. Molecules 2023, 28 (4) , 1715. https://doi.org/10.3390/molecules28041715
    33. Yael Ben-Tal, Patrick J. Boaler, Harvey J.A. Dale, Ruth E. Dooley, Nicole A. Fohn, Yuan Gao, Andrés García-Domínguez, Katie M. Grant, Andrew M.R. Hall, Hannah L.D. Hayes, Maciej M. Kucharski, Ran Wei, Guy C. Lloyd-Jones. Mechanistic analysis by NMR spectroscopy: A users guide. Progress in Nuclear Magnetic Resonance Spectroscopy 2022, 129 , 28-106. https://doi.org/10.1016/j.pnmrs.2022.01.001

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2021, 143, 50, 21079–21099
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c07351
    Published December 6, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    8841

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.