ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Chromium Ion Pair Luminescence: A Strategy in Broadband Near-Infrared Light-Emitting Diode Design

  • Veeramani Rajendran
    Veeramani Rajendran
    Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
    Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
  • Mu-Huai Fang
    Mu-Huai Fang
    Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
    More by Mu-Huai Fang
  • Wen-Tse Huang
    Wen-Tse Huang
    Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
  • Natalia Majewska
    Natalia Majewska
    Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
  • Tadeusz Lesniewski
    Tadeusz Lesniewski
    Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
  • Sebastian Mahlik
    Sebastian Mahlik
    Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
  • Grzegorz Leniec
    Grzegorz Leniec
    Department of Technical Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology Szczecin, al. Piastow 48, 70-311 Szczecin, Poland
  • Slawomir M. Kaczmarek
    Slawomir M. Kaczmarek
    Department of Technical Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology Szczecin, al. Piastow 48, 70-311 Szczecin, Poland
  • Wei Kong Pang
    Wei Kong Pang
    Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales 2522, Australia
  • Vanessa K. Peterson
    Vanessa K. Peterson
    Institute for Superconducting and Electronic Materials, University of Wollongong, Squires Way, North Wollongong, New South Wales 2522, Australia
    Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, New South Wales 2232, Australia
  • Kuang-Mao Lu
    Kuang-Mao Lu
    Everlight Electronics Co., Ltd., New Taipei City 238, Taiwan
    More by Kuang-Mao Lu
  • Ho Chang*
    Ho Chang
    Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 106, Taiwan
    *[email protected]
    More by Ho Chang
  • , and 
  • Ru-Shi Liu*
    Ru-Shi Liu
    Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
    *[email protected]
    More by Ru-Shi Liu
Cite this: J. Am. Chem. Soc. 2021, 143, 45, 19058–19066
Publication Date (Web):November 4, 2021
https://doi.org/10.1021/jacs.1c08334
Copyright © 2021 American Chemical Society

    Article Views

    4404

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Portable near-infrared (NIR) light sources are in high demand for applications in spectroscopy, night vision, bioimaging, and many others. Typical phosphor designs feature isolated Cr3+ ion centers, and it is challenging to design broadband NIR phosphors based on Cr3+–Cr3+ pairs. Here, we explore the solid-solution series SrAl11.88–xGaxO19:0.12Cr3+ (x = 0, 2, 4, 6, 8, 10, and 12) as phosphors featuring Cr3+–Cr3+ pairs and evaluate structure–property relations within the series. We establish the incorporation of Ga within the magentoplumbite-type structure at five distinct crystallographic sites and evaluate the effect of this incorporation on the Cr3+–Cr3+ ion pair proximity. Electron paramagnetic measurements reveal the presence of both isolated Cr3+ and Cr3+–Cr3+ pairs, resulting in NIR luminescence at approximately 650–1050 nm. Unexpectedly, the origin of broadband NIR luminescence with a peak within the range 740–820 nm is related to the Cr3+–Cr3+ ion pair. We demonstrate the application of the SrAl5.88Ga6O19:0.12Cr3+ phosphor, which possesses an internal quantum efficiency of ∼85%, a radiant flux of ∼95 mW, and zero thermal quenching up to 500 K. This work provides a further understanding of spectral shifts in phosphor solid solutions and in particular the application of the magentoplumbites as promising next-generation NIR phosphor host systems.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c08334.

    • Details of characterization, Rietveld fit profiles along with refined structural parameters, pressure-dependent decay profiles and calculated decay time, temperature-dependent emission spectra of x = 4, 6, and 8 samples, and temperature-dependent decay profiles (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 61 publications.

    1. Hexi Zhang, Jialiang Wei, Wei Chen, Yuanbing Mao. Near-Infrared-Emitting K2CaP2O7:Cr3+ with Outstanding Thermal Stability. ACS Applied Optical Materials 2023, 1 (9) , 1595-1604. https://doi.org/10.1021/acsaom.3c00218
    2. Jiahui Zhang, Wenjing Huang, Jiaqi Fan, Weiying Zhou, Zhan-chao Wu, Chunyan Zhou, Liya Zhou, Qiang Xiao, Xinguo Zhang. Achieving Ultra-Wideband NIR-II Emission in Cr3+-Doped Li(Sc,In)(Si,Ge)O4 Phosphors Based on Host Composition Engineering. Inorganic Chemistry 2023, 62 (35) , 14494-14503. https://doi.org/10.1021/acs.inorgchem.3c02518
    3. Veeramani Rajendran, Wen-Tse Huang, Kuan-Chun Chen, Da-Hua Wei, Ho Chang, Ru-Shi Liu. Shortwave Infrared Luminescence of Tetravalent Chromium and Divalent Nickel: Phosphor Design Principles and Applications. ACS Applied Optical Materials 2023, 1 (6) , 1063-1079. https://doi.org/10.1021/acsaom.2c00182
    4. Liwen Zheng, Jianlong Kuang, Jiangxu Shen, Huajun Wu, Hao Wu, Yongshi Luo, Guo-Hui Pan, Zhendong Hao, Liangliang Zhang, Jiahua Zhang. Spectral Broadening in Cr3+-Doped Sr0.92Mg0.91Al10.1O17 NIR Phosphor Realized by Multi-crystallographic Site Occupation. ACS Applied Optical Materials 2023, 1 (6) , 1150-1155. https://doi.org/10.1021/acsaom.3c00086
    5. Małgorzata Sójka, Jiyou Zhong, Jakoah Brgoch. Developing Broadband Cr3+-Substituted Phosphor-Converted Near-Infrared Light Sources. ACS Applied Optical Materials 2023, 1 (6) , 1138-1149. https://doi.org/10.1021/acsaom.3c00058
    6. Grzegorz Leniec. Electron Paramagnetic Resonance: A Technique to Locate the Nearest Environment of Chromium Luminescent Centers. ACS Applied Optical Materials 2023, 1 (6) , 1114-1121. https://doi.org/10.1021/acsaom.3c00018
    7. Jianhui Wang, Zeyu Lyu, Guan Peng, Dashuai Sun, Sida Shen, Zheng Lu, Lixuan Wang, Hanwei Zhao, Shuai Wei, Hongpeng You. Cr3+-Doped NIR Phosphor with Well-Defined Stokes/Anti-Stokes Phonon Sidebands for a Ratiometric Thermometer and Thermally Stable NIR LEDs. Chemistry of Materials 2023, 35 (10) , 3968-3975. https://doi.org/10.1021/acs.chemmater.3c00226
    8. Veeramani Rajendran, Kuan-Chun Chen, Wen-Tse Huang, Mikołaj Kamiński, Maciej Grzegorczyk, Sebastian Mahlik, Grzegorz Leniec, Kuang-Mao Lu, Da-Hua Wei, Ho Chang, Ru-Shi Liu. Unraveling Luminescent Energy Transfer Pathways: Futuristic Approach of Miniature Shortwave Infrared Light-Emitting Diode Design. ACS Energy Letters 2023, 8 (5) , 2395-2400. https://doi.org/10.1021/acsenergylett.3c00680
    9. Ye Yang, Zuizhi Lu, Hua Fan, Mianhong Chen, Linawa Shen, Xinguo Zhang, Qi Pang, Jianhua Chen, Peican Chen, Liya Zhou. Ultra-Broadband Near-Infrared Phosphors Realized by the Heterovalent Substitution Strategy. Inorganic Chemistry 2023, 62 (8) , 3601-3608. https://doi.org/10.1021/acs.inorgchem.2c04347
    10. Shihai Miao, Yanjie Liang, Dongxun Chen, Ruiqi Shi, Xihui Shan, Yi Zhang, Fei Xie, Xiao-Jun Wang. Site-Selective Occupancy Control of Cr Ions toward Ultrabroad-Band Infrared Luminescence with a Spectral Width up to 419 nm. ACS Applied Materials & Interfaces 2022, 14 (47) , 53101-53110. https://doi.org/10.1021/acsami.2c18388
    11. Chih-Yu Chang, Natalia Majewska, Kuan-Chun Chen, Wen-Tse Huang, Tadeusz Leśniewski, Grzegorz Leniec, Sławomir M. Kaczmarek, Wei Kong Pang, Vanessa K. Peterson, Ding-Hua Cherng, Kuang-Mao Lu, Sebastian Mahlik, Ru-Shi Liu. Broadening Phosphor-Converted Light-Emitting Diode Emission: Controlling Disorder. Chemistry of Materials 2022, 34 (22) , 10190-10199. https://doi.org/10.1021/acs.chemmater.2c03045
    12. Jiyou Zhong, Liwei Zeng, Weiren Zhao, Jakoah Brgoch. Producing Tunable Broadband Near-Infrared Emission through Co-Substitution in (Ga1–xMgx)(Ga1–xGex)O3:Cr3+. ACS Applied Materials & Interfaces 2022, 14 (45) , 51157-51164. https://doi.org/10.1021/acsami.2c17902
    13. Songsong Ding, Peng Feng, Junlong Cao, Xilin Ma, Yuhua Wang. Multiple Coordination of Chromium Ion Luminescence: A Strategy for Designing Ultra-broadband NIR Long Persistent Luminescent Materials. ACS Applied Materials & Interfaces 2022, 14 (39) , 44622-44631. https://doi.org/10.1021/acsami.2c14238
    14. Ling-Xuan Hong, Wen-Tse Huang, Zhen Bao, Yi-Shin Chen, Ru-Shi Liu. Stable Luminous Organic–Inorganic Hybrid Manganese Halide Nanostructures for Light-Emitting Diodes. ACS Applied Nano Materials 2022, 5 (4) , 4623-4628. https://doi.org/10.1021/acsanm.2c00782
    15. Tao Tan, Shangwei Wang, Jiangyue Su, Weihong Yuan, Haiyan Wu, Ran Pang, Jiutian Wang, Chengyu Li, Hongjie Zhang. Design of a Novel Near-Infrared Luminescence Material Li2Mg3TiO6:Cr3+ with an Ultrawide Tuning Range Applied to Near-Infrared Light-Emitting Diodes. ACS Sustainable Chemistry & Engineering 2022, 10 (12) , 3839-3850. https://doi.org/10.1021/acssuschemeng.1c07054
    16. Yu Yan, Mengmeng Shang, Shuai Huang, Yining Wang, Yixin Sun, Peipei Dang, Jun Lin. Photoluminescence Properties of AScSi2O6:Cr3+ (A = Na and Li) Phosphors with High Efficiency and Thermal Stability for Near-Infrared Phosphor-Converted Light-Emitting Diode Light Sources. ACS Applied Materials & Interfaces 2022, 14 (6) , 8179-8190. https://doi.org/10.1021/acsami.1c23940
    17. Shengqiang Liu, Ning Mao, Zhen Song, Quanlin Liu. UV-Red Light-Chargeable Near-Infrared-Persistent Phosphors and Their Applications. ACS Applied Materials & Interfaces 2022, 14 (1) , 1496-1504. https://doi.org/10.1021/acsami.1c21321
    18. Hansen Hua, Jumpei Ueda, Jian Xu, Michele Back, Setsuhisa Tanabe. High-Pressure Photoluminescence Properties of Cr3+-Doped LaGaO3 Perovskites Modulated by Pressure-Induced Phase Transition. Inorganic Chemistry 2021, 60 (24) , 19253-19262. https://doi.org/10.1021/acs.inorgchem.1c03074
    19. Yuefang Qin, Jiyou Zhong, Fu Du, Jun Wen, Zhiru Lin, Weiren Zhao. Tunable broadband near-infrared emission in LiScO2:Cr3+ phosphor induced by the variation of chromium ion concentration. Journal of Luminescence 2023, 257 , 119758. https://doi.org/10.1016/j.jlumin.2023.119758
    20. Rui Li, Panlai Li, Guohui Wei, Jiehong Li, Yawei Shi, Ye Wang, Shaoxuan He, Yuanbo Yang, Wenge Ding, Zhijun Wang. Manipulation of the ratio of Li + /Zn 2+ on the structure and persistent luminescence property of Li 2 Zn 0.9992 Ge 3 O 8 :0.08%Cr 3+. Journal of the American Ceramic Society 2023, 106 (5) , 2972-2984. https://doi.org/10.1111/jace.18980
    21. Jinmeng Xiang, Xue Zhou, Xiaoqi Zhao, Ziyang Wu, Changheng Chen, Xianju Zhou, Chongfeng Guo. Ab Initio Site‐Selective Occupancy and Luminescence Enhancement in Broadband NIR Emitting Phosphor Mg 7 Ga 2 GeO 12 :Cr 3+. Laser & Photonics Reviews 2023, 28 , 2200965. https://doi.org/10.1002/lpor.202200965
    22. Shuai Huang, Yu Yan, Mengmeng Shang, Yining Wang, Yixin Sun, Peipei Dang, Jun Lin. Super Broadband Near‐Infrared Solid Solution Phosphors with Adjustable Peak Wavelengths from 1165 to 875 nm for NIR Spectroscopy Applications. Advanced Optical Materials 2023, 11 (5) , 2202291. https://doi.org/10.1002/adom.202202291
    23. Leqi Yao, Qianyi Jia, Shijie Yu, Chao Liang, Jianqing Jiang, Qiyue Shao. Simultaneous Absorption and Near‐Infrared Emission Enhancement of Cr 3+ Ions in MgGa 2 O 4 Spinel Oxide via Anionic F‐Substitution. Advanced Optical Materials 2023, 11 (5) , 2202458. https://doi.org/10.1002/adom.202202458
    24. Qianqian Zhang, Dongjie Liu, Zhennan Wang, Peipei Dang, Hongzhou Lian, Guogang Li, Jun Lin. LaMgGa 11 O 19 :Cr 3+ ,Ni 2+ as Blue‐Light Excitable Near‐Infrared Luminescent Materials with Ultra‐Wide Emission and High External Quantum Efficiency. Advanced Optical Materials 2023, 11 (6) , 2202478. https://doi.org/10.1002/adom.202202478
    25. Mohammad M. Afandi, Jingi Kim, Chunghyun Lee, Jongsu Kim. Anti-thermal quenching in phytochrome-active AC-Driven electroluminescence from β-Ga2O3:Cr3+ powder phosphor. Physica B: Condensed Matter 2023, 652 , 414644. https://doi.org/10.1016/j.physb.2023.414644
    26. Zurong Liao, Chaojie Li, Jiyou Zhong, Yang Li, Weiren Zhao. An efficient and thermally stable near-infrared phosphor derived from the Ln 3 ScInGa 3 O 12 :Cr 3+ (Ln = La, Gd, Y, and Lu) garnet family. Dalton Transactions 2023, 52 (9) , 2853-2862. https://doi.org/10.1039/D2DT04126J
    27. Shengqiang Liu, Rujun Yang, Hao Cai, Yixi Zhuang, Zhen Song, Lixin Ning, Quanlin Liu. Electron Tunneling Charging upon Sunlight for Near‐Infrared Persistent Luminescence. Laser & Photonics Reviews 2023, , 2200999. https://doi.org/10.1002/lpor.202200999
    28. Zhe Ma, Hongmin Liu, Siyuan Xie, Qingguang Zeng, Yue Guo, Dawei Wen. Near-UV excited multifunctional near-infrared phosphors for anti-counterfeiting and ratiometric thermometer applications. Dalton Transactions 2023, 52 (6) , 1650-1656. https://doi.org/10.1039/D2DT03871D
    29. Peipei Dang, Yi Wei, Dongjie Liu, Guogang Li, Jun Lin. Recent Advances in Chromium‐Doped Near‐Infrared Luminescent Materials: Fundamentals, Optimization Strategies, and Applications. Advanced Optical Materials 2023, 11 (3) , 2201739. https://doi.org/10.1002/adom.202201739
    30. Honglei Yuan, Yanzhi Bai, Gaoliang Wang, Liuyang Xu, Huanxia Jia, Xianke Sun. La3Ga5SiO14:Cr3+: A broadband near-infrared phosphor induced by the two-site occupation of Cr3+. Ceramics International 2023, 7 https://doi.org/10.1016/j.ceramint.2023.02.093
    31. Shuangqiang Fang, Ying Li, Peiqing Cai, Qiangqiang Zhu, Yue Zhai, Hong Zhang, Mingsheng Cai, Tianchun Lang, Le Wang. Strong electron–phonon coupling of Cr3+ ion provides an opportunity for superior sensitivity cryogenic sensing. Optics & Laser Technology 2023, 158 , 108844. https://doi.org/10.1016/j.optlastec.2022.108844
    32. Tuan-Hung Nguyen, Abu Riduan Md Foisal, Tuan Anh Pham, Trung-Hieu Vu, Hong-Quan Nguyen, Erik W. Streed, Jarred Fastier-Wooller, Pablo Guzman Duran, Philip Tanner, Van Thanh Dau, Nam-Trung Nguyen, Dzung Viet Dao. Effect of 3C-SiC Layer Thickness on Lateral Photovoltaic Effect in 3C-SiC/Si Heterojunction. IEEE Sensors Journal 2023, 23 (3) , 2063-2069. https://doi.org/10.1109/JSEN.2022.3232318
    33. Zuobin Tang, Feng Du, Lei Zhao, Hu Liu, Zhihua Leng, Huidong Xie, Gangyi Zhang, Yuhua Wang. Single‐Site Occupancy of Eu 2+ in Multiple Cations Enables Efficient Ultra‐Broadband Visible to Near‐Infrared Luminescence. Laser & Photonics Reviews 2023, 15 , 2200911. https://doi.org/10.1002/lpor.202200911
    34. Xilin Ma, Yuhua Wang. Local Structure and Self‐Defect Evolution under Nonstoichiometric Effect Unlock Zero‐Thermal‐Quenching. Advanced Optical Materials 2023, 1 , 2202765. https://doi.org/10.1002/adom.202202765
    35. Jianhua Lin, Liuyan Zhou, Yuyu Shen, Jie Fu, Yanling Chen, Lei Lei, Renguang Ye, Yang Shen, Degang Deng, Shiqing Xu. [Zn 2+ –Ge 4+ ] co-substitutes [Ga 3+ –Ga 3+ ] to coordinately broaden the near-infrared emission of Cr 3+ in Ga 2 O 3 phosphors. Physical Chemistry Chemical Physics 2023, 25 (3) , 2090-2097. https://doi.org/10.1039/D2CP04737C
    36. Maja Szymczak, Marcin Runowski, Victor Lavín, Lukasz Marciniak. Highly Pressure‐Sensitive, Temperature Independent Luminescence Ratiometric Manometer Based on MgO:Cr 3+ Nanoparticles. Laser & Photonics Reviews 2023, 53 , 2200801. https://doi.org/10.1002/lpor.202200801
    37. Shichuan Wang, Takatoshi Seto, Bin Liu, Yuhua Wang, Cancan Li, Zhengqiang Liu, Haowen Dong. Tremendous Acceleration of Plant Growth by Applying a New Sunlight Converter Sr 4 Al 14− x Ga x O 25 :Mn 4+ Breaking Parity Forbidden Transition. Advanced Science 2023, 10 (2) , 2204418. https://doi.org/10.1002/advs.202204418
    38. Wen‐Tse Huang, Veeramani Rajendran, Ming‐Hsien Chan, Michael Hsiao, Ho Chang, Ru‐Shi Liu. Near‐Infrared Windows I and II Phosphors for Theranostic Applications: Spectroscopy, Bioimaging, and Light‐Emitting Diode Photobiomodulation. Advanced Optical Materials 2022, 7 , 2202061. https://doi.org/10.1002/adom.202202061
    39. Lin Xiang, Xianju Zhou, Yongjie Wang, Li Li, Sha Jiang, Guotao Xiang, Chuan Jing, Jingfang Li, Lu Yao. Environmentally-friendly and low-cost Fe3+-doped broadband NIR light-emitting phosphors. Journal of Luminescence 2022, 252 , 119293. https://doi.org/10.1016/j.jlumin.2022.119293
    40. Yu Zhang, Xiang Li, Dahai Hu, Qier Sa, Xinran Wang, Fengxiang Wang, Kaixuan Wang, Xuelian Zhou, Zhiqiang Song, Yongfu Liu, Kefu Chao. Enhanced Photoluminescence of Gd3Al4GaO12: Cr3+ by Energy Transfers from Co-Doped Dy3+. Nanomaterials 2022, 12 (23) , 4183. https://doi.org/10.3390/nano12234183
    41. Liwei Zeng, Jiyou Zhong, Wenbin Lin, Weiren Zhao. Achieving a tunable and ultra-broadband near-infrared emission in the Ga 2−2 x Zn x Ge x O 3 :Cr 3+ phosphor. Dalton Transactions 2022, 51 (43) , 16740-16747. https://doi.org/10.1039/D2DT02971E
    42. Shihai Miao, Yanjie Liang, Yan Zhang, Dongxun Chen, Xiao‐Jun Wang. Blue LED‐Pumped Broadband Short‐Wave Infrared Emitter Based on LiMgPO 4 :Cr 3+ ,Ni 2+ Phosphor. Advanced Materials Technologies 2022, 7 (11) , 2200320. https://doi.org/10.1002/admt.202200320
    43. Luhui Zhou, Zeyu Lyu, Dashuai Sun, Sida Shen, Taixing Tan, Lixuan Wang, Hanwei Zhao, Hongpeng You. Enhanced Thermal Stability and Energy Transfer by Crystal‐Field Engineering in a Garnet Phosphor for Thermometry and NIR‐LED. Advanced Optical Materials 2022, 10 (22) , 2201308. https://doi.org/10.1002/adom.202201308
    44. Fangyi Zhao, Zhen Song, Quanlin Liu. Advances in Chromium‐Activated Phosphors for Near‐Infrared Light Sources. Laser & Photonics Reviews 2022, 16 (11) , 2200380. https://doi.org/10.1002/lpor.202200380
    45. Xin Piao, Tingting Guo, Zhenggang Zou, Jinsheng Liao, Herui Wen, Gong Guoliang. Site-splitting inhibition and near-infrared luminescence properties of Cr3+ activated magnetoplumbite SrAl12O19 modified by La and Mg. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 281 , 121602. https://doi.org/10.1016/j.saa.2022.121602
    46. Veeramani Rajendran, Wen-Tse Huang, Kuan-Chun Chen, Ho Chang, Ru-Shi Liu. Energy-saving chromium-activated garnet-structured phosphor-converted near-infrared light-emitting diodes. Journal of Materials Chemistry C 2022, 10 (39) , 14367-14378. https://doi.org/10.1039/D2TC02817D
    47. Guohui Wei, Panlai Li, Rui Li, Ye Wang, Hao Suo, Yuanbo Yang, Shaoxuan He, Jiehong Li, Yawei Shi, Zhijun Wang. Achievement of high efficiency and thermally stable near-infrared phosphors by designing a chromium crystallographic environment for nondestructive testing and night vision. Materials Chemistry Frontiers 2022, 6 (18) , 2741-2749. https://doi.org/10.1039/D2QM00569G
    48. Jianbang Zhou, Pengyun Chen, Junhao Li, Mingming Yang, Wei Jiang, Qiuhong Zhang, Haiyong Ni, Jiansheng Huo. Crystal-field induced tuning of luminescence properties of Na 3 Ga x Al 1− x F 6 :Cr 3+ phosphors with good thermal stability for NIR LEDs. Dalton Transactions 2022, 51 (29) , 10965-10972. https://doi.org/10.1039/D2DT01559E
    49. Zixuan Wu, Xinxin Han, Juan Wang, Yayun Zhou, Ke Xing, Sheng Cao, Jialong Zhao, Bingsuo Zou, Ruosheng Zeng. Highly efficient and thermally stable broadband near-infrared emitting fluoride Cs 2 KGaF 6 :Cr 3+ for multiple LED applications. Journal of Materials Chemistry C 2022, 10 (28) , 10292-10301. https://doi.org/10.1039/D2TC02020C
    50. Dawei Wen, Hongmin Liu, Yue Guo, Qingguang Zeng, Mingmei Wu, Ru Shi Liu. Disorder–Order Conversion‐Induced Enhancement of Thermal Stability of Pyroxene Near‐Infrared Phosphors for Light‐Emitting Diodes. Angewandte Chemie 2022, 134 (28) https://doi.org/10.1002/ange.202204411
    51. Dawei Wen, Hongmin Liu, Yue Guo, Qingguang Zeng, Mingmei Wu, Ru Shi Liu. Disorder–Order Conversion‐Induced Enhancement of Thermal Stability of Pyroxene Near‐Infrared Phosphors for Light‐Emitting Diodes. Angewandte Chemie International Edition 2022, 61 (28) https://doi.org/10.1002/anie.202204411
    52. Jianwei Qiao, Shuai Zhang, Xinquan Zhou, Weibin Chen, Romain Gautier, Zhiguo Xia. Near‐Infrared Light‐Emitting Diodes utilizing a Europium‐Activated Calcium Oxide Phosphor with External Quantum Efficiency of up to 54.7%. Advanced Materials 2022, 34 (26) , 2201887. https://doi.org/10.1002/adma.202201887
    53. Hao Suo, Yu Wang, Xiaoqi Zhao, Xin Zhang, Leipeng Li, Kuiwen Guan, Wenge Ding, Panlai Li, Zhijun Wang, Feng Wang. Rapid Nondestructive Detection Enabled by an Ultra‐Broadband NIR pc‐LED. Laser & Photonics Reviews 2022, 16 (7) , 2200012. https://doi.org/10.1002/lpor.202200012
    54. Jianhua Lin, Liuyan Zhou, Long Ren, Yuyu Shen, Yanling Chen, Jie Fu, Lei Lei, Renguang Ye, Degang Deng, Shiqing Xu. Broadband near-infrared emitting Sr3Sc4O9: Cr3+ phosphors: Luminescence properties and application in light-emitting diodes. Journal of Alloys and Compounds 2022, 908 , 164582. https://doi.org/10.1016/j.jallcom.2022.164582
    55. Mantas Norkus, Ramūnas Skaudžius. Enhanced NIR region emission of chromium by changing the chromium concentration in yttrium aluminum garnet (YAG) host matrix. Journal of Alloys and Compounds 2022, 908 , 164601. https://doi.org/10.1016/j.jallcom.2022.164601
    56. Jinyue Sun, Wei Zheng, Ping Huang, Meiran Zhang, Wen Zhang, Zhonghua Deng, Shaohua Yu, Mengyao Jin, Xueyuan Chen. Efficient Near‐Infrared Luminescence in Lanthanide‐Doped Vacancy‐Ordered Double Perovskite Cs 2 ZrCl 6 Phosphors via Te 4+ Sensitization. Angewandte Chemie 2022, 134 (26) https://doi.org/10.1002/ange.202201993
    57. Jinyue Sun, Wei Zheng, Ping Huang, Meiran Zhang, Wen Zhang, Zhonghua Deng, Shaohua Yu, Mengyao Jin, Xueyuan Chen. Efficient Near‐Infrared Luminescence in Lanthanide‐Doped Vacancy‐Ordered Double Perovskite Cs 2 ZrCl 6 Phosphors via Te 4+ Sensitization. Angewandte Chemie International Edition 2022, 61 (26) https://doi.org/10.1002/anie.202201993
    58. J. Li, H. Zhe, H. Ming, Y. Zhou, Y. Ye, Q. Zhou, Z. Wang. A near-infrared phosphor doped with Cr3+ towards zero-thermal-quenching for high-power LEDs. Materials Today Chemistry 2022, 24 , 100839. https://doi.org/10.1016/j.mtchem.2022.100839
    59. Hongzhi Zhang, Jing Zhang, Yuchang Su, Xinmin Zhang. Metal To Metal Charge Transfer Induced Efficient Yellow/Far‐Red Luminescence in Na 2 Ca 3 (Nb, Ta) 2 O 9 :Bi 3+ toward the Applications of White‐LEDs and Plant Growth Light. Advanced Optical Materials 2022, 10 (10) , 2200150. https://doi.org/10.1002/adom.202200150
    60. Peipei Dang, Wei Wang, Hongzhou Lian, Guogang Li, Jun Lin. How to Obtain Anti‐Thermal‐Quenching Inorganic Luminescent Materials for Light‐Emitting Diode Applications. Advanced Optical Materials 2022, 10 (6) , 2102287. https://doi.org/10.1002/adom.202102287
    61. Shuaishuai Yu, Zhiting Wei, Junxiao Wu, Tianli Wang, Jia Zhang, Xingliang Luo, Yanyan Li, Chuang Wang, Lei Zhao. Design and tuning Cr 3+ -doped near-infrared phosphors for multifunctional applications via crystal field engineering. Dalton Transactions 2022, 51 (6) , 2313-2322. https://doi.org/10.1039/D1DT03461H

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect