ACS Publications. Most Trusted. Most Cited. Most Read
Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the In Vitro Folding Stability
My Activity

Figure 1Loading Img
  • Open Access
Article

Sequestration of Proteins in Stress Granules Relies on the In-Cell but Not the In Vitro Folding Stability
Click to copy article linkArticle link copied!

  • Nirnay Samanta
    Nirnay Samanta
    Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
  • Sara S. Ribeiro
    Sara S. Ribeiro
    Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
  • Mailin Becker
    Mailin Becker
    Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
  • Emeline Laborie
    Emeline Laborie
    CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
  • Roland Pollak
    Roland Pollak
    Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
  • Stepan Timr*
    Stepan Timr
    CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
    J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, Prague 8 182 23, Czech Republic
    *Email: [email protected]
    More by Stepan Timr
  • Fabio Sterpone*
    Fabio Sterpone
    CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
    *Email: [email protected]
  • Simon Ebbinghaus*
    Simon Ebbinghaus
    Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
    *Email: [email protected]
Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2021, 143, 47, 19909–19918
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.1c09589
Published November 17, 2021

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Abstract

Click to copy section linkSection link copied!

Stress granules (SGs) are among the most studied membraneless organelles that form upon heat stress (HS) to sequester unfolded, misfolded, or aggregated protein, supporting protein quality control (PQC) clearance. The folding states that are primarily associated with SGs, as well as the function of the phase separated environment in adjusting the energy landscapes, remain unknown. Here, we investigate the association of superoxide dismutase 1 (SOD1) proteins with different folding stabilities and aggregation propensities with condensates in cells, in vitro and by simulation. We find that irrespective of aggregation the folding stability determines the association of SOD1 with SGs in cells. In vitro and in silico experiments however suggest that the increased flexibility of the unfolded state constitutes only a minor driving force to associate with the dynamic biomolecular network of the condensate. Specific protein–protein interactions in the cytoplasm in comparison to SGs determine the partitioning of folding states between the respective phases during HS.

This publication is licensed under

CC-BY-NC-ND 4.0 .
  • cc licence
  • by licence
  • nc licence
  • nd licence
Copyright © 2021 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

The intracellular liquid–liquid phase separation (LLPS) of proteins and RNA leading to the formation of membraneless organelles (MLOs) is now established as a fundamental process in cell biology, exhibiting functions in cellular signaling, (1,2) transcriptional (3) and translational (4) regulation, enzymatic activity, (5) and stress response. (6,7) In fact, MLOs formed during stress conditions are part of a more complex orchestrated cellular feedback that also encompasses the formation of reversible protein aggregates and filaments, all serving to increase fitness and survival. (6,8,9) Stress granules (SGs) are one of such type of cytoprotective assemblies, formed in response to heat stress (HS), that among under functions are known to recruit and transiently store misfolded proteins. (6,10−13)
HS leads to local or global unfolding of proteins, resulting in the exposure of hydrophobic segments that were otherwise buried in native conditions. (14) The protein quality control (PQC) machinery (chaperones, ubiquitin-proteasome, or autophagy), engages with such unfolded/misfolded states, refolding, shielding, or degrading them, thus precluding toxic aggregation. (12,15−17) These actions are usually rationalized with partition models, where clients can directly bind to PQC as monomers, oligomers, or aggregates, with all these states being further sequestered by SGs and thus optimizing client clearance. (6,11,17−21) Nevertheless, mutations or failure in the PQC promoted by cellular stress or aging leads to deleterious changes in the material properties of the SG components, triggering pathological phase transitions. (18,22−24)
The formation of SGs involves homotypic as well as heterotypic multivalent interactions among proteins with folded and intrinsically disordered regions (IDPRs) and RNA. (25) Simplistic approaches developed to reconstitute in vitro SGs have shown that homotypic interactions within their single components such as Fused in Sarcoma (FUS), (22,26) ribonucleoprotein A1 (hnRNPA1), (27) Ras GTPase-activating protein-binding protein (G3BP), (28) or RNA binding protein TDP-43 (29) are sufficient to induce LLPS. While lower multivalence and structural rigidity of globular proteins are thought to inherently reduce the propensity for LLPS, (30) their unfolded forms were recently shown to drive aggregation-mediated phase separation via homotypic interactions. (31) Nevertheless, it remains unknown if unfolded states constitute an omnipotent driving force when considering heterotypic interactions in functional condensates (32,33) such as SGs. This is important as homotypic-driven aberrant phase transitions are bypassed inside MLOs by “heterotypic buffering”, which refers to the ability of heterotypic interactions to suppress the excess of homotypic interactions within the condensates. (34) Considering the intrinsic stickiness of unfolded states and their well-known tendency to form (toxic) aggregates, (35) it is crucial to investigate how these states engage in the condensate network and how they modify homotypic/heterotypic contacts preserving functional as opposed to pathological phase transitions.
In this study, we investigate the function of LLPS as a cytoprotective mechanism, sequestering unfolded, misfolded, or aggregated protein under cellular stress condition. Considering the in-cell folding and aggregation landscape of superoxide dismutase 1 (SOD1), (36−39) involved in the disease progression of amyotrophic lateral sclerosis (ALS), (40) we identify the folding states that are sequestered by SGs. In this context, we test the hypothesis if the protein unfolding process constitutes an omnipotent driving force for the association with condensates.

Results and Discussion

Click to copy section linkSection link copied!

The Load of Unfolded Protein and Its Effect on Condensate Association under HS in HeLa Cells and In Vitro

ALS-related full-length (SOD1FL) mutants were previously shown to accumulate and aggregate inside SGs; (18,41,42) however, the folding states that associate with these condensates remain unknown. To investigate the role of unfolded SOD1 in SG association independently of aggregation, we study SOD1bar in reference to SOD1FL. SOD1bar is a monomeric β-barrel protein, where loops IV and VII from SOD1FL were swapped by Gly-Ala-Gly linkers, leading to breakage of the dimer interface, catalytic inactivation and higher thermodynamic stability (43) (Figure 1A). Importantly, removal of Zn2+ and Cu2+ coordination sites as well as replacement of Cys-6 and Cys-111,146 by Ala and Ser diminishes the metal-loss-induced misfolding (44) and the in-cell aggregation propensities at both physiological (45) and HS conditions (Figure S1). On the basis of our prior knowledge of the in-cell modified standard state folding free energies at 37 °C (ΔGf°′), (39) we examined the SG association of a set of specifically destabilized SOD1bar mutants (G85R, A4V, G41D, G93V, and I35A) (Figure 1A). The choice of mutants with distinct ΔGf°′, combined with fast and reversible 2-state folding and lack of aggregation (except A4V, Figure S2), (39) allowed us to vary the amount of unfolded protein upon HS in the respective experiments. Stability measurements to determine Tm and ΔGf°′ under different conditions were conducted by Fast Relaxation Imaging (FReI) (46) (Figure 1B and S3); aggregation and SG association were monitored by temperature-controlled confocal laser scanning techniques (see the Supporting Information, “Materials and Methods” section).

Figure 1

Figure 1. SOD1bar as a sensor to measure protein unfolding and SG association in-cell and in vitro. (A) SOD1FL (Protein Data Bank (PDB) ID: IHL5) and SOD1bar (PDB ID: 4BCZ), with mutations A4V, I35A, G41D, G85R, and G93V highlighted. Images were assembled using UCSF Chimera. (52) (B) Schematic representation of the FReI technique with two cameras (CCD1 and CCD2). DM and BS represent dichroic mirror and beam splitter, respectively. (C) Exemplary images of HeLaFUS-mCh cells showing different partitioning of the SOD1bar-AcGFP1 mutants G93V and A4V. Enrichment of SOD1bar-AcGFP1 was defined by a local apparent partition coefficient (PC) > 1, determined as the ratio of the mean fluorescence intensity inside the SG (region 1) and the mean fluorescence intensity at 0.6 μm (region 2) from the SG (right zoom-in). (D) PC of SOD1bar after 120 min at 43 °C (N = 437 to 523 SGs). PCs of mutants A4V, G93V, G41D, and G85R are significantly higher than Wt. (E) PCs as a function of ΔGf°′ at 37 °C. The values are significantly different between each of the three defined clusters: Wt and I35A (light gray), G93V, G41D, and G85R (light brown) and A4V (light red). (F) PCs of SOD1bar-Wt and SOD1FL-Wt and the respective A4V mutants. No statistical significance is found between the PCs of SOD1bar and SOD1FL for both Wt and A4V. (G) Correlation between SOD1bar PCs and the scaled sum [norm. ΔfU37–43°C + norm. Hphob]. We normalized ΔfU37–43°C values for the different constructs (1 represents the highest ΔfU37–43°C, while 0 represents the lowest one). Similarly, Hphob was normalized from 1 (highest) to the 0 (lowest) within the different SOD1bar sequences. Finally, we sum up the normalized values, [norm. ΔfU37–43°C + norm. Hphob] and scaled between 0 and 1 (lowest to highest). (H) Correlation between mobile fractions (MFs) inside SGs and PCs. The statistical analyses reported in panels D–F were carried out using one-way ANOVA, followed by a post hoc Tukey test for multiple comparisons, computed with a confidence interval of 95%. The values in panels E, G, and H are presented as mean ± SEM.

Sequestration of SOD1 in SGs under HS Conditions

We first investigated if partitioning of SOD1bar into SGs depends on the in-cell ΔGf°′. HeLaFUS-mCh cells coexpressing AcGFP1-SOD1bar-Wt and mutants were exposed to HS at 43 °C for 120 min following a previously established protocol. (18) We quantified the partitioning of SOD1bar by determining the local apparent partition coefficient (PC) as the ratio between the mean fluorescence intensity inside SGs (FImeanSG) and the mean fluorescence intensity in the immediate surroundings (FImeanOut) using confocal microscopy. Exemplary images and corresponding PCs of SOD1bar-Wt and mutants G93V and A4V are depicted in Figure 1C. PC values of >1 are specific indicators of SOD1bar accumulation inside SGs, as defined previously by colocalization analysis carried out for SOD1FL and FUS or G3BP1. (18) Importantly, PCs are concentration-independent as long as binding-site occupancy does not reach its maximum. (47) Indeed, plotting PCs against the different SOD1bar expression levels (based on the average fluorescence intensity in the cytoplasm) for each construct shows no dependency on the intracellular concentrations (Figure S4), suggesting that such levels are below saturation.
We observed a significant increase in the PCs for SOD1bar mutants (A4V, G93V, G41D, and G85R) in comparison to the Wt protein, while no difference was found for I35A (Figure 1D). We further plotted PC values as a function of ΔGf°′ at 37 °C for each construct and classified them into three clusters, with each cluster containing PC values which are statistically not distinguishable between them (Figure 1E). Both the most and least stable constructs (Wt and I35A) display no preferential partitioning inside SGs, while constructs of intermediate stabilities (G93V, G41D, and G85R) lead to SOD1bar enrichment, being distinctively high for A4V. This mutational effect is consistent with earlier reports of the accumulation of the corresponding SOD1FL mutants inside SGs, (18,41,42) suggesting that the destabilization of the β-barrel structure may constitute the main driving force for SGs accumulation. We further verified this conclusion by comparing the PCs of SOD1bar-Wt and SOD1bar-A4V with the more aggregation-prone SOD1FL-Wt and SOD1FL-A4V. (45) As expected, we found no significant change between SOD1bar and SOD1FL PCs for both Wt and A4V (Figure 1F), while this same construct (SOD1FL-A4V) shows higher aggregation in the cytoplasm when compared to its barrel counterpart (Figure S1). Comparable levels of aggregation were found for all SOD1bar mutations (Figure S2), except A4V, suggesting that SGs-mediated sequestration is independent of the intracellular aggregation propensity of the protein during HS.
We next explored the idea that the extra load of unfolded protein upon HS (14) could reinforce partitioning of SOD1bar mutants into SGs, as pre-existing unfolded proteins remain bound to PQC (17,48) and are thus unavailable to be recruited. We determined the unfolded fractions for each construct at 37 and 43 °C from ΔGf°′ at these same temperatures and plotted the change, ΔfU37–43°C against the different PCs (Figure S5A). We found no apparent correlation (Pearson r = 0.74) indicating that HS induced unfolding is not the only requisite for SG association. We then tested if accounting for the increase in hydrophobicity upon unfolding increases this correlation, as previous studies suggested that recruitment of mutant SOD1FL into SGs was mediated by hydrophobic interactions. (41) We analyzed if mutations resulting in increased hydrophobicity could promote partitioning of HS-induced unfolded SOD1bar in SGs. As such, we first computed the hydrophobicity (Hphob) based on solvent accessible surface areas (SASAs) and overall transfer free energies from water to cyclohexane resulting from adding up the individual values obtained for each residue in the unfolded SOD1bar (Table S1, see the Supporting Information, “Materials and Methods” section). To consider the hydrophobicity change Figure S5B upon unfolding in the ΔfU37 to 43 °C (no correlation of PCs was found with the hydrophobicity alone, Figure S5B), we plotted the scaled sum [norm. ΔfU37–43°C + norm. Hphob.] (1 to 0, highest to lowest), following the strategy proposed previously. (49,50) We found a significant positive correlation with the PCs (Pearson r = 0.95, Figure 1G). We also plotted PCs as a function of ΔfU37–43°C and Hphob in a 3D plot (see Figure S5C). Both the approaches suggest that the increased amount of unfolded protein by HS, paired with an increase in hydrophobicity of the unfolded state, contributes to SOD1bar partitioning into SGs. Specifically, this effect likely relies on interactions of hydrophobic residues accessible in unfolded SOD1bar. This interpretation would be in line with prior assignments of homotypic intermolecular hydrophobic contacts as determinants for LLPS of unfolded barnase (31) and elastin. (51)
Finally, we investigated diffusion properties of SOD1bar in SGs to probe for a reduced mobility of the protein in comparison to the cytoplasm, suggesting stronger interactions and association. (18) We therefore carried out fluorescence recovery after photo bleaching (FRAP) experiments in SGs and in the cytosol (Figure S6A). In the SG environment, we found lower mobile fractions for A4V and G41D mutations when compared to the Wt and higher cytosolic mobility of A4V in contrast to that associated with the condensates (Figure S6B), suggestive of stronger interactions in SGs versus the cytoplasm. Consistently, we observed a significant negative correlation between the PCs and MFs of all SOD1bar proteins, with larger partitioning of mutant SOD1bar leading to lower mobility and thus stronger association with SGs (Figure 1H).
In summary, ALS-linked mutants of SOD1bar, as well as their SOD1FL counterparts associated with SGs under HS conditions, suggesting that such partitioning is independent of metal binding, dimerization sites, and aggregation propensity. The sequestration of proteins in SGs rather relies on the in-cell folding stability suggesting that conformers belonging to the unfolded state ensemble participate in the homotypic and heterotypic protein–protein interactions that compose these cytoprotective assemblies.

SOD1bar Partitioning into FUS Droplets In Vitro under HS Conditions

We next investigate the sequestration of unfolded SOD1 proteins in a cell-free environment by using a simplistic three-component system encompassing FUS condensates and SOD1 protein in dilute solution. The rationale is to probe if SOD1bar condensate association observed in the cell can be solely attributed to protein unfolding as a driving force. We followed a pre-established protocol to purify (see the Supporting Information, “Materials and Methods” section, Figure S7) and induce droplet formation of full-length FUS (Figure 2A), (18,22,26,53−55) together with SOD1bar. We studied the association of SOD1bar with FUS droplets before and after the HS, using confocal microscopy, where the transmitted signal (for the bright field image, Figure S8A) allowed the detection of FUS condensates and mCherry fluorescence emission was used to identify SOD1bar. While at 23 °C the FUS droplets were either visually depleted or enriched in the peripheral region with SOD1bar-Wt and mutants, at the HS temperature (43 °C) we found a significant enhancement of SOD1bar accumulation for all the constructs (Figure 2B). We further determined the PC (FlmeanDroplet/FlmeanoutDroplets) of SOD1bar to quantify its enrichment in the FUS compartments at the HS condition. Similar to the in-cell measurements, where partitioning of SOD1 inside SGs reaches a steady-state condition after 120 min, (18) we conducted HS over 60 min, until such equilibrium conditions were equally attained (Figure S9). As depicted in Figure 2C, the PC values for all the SOD1bar constructs increase after HS to values of >1, suggesting a general preferential partitioning into FUS condensates. This HS induced SOD1bar partitioning is corroborating the observed SG sequestration in cells. In contrast, the PC values do not show a correlation between ΔGf°′ of the SOD1bar and condensate association, as SOD1bar-Wt showed higher PCs than all mutants (Figure 2D). Thus, the in vitro experiments suggest that unfolding of SOD1bar, and the acquired flexibility and hydrophobicity of the unfolded state, may not constitute the main driving force for condensate association upon HS.

Figure 2

Figure 2. Association of SOD1bar with FUS droplets in vitro. (A) Schematic representation of the different FUS domains with predicted (dis)ordered domains by Prediction of Natural Disorder Regions (PONDR) Score bioinformatics tool. (56) (B) Exemplary images (mCherry channel) of SOD1bar added to FUS droplets (in buffer, pH 7.5) after 60 min of incubation at 23 or 43 °C. (C) PCs after 60 min of incubation shown as whisker box plots (N = 41–203 droplets for 23 °C, N = 422–895 droplets for 43 °C). The values are significantly different (except G85R vs A4V) among each other. Significant tests were carried out by one-way ANOVA analysis, followed by post hoc Tukey test for multiple comparisons, computed with a confidence interval of 95%. (D) Mean values of PCs (at 43 °C) plotted against ΔGf°′ at 43 °C.

The results rather suggest that a delicate balance of protein–protein interactions in the two phases governs the partitioning. The SOD1bar point mutations appear to be decisive in changing this balance, in line with our previous studies showing that the stability of SOD1bar in the cell compared to in vitro changes significantly with specific point mutations. (39) Correspondingly, we here observed that single-point mutations can even lead to the formation of multiphase condensates. (57,58) While we found that SOD1bar-G93V and SOD1bar-G41D accumulate homogeneously in the droplets, SOD1bar-Wt, SOD1bar-A4V, and SOD1bar-G85R accumulate predominantly in the periphery regions (Figure S8B).
Changes in protein–protein interactions may also be due to altered FUS–FUS interactions upon heat shock. (59) Indeed, we found that FUS droplets in the absence and presence of SOD1bar, show a noticeably modified size and morphology (see Figure S8A and S10) after HS, indicative that the HS condition modifies the FUS–FUS interactions as well as the FUS–SOD1bar network. (60,61) We speculate that part of this change may be attributed to the unfolding of the RBD of FUS (residue numbers 285–371, Figure 2A), exposing additional residues accessible for preferential interactions with SOD1bar. (62,63)
In summary, the HS conditions enhance SOD1bar partitioning into FUS condensates depending on single-point mutations, but in contrast to in-cell experiments, independent of folding stability.

SOD1bar Partitioning in Crowded Solutions

The in vitro experiments suggest that the protein–protein interactions that govern partitioning of SOD1bar are sensitive to environmental changes. This may be of particular relevance in cellular health and disease conditions. (64,65) Concerning effects in the crowded cell arising from volume-exclusion, quinary interactions, or chaperone engagement, it is evident that these factors can modulate both the folding equilibrium (17,39,66−71) as well as phase separation. (18,72−75) We deciphered those in cytomimetic media by using Ficoll 70 (15% w/v), known to exert stabilizing excluded-volume effects (76) (ΔΔGf°′(37 °C) < 0), and BSA (20% w/v), known to mimic destabilizing quinary interactions (39,76) (ΔΔGf°′(37 °C) > 0) (Figure S11). We therefore investigated whether these cosolutes that are known to change ΔGf°′ have an influence on SOD1bar association with FUS condensates. As depicted in Figure 3A,B, Ficoll 70 solution significantly promotes the SOD1bar partitioning to the FUS condensates, both at 23 and 43 °C, when compared to dilute solution. In contrast, in BSA solution, we observed a considerable decrease of the PCs for SOD1bar even after 60 min of HS (Figure 3C,D).

Figure 3

Figure 3. Effect of crowding (in vitro) on SOD1bar association with FUS droplets at different temperatures. Exemplary images (mCherry channel) of SOD1bar enrichment/depletion in the presence of (A) 15% (w/v) Ficoll 70 and (C) 20% (w/v) BSA, after 60 min of incubation at 23 and 43 °C. (B and D) PCs measured after 60 min at 23 and 43 °C in the presence of Ficoll and BSA. PCs in buffer (data from Figure 2) are shown as gray box plots for comparison. (N = 96–304 droplets for 23 °C, N = 263–706 droplets for 43 °C). The values are significantly different among each other [except for (B) G85R (in buffer) vs G85R (in Ficoll), Wt (in Ficoll) vs I35A (in Ficoll), and (D) Wt (in BSA) vs I35A (in BSA)]. Significance tests were carried out by one-way ANOVA analysis, followed by post hoc Tukey test for multiple comparisons, computed with a confidence interval of 95%.

Both observations suggest that shifting the folding equilibrium toward the folded or unfolded states does not determine SOD1bar partitioning (Figure S12). The results can be rather attributed to the cosolute effects on the LLPS (74,77,78) driving the separation of both proteins in the system, FUS and SOD1bar. Thereby, Ficoll 70 induced phase separation can be explained by increased depletion attraction (72,75,77) arising from its exclusion from the FUS–SOD1bar condensate. Likewise, BSA suppresses phase separation presumably by protein–protein interactions weakening the condensate. (74,77) In fact, BSA was previously shown to suppress phase separation of FUS IDR (amino acids 1–237) due to favorable interactions with FUS, (75) whose interpretation with the mass action model (79) suggests few free binding sites in the FUS droplet network, impeding the accommodation of SOD1bar. In other words, BSA colocalizes in FUS droplets as FUS–BSA interactions compete with FUS–SOD1bar association and thus suppress SOD1bar partitioning into the condensates. Alternatively, SOD1bar preferentially binds to BSA in the dilute phase and thus reduces its availability to interact in the FUS droplet phase.
Remarkably, the PCs in BSA are similar to those measured in cellular SGs (Figure 1D), suggesting that BSA acts as a good cytomimetic cosolute for LLPS, in accordance with our previous studies on SOD1bar folding stabilty. (39) Overall, tweaking the folding equilibrium does not modulate SOD1bar association in FUS condensates accordingly, but rather it changes the protein–protein interactions in the respective phases to determine SOD1bar partitioning.

Lattice Boltzmann Molecular Dynamics (LBMD) Simulation to Investigate Interactions of SOD1bar with FUS Low-Complexity Domain (LCD) and BSA

To quantify how the energetics of SOD1bar partitioning into a condensate depends on the folding state of the barrel, we carried out coarse-grained LBMD simulations (80,81) of folded and unfolded SOD1bar molecules embedded in a high-concentration FUS solution composed of 70 chains of the FUS LCD, mimicking a droplet solution concentration of 150 g/L (Figure S13A). Evaluation of the SOD1bar–FUS LCD interaction energies showed that from the enthalpic point of view the unfolded state of SOD1bar does not interact more favorably with the FUS LCD domain in comparison to the folded form, with the energy difference for one SOD1bar protein being less than 1 kJ mol–1 (Table 1). In fact, unfolding leads to a change in the specific contacts between SOD1bar and FUS LCD (Figure S13E,F), disfavoring the association of both proteins. These findings agree with the experimental in vitro results showing that partitioning of SOD1bar is independent of its folding stability.
Table 1. Interaction Energies of 10 SOD1bar with BSA and FUS LCD in the Two Solutionsa
 FUS LCD–SOD1bar(f)BSA–SOD1bar(f)FUS LCD–SOD1bar(u)BSA–SOD1bar(u)
energy [kJ mol–1]–35.2 ± 1.7–41.4 ± 6.3–29.3 ± 2.5–46.8 ± 1.7
a

Solutions were obtained at 27 °C and considering the folded (f) and unfolded (u) SOD1bar. Error bars were estimated via block analysis. The 100 g/L BSA concentration was used in this comparison, and the SOD1bar unfolded state was modeled as a floppy elastic network (see the “Materials and Methods” section in the Supporting Information). The observed trends are also maintained at a higher temperature; see Figure S13C.

A comparison with the interaction energies of SOD1bar embedded in BSA solutions (Table 1) yielded similar results for folded SOD1bar in BSA (100 g/L) (Figure S13B) as in FUS (150 g/L), with SOD1bar experiencing numerous favorable charge–charge contacts in BSA (Figure S13G,H). Moreover, a slight preference for BSA arises when SOD1bar unfolds. However, the magnitude of these interaction differences is very small, on the order of a few kJ mol–1 (Table 1). The comparable energetics in BSA and FUS that we quantified in the simulations rationalizes the suppressing effect of BSA on the SOD1bar partitioning into the FUS phase by proposing that SOD1bar–BSA interactions are at least as favorable as SOD1bar–FUS LCD interactions. Finally, we observed a strong dependence of the SOD1bar–BSA interaction on the concentration of the BSA solution, with the interaction energies increasing more than by a factor of 5 at 300 g/L (see Figure S13D). This points to the delicate role of local protein concentration inside and outside the condensate in determining the partitioning. Estimating the density distribution of proteins across the two-phase boundary is a current challenge and might help to rationalize the differences observed between in-cell and in vitro experiments.

Conclusion

Click to copy section linkSection link copied!

In this study, we showed that destabilized SOD1bar mutants, independent of the aggregation processes, associate with SGs under HS conditions, suggesting that the unfolded states engage in the homotypic and heterotypic interactions that drive their formation. In vitro studies in the reconstituted FUS environment, however, revealed that the intrinsic flexibility of the SOD1bar unfolded state, despite altering the protein’s interactions with the condensate, does not constitute an omnipotent driving force for condensate association. Studies in cytomimetic media paired with LBMD simulations suggest that specific protein–protein interactions, subject to single-point mutations, determine the partitioning between the two phases. Further investigations in this direction will require the inclusion of different interaction partners of SOD1 in the SG environment using in vitro reconstitutions with other well-known condensate components, such as G3BP1, (41) or PQC components such as chaperones. (18) In fact, the small but significant changes in the in-cell PC values of the SOD1bar/FL mutants in comparison to those of Wt observed here support the need to integrate the PQC mechanisms (21,24) when generally establishing the main driving forces behind SGs-mediated sequestration of destabilized proteins (including disease-related mutations). In addition to SGs, unfolded and misfolded states also bind to chaperones, (17,31,82,83) are targeted for degradation, or are accumulated in aggresomes and further cleared by autophagy, (16,18,84,85) thus distributing the overall concentration of free unfolded species among these PQC centers. (31) As such previous studies revealed, chaperones can act as suppressors of phase separation of unfolded states by binding to them preferentially in the diluted phase (31) or can be recruited inside SGs to prevent accumulation of misfolded proteins. (18)
Recent studies showed that many proteins involved in functional LLPS are expressed close to their solubility limits; thus, they are more prone to become less soluble with aging, leading to aggregation. (86) In this context, our current results built a foundation for achieving a global understanding concerning the involvement of unfolded states in LLPS, giving the intricate relation between dysfunctional unfolding, toxic aggregation, and aberrant liquid-to-solid phase transitions. (24,87,88)

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c09589.

  • Description of materials and methods, visual and plot of agregates of Wt and A4V mutants in HeLaFUS-mCh cells; laser heating and FRET data; kinetic traces and amplitudes as a function of temperature; PCs of SOD1bar-Wt and the various mutants inside SGs as a function of protein expression levels; correlation plot for SOD1bar PCs; mobility of SOD1bar inside SGs and cytosol after 120 minutes of HS; SDS PAGE gel for purified FUS-MBP and SOD1bar constructs; DIC images of FUS droplets in the presence and absence of SOD1bar; line-ROI intensity plots; images of SOD1bar G41D-enriched into or depleted from FUS-Wt droplets; change of the cross section of FUS droplets after HS at 43 °C with time; difference in ΔGf°′ at 37 °C; PCs as a function of ΔGf°′; LBMD simulation snapshots; interaction energies and contacts; fractions of protein surface areas occupied by the different residue types; mean number of contacts between different categories of residues; Tables S1 and S2 (including all the data points shown in the graphics) (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Stepan Timr - CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, FranceJ. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, Prague 8 182 23, Czech RepublicOrcidhttps://orcid.org/0000-0002-5824-4476 Email: [email protected]
    • Fabio Sterpone - CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, FranceOrcidhttps://orcid.org/0000-0003-0894-8069 Email: [email protected]
    • Simon Ebbinghaus - Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, GermanyOrcidhttps://orcid.org/0000-0001-9309-1279 Email: [email protected]
  • Authors
    • Nirnay Samanta - Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, GermanyOrcidhttps://orcid.org/0000-0002-5746-6907
    • Sara S. Ribeiro - Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, GermanyOrcidhttps://orcid.org/0000-0001-6033-8853
    • Mailin Becker - Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
    • Emeline Laborie - CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
    • Roland Pollak - Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, D-38106 Braunschweig, Germany
  • Author Contributions

    N.S. and S.S.R. contributed equally to this paper.

  • Funding

    N.S., S.S.R. and SE acknowledge support by the German Research Foundation DFG-SPP 2191 “Molecular Mechanisms of Functional Phase Separation” (Project number 402723784). F.S., S.T., and E.L. acknowledge support from the “Initiative d’Excellence” program from the French State (Grant “DYNAMO”, ANR-11-LABX-0011–01). S.T. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 840395. Part of this work was carried out using HPC resources from GENCI and LBT.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

We thank Simon Alberti, Titus Franzmann, Danny Hatters, Jonas Ahlers and David Gnutt for helpful discussions and Simon Alberti and Dorothee Dormann for providing cells and FUS plasmids, respectively.

References

Click to copy section linkSection link copied!

This article references 88 other publications.

  1. 1
    Case, L. B.; Zhang, X.; Ditlev, J. A.; Rosen, M. K. Stoichiometry Controls Activity of Phase-Separated Clusters of Actin Signaling Proteins. Science 2019, 363 (6431), 10931097,  DOI: 10.1126/science.aau6313
  2. 2
    Huang, W. Y. C.; Alvarez, S.; Kondo, Y.; Lee, Y. K.; Chung, J. K.; Lam, H. Y. M.; Biswas, K. H.; Kuriyan, J.; Groves, J. T. A Molecular Assembly Phase Transition and Kinetic Proofreading Modulate Ras Activation by SOS. Science 2019, 363 (6431), 10981103,  DOI: 10.1126/science.aau5721
  3. 3
    Lu, Y.; Wu, T.; Gutman, O.; Lu, H.; Zhou, Q.; Henis, Y. I.; Luo, K. Phase Separation of TAZ Compartmentalizes the Transcription Machinery to Promote Gene Expression. Nat. Cell Biol. 2020, 22 (4), 453464,  DOI: 10.1038/s41556-020-0485-0
  4. 4
    Iserman, C.; Desroches Altamirano, C.; Jegers, C.; Friedrich, U.; Zarin, T.; Fritsch, A. W.; Mittasch, M.; Domingues, A.; Hersemann, L.; Jahnel, M. Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production. Cell 2020, 181, 818,  DOI: 10.1016/j.cell.2020.04.009
  5. 5
    Peeples, W.; Rosen, M. K. Mechanistic Dissection of Increased Enzymatic Rate in a Phase-Separated Compartment. Nat. Chem. Biol. 2021, 17 (6), 693702,  DOI: 10.1038/s41589-021-00801-x
  6. 6
    Riback, J. A.; Katanski, C. D.; Kear-Scott, J. L.; Pilipenko, E. V.; Rojek, A. E.; Sosnick, T. R.; Drummond, D. A. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response. Cell 2017, 168 (6), 10281040,  DOI: 10.1016/j.cell.2017.02.027
  7. 7
    Franzmann, T. M.; Jahnel, M.; Pozniakovsky, A.; Mahamid, J.; Holehouse, A. S.; Nüske, E.; Richter, D.; Baumeister, W.; Grill, S. W.; Pappu, R. V. Phase Separation of a Yeast Prion Protein Promotes Cellular Fitness. Science 2018, 359 (6371), eaao5654,  DOI: 10.1126/science.aao5654
  8. 8
    Petrovska, I.; Nüske, E.; Munder, M. C.; Kulasegaran, G.; Malinovska, L.; Kroschwald, S.; Richter, D.; Fahmy, K.; Gibson, K.; Verbavatz, J.-M.; Alberti, S. Filament Formation by Metabolic Enzymes Is a Specific Adaptation to an Advanced State of Cellular Starvation. eLife 2014, 3, e02409  DOI: 10.7554/eLife.02409
  9. 9
    Munder, M. C.; Midtvedt, D.; Franzmann, T.; Nüske, E.; Otto, O.; Herbig, M.; Ulbricht, E.; Müller, P.; Taubenberger, A.; Maharana, S.; Malinovska, L.; Richter, D.; Guck, J.; Zaburdaev, V.; Alberti, S. A PH-Driven Transition of the Cytoplasm from a Fluid- to a Solid-like State Promotes Entry into Dormancy. eLife 2016, 5, e09347  DOI: 10.7554/eLife.09347
  10. 10
    Wallace, E. W. J.; Kear-Scott, J. L.; Pilipenko, E. V.; Schwartz, M. H.; Laskowski, P. R.; Rojek, A. E.; Katanski, C. D.; Riback, J. A.; Dion, M. F.; Franks, A. M.; Airoldi, E. M.; Pan, T.; Budnik, B. A.; Drummond, D. A. Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress. Cell 2015, 162 (6), 12861298,  DOI: 10.1016/j.cell.2015.08.041
  11. 11
    Cabrera, M.; Boronat, S.; Marte, L.; Vega, M.; Pérez, P.; Ayté, J.; Hidalgo, E. Chaperone-Facilitated Aggregation of Thermo-Sensitive Proteins Shields Them from Degradation during Heat Stress. Cell Rep. 2020, 30 (7), 24302443,  DOI: 10.1016/j.celrep.2020.01.077
  12. 12
    Gallardo, P.; Salas-Pino, S.; Daga, R. R. Reversible Protein Aggregation as Cytoprotective Mechanism against Heat Stress. Curr. Genet. 2021, 67, 849855,  DOI: 10.1007/s00294-021-01191-2
  13. 13
    Franzmann, T.; Alberti, S. Ubiquitin Protein Helps Cells to Recover from Stress. Nature 2021, 597, 183184,  DOI: 10.1038/d41586-021-02197-z
  14. 14
    Zhao, L.; Vecchi, G.; Vendruscolo, M.; Körner, R.; Hayer-Hartl, M.; Hartl, F. U. The Hsp70 Chaperone System Stabilizes a Thermo-Sensitive Subproteome in E. Coli. Cell Rep. 2019, 28 (5), 13351345,  DOI: 10.1016/j.celrep.2019.06.081
  15. 15
    Vabulas, R. M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F. U. Protein Folding in the Cytoplasm and the Heat Shock Response. Cold Spring Harbor Perspect. Biol. 2010, 2 (12), a004390,  DOI: 10.1101/cshperspect.a004390
  16. 16
    Ganesan, S.; Rohde, G.; Eckermann, K.; Sroka, K.; Schaefer, M. K. E.; Dohm, C. P.; Kermer, P.; Haase, G.; Wouters, F.; Bähr, M.; Weishaupt, J. H. Mutant SOD1 Detoxification Mechanisms in Intact Single Cells. Cell Death Differ. 2008, 15 (2), 312321,  DOI: 10.1038/sj.cdd.4402262
  17. 17
    Wood, R. J.; Ormsby, A. R.; Radwan, M.; Cox, D.; Sharma, A.; Vöpel, T.; Ebbinghaus, S.; Oliveberg, M.; Reid, G. E.; Dickson, A.; Hatters, D. M. A Biosensor-Based Framework to Measure Latent Proteostasis Capacity. Nat. Commun. 2018, 9 (1), 287,  DOI: 10.1038/s41467-017-02562-5
  18. 18
    Mateju, D.; Franzmann, T. M.; Patel, A.; Kopach, A.; Boczek, E. E.; Maharana, S.; Lee, H. O.; Carra, S.; Hyman, A. A.; Alberti, S. An Aberrant Phase Transition of Stress Granules Triggered by Misfolded Protein and Prevented by Chaperone Function. EMBO J. 2017, 36 (12), 16691687,  DOI: 10.15252/embj.201695957
  19. 19
    Boronat, S.; Cabrera, M.; Hidalgo, E. Spatial Sequestration of Misfolded Proteins as an Active Chaperone-Mediated Process during Heat Stress. Curr. Genet. 2021, 67 (2), 237243,  DOI: 10.1007/s00294-020-01135-2
  20. 20
    Cherkasov, V.; Hofmann, S.; Druffel-Augustin, S.; Mogk, A.; Tyedmers, J.; Stoecklin, G.; Bukau, B. Coordination of Translational Control and Protein Homeostasis during Severe Heat Stress. Curr. Biol. 2013, 23 (24), 24522462,  DOI: 10.1016/j.cub.2013.09.058
  21. 21
    Hipp, M. S.; Kasturi, P.; Hartl, F. U. The Proteostasis Network and Its Decline in Ageing. Nat. Rev. Mol. Cell Biol. 2019, 20 (7), 421,  DOI: 10.1038/s41580-019-0101-y
  22. 22
    Patel, A.; Lee, H. O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M. Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T. M.; Pozniakovski, A.; Poser, I.; Maghelli, N.; Royer, L. A.; Weigert, M.; Myers, E. W.; Grill, S.; Drechsel, D.; Hyman, A. A.; Alberti, S. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015, 162 (5), 10661077,  DOI: 10.1016/j.cell.2015.07.047
  23. 23
    Marrone, L.; Drexler, H. C. A.; Wang, J.; Tripathi, P.; Distler, T.; Heisterkamp, P.; Anderson, E. N.; Kour, S.; Moraiti, A.; Maharana, S.; Bhatnagar, R.; Belgard, T. G.; Tripathy, V.; Kalmbach, N.; Hosseinzadeh, Z.; Crippa, V.; Abo-Rady, M.; Wegner, F.; Poletti, A.; Troost, D.; Aronica, E.; Busskamp, V.; Weis, J.; Pandey, U. B.; Hyman, A. A.; Alberti, S.; Goswami, A.; Sterneckert, J. FUS Pathology in ALS Is Linked to Alterations in Multiple ALS-Associated Proteins and Rescued by Drugs Stimulating Autophagy. Acta Neuropathol. 2019, 138 (1), 6784,  DOI: 10.1007/s00401-019-01998-x
  24. 24
    Alberti, S.; Hyman, A. A. Biomolecular Condensates at the Nexus of Cellular Stress, Protein Aggregation Disease and Ageing. Nat. Rev. Mol. Cell Biol. 2021, 22 (3), 196213,  DOI: 10.1038/s41580-020-00326-6
  25. 25
    Hofmann, S.; Kedersha, N.; Anderson, P.; Ivanov, P. Molecular Mechanisms of Stress Granule Assembly and Disassembly. Biochim. Biophys. Acta, Mol. Cell Res. 2021, 1868 (1), 118876,  DOI: 10.1016/j.bbamcr.2020.118876
  26. 26
    Burke, K. A.; Janke, A. M.; Rhine, C. L.; Fawzi, N. L. Residue-by-Residue View of In Vitro FUS Granules That Bind the C-Terminal Domain of RNA Polymerase II. Mol. Cell 2015, 60 (2), 231241,  DOI: 10.1016/j.molcel.2015.09.006
  27. 27
    Molliex, A.; Temirov, J.; Lee, J.; Coughlin, M.; Kanagaraj, A. P.; Kim, H. J.; Mittag, T.; Taylor, J. P. Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization. Cell 2015, 163 (1), 123133,  DOI: 10.1016/j.cell.2015.09.015
  28. 28
    Guillén-Boixet, J.; Kopach, A.; Holehouse, A. S.; Wittmann, S.; Jahnel, M.; Schlüßler, R.; Kim, K.; Trussina, I. R. E. A.; Wang, J.; Mateju, D.; Poser, I.; Maharana, S.; Ruer-Gruß, M.; Richter, D.; Zhang, X.; Chang, Y.-T.; Guck, J.; Honigmann, A.; Mahamid, J.; Hyman, A. A.; Pappu, R. V.; Alberti, S.; Franzmann, T. M. RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation. Cell 2020, 181 (2), 346361,  DOI: 10.1016/j.cell.2020.03.049
  29. 29
    Conicella, A. E.; Zerze, G. H.; Mittal, J.; Fawzi, N. L. ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain. Structure 2016, 24 (9), 15371549,  DOI: 10.1016/j.str.2016.07.007
  30. 30
    Zhou, H.-X.; Nguemaha, V.; Mazarakos, K.; Qin, S. Why Do Disordered and Structured Proteins Behave Differently in Phase Separation?. Trends Biochem. Sci. 2018, 43 (7), 499516,  DOI: 10.1016/j.tibs.2018.03.007
  31. 31
    Ruff, K. M.; Choi, Y. H.; Cox, D.; Ormsby, A. R.; Myung, Y.; Ascher, D. B.; Radford, S. E.; Pappu, R. V.; Hatters, D. M. Sequence Grammar Underlying Unfolding and Phase Separation of Globular Proteins. bioRxiv (Biophysics) , August 20, 2021, 2021.08.20.457073. DOI: 10.1101/2021.08.20.457073 (accessed 2021–09–08).
  32. 32
    Ribeiro, S.; Ebbinghaus, S.; Marcos, J. C. Protein Folding and Quinary Interactions: Creating Cellular Organisation through Functional Disorder. FEBS Lett. 2018, 592 (18), 30403053,  DOI: 10.1002/1873-3468.13211
  33. 33
    Ribeiro, S. S.; Samanta, N.; Ebbinghaus, S.; Marcos, J. C. The Synergic Effect of Water and Biomolecules in Intracellular Phase Separation. Nat. Rev. Chem. 2019, 3 (9), 552561,  DOI: 10.1038/s41570-019-0120-4
  34. 34
    Mathieu, C.; Pappu, R. V.; Taylor, J. P. Beyond Aggregation: Pathological Phase Transitions in Neurodegenerative Disease. Science 2020, 370 (6512), 5660,  DOI: 10.1126/science.abb8032
  35. 35
    Jahn, T. R.; Radford, S. E. Folding versus Aggregation: Polypeptide Conformations on Competing Pathways. Arch. Biochem. Biophys. 2008, 469 (1), 100117,  DOI: 10.1016/j.abb.2007.05.015
  36. 36
    Grad, L. I.; Yerbury, J. J.; Turner, B. J.; Guest, W. C.; Pokrishevsky, E.; O’Neill, M. A.; Yanai, A.; Silverman, J. M.; Zeineddine, R.; Corcoran, L.; Kumita, J. R.; Luheshi, L. M.; Yousefi, M.; Coleman, B. M.; Hill, A. F.; Plotkin, S. S.; Mackenzie, I. R.; Cashman, N. R. Intercellular Propagated Misfolding of Wild-Type Cu/Zn Superoxide Dismutase Occurs via Exosome-Dependent and -Independent Mechanisms. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (9), 36203625,  DOI: 10.1073/pnas.1312245111
  37. 37
    Sen Mojumdar, S.; Scholl, Z. N.; Dee, D. R.; Rouleau, L.; Anand, U.; Garen, C.; Woodside, M. T. Partially Native Intermediates Mediate Misfolding of SOD1 in Single-Molecule Folding Trajectories. Nat. Commun. 2017, 8 (1), 1881,  DOI: 10.1038/s41467-017-01996-1
  38. 38
    Lang, L.; Zetterström, P.; Brännström, T.; Marklund, S. L.; Danielsson, J.; Oliveberg, M. SOD1 Aggregation in ALS Mice Shows Simplistic Test Tube Behavior. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (32), 98789883,  DOI: 10.1073/pnas.1503328112
  39. 39
    Gnutt, D.; Timr, S.; Ahlers, J.; König, B.; Manderfeld, E.; Heyden, M.; Sterpone, F.; Ebbinghaus, S. Stability Effect of Quinary Interactions Reversed by Single Point Mutations. J. Am. Chem. Soc. 2019, 141 (11), 46604669,  DOI: 10.1021/jacs.8b13025
  40. 40
    Wright, G. S. A.; Antonyuk, S. V.; Hasnain, S. S. The Biophysics of Superoxide Dismutase-1 and Amyotrophic Lateral Sclerosis. Q. Rev. Biophys. 2019, 52, e12,  DOI: 10.1017/S003358351900012X
  41. 41
    Gal, J.; Kuang, L.; Barnett, K. R.; Zhu, B. Z.; Shissler, S. C.; Korotkov, K. V.; Hayward, L. J.; Kasarskis, E. J.; Zhu, H. ALS Mutant SOD1 Interacts with G3BP1 and Affects Stress Granule Dynamics. Acta Neuropathol. 2016, 132 (4), 563576,  DOI: 10.1007/s00401-016-1601-x
  42. 42
    Da Ros, M.; Deol, H. K.; Savard, A.; Guo, H.; Meiering, E. M.; Gibbings, D. Wild-Type and Mutant SOD1 Localizes to RNA-Rich Structures in Cells and Mice but Does Not Bind RNA. J. Neurochem. 2021, 156 (4), 524538,  DOI: 10.1111/jnc.15126
  43. 43
    Danielsson, J.; Kurnik, M.; Lang, L.; Oliveberg, M. Cutting Off Functional Loops from Homodimeric Enzyme Superoxide Dismutase 1 (SOD1) Leaves Monomeric β-Barrels. J. Biol. Chem. 2011, 286 (38), 3307033083,  DOI: 10.1074/jbc.M111.251223
  44. 44
    Nordlund, A.; Leinartaitė, L.; Saraboji, K.; Aisenbrey, C.; Gröbner, G.; Zetterström, P.; Danielsson, J.; Logan, D. T.; Oliveberg, M. Functional Features Cause Misfolding of the ALS-Provoking Enzyme SOD1. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (24), 96679672,  DOI: 10.1073/pnas.0812046106
  45. 45
    Niwa, J.; Yamada, S.; Ishigaki, S.; Sone, J.; Takahashi, M.; Katsuno, M.; Tanaka, F.; Doyu, M.; Sobue, G. Disulfide Bond Mediates Aggregation, Toxicity, and Ubiquitylation of Familial Amyotrophic Lateral Sclerosis-Linked Mutant SOD1 *. J. Biol. Chem. 2007, 282 (38), 2808728095,  DOI: 10.1074/jbc.M704465200
  46. 46
    Ebbinghaus, S.; Dhar, A.; McDonald, J. D.; Gruebele, M. Protein Folding Stability and Dynamics Imaged in a Living Cell. Nat. Methods 2010, 7 (4), 319323,  DOI: 10.1038/nmeth.1435
  47. 47
    van Lente, J. J.; Claessens, M. M. A. E.; Lindhoud, S. Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles. Biomacromolecules 2019, 20 (10), 36963703,  DOI: 10.1021/acs.biomac.9b00701
  48. 48
    Raeburn, C. B.; Ormsby, A.; Moily, N. S.; Cox, D.; Ebbinghaus, S.; Dickson, A.; McColl, G.; Hatters, D. M. A Biosensor to Gauge Protein Homeostasis Resilience Differences in the Nucleus Compared to Cytosol of Mammalian Cells. bioRxiv (Biochemistry) , April 19, 2021, 2021.04.19.440383. DOI: 10.1101/2021.04.19.440383 (accessed 2021–09–08).
  49. 49
    Vassall, K. A.; Stubbs, H. R.; Primmer, H. A.; Tong, M. S.; Sullivan, S. M.; Sobering, R.; Srinivasan, S.; Briere, L.-A. K.; Dunn, S. D.; Colón, W.; Meiering, E. M. Decreased Stability and Increased Formation of Soluble Aggregates by Immature Superoxide Dismutase Do Not Account for Disease Severity in ALS. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (6), 22102215,  DOI: 10.1073/pnas.0913021108
  50. 50
    Wang, Q.; Johnson, J. L.; Agar, N. Y. R.; Agar, J. N. Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival. PLoS Biol. 2008, 6 (7), e170,  DOI: 10.1371/journal.pbio.0060170
  51. 51
    Rauscher, S.; Pomès, R. The Liquid Structure of Elastin. eLife 2017, 6, e26526  DOI: 10.7554/eLife.26526
  52. 52
    Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25 (13), 16051612,  DOI: 10.1002/jcc.20084
  53. 53
    Hofweber, M.; Hutten, S.; Bourgeois, B.; Spreitzer, E.; Niedner-Boblenz, A.; Schifferer, M.; Ruepp, M.-D.; Simons, M.; Niessing, D.; Madl, T.; Dormann, D. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 2018, 173 (3), 706719,  DOI: 10.1016/j.cell.2018.03.004
  54. 54
    Alexander, E. J.; Ghanbari Niaki, A.; Zhang, T.; Sarkar, J.; Liu, Y.; Nirujogi, R. S.; Pandey, A.; Myong, S.; Wang, J. Ubiquilin 2 Modulates ALS/FTD-Linked FUS–RNA Complex Dynamics and Stress Granule Formation. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (49), E11485E11494,  DOI: 10.1073/pnas.1811997115
  55. 55
    Ahlers, J.; Adams, E. M.; Bader, V.; Pezzotti, S.; Winklhofer, K. F.; Tatzelt, J.; Havenith, M. The Key Role of Solvent in Condensation: Mapping Water in Liquid-Liquid Phase-Separated FUS. Biophys. J. 2021, 120, 1266,  DOI: 10.1016/j.bpj.2021.01.019
  56. 56
    Li, X.; Romero, P.; Rani, M.; Dunker, A. K.; Obradovic, Z. Predicting Protein Disorder for N-, C-, and Internal Regions. Genome Inform. Workshop Genome Inform. 1999, 10, 3040
  57. 57
    Boeynaems, S.; Holehouse, A. S.; Weinhardt, V.; Kovacs, D.; Van Lindt, J.; Larabell, C.; Van Den Bosch, L.; Das, R.; Tompa, P. S.; Pappu, R. V.; Gitler, A. D. Spontaneous Driving Forces Give Rise to Protein–RNA Condensates with Coexisting Phases and Complex Material Properties. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 78897898,  DOI: 10.1073/pnas.1821038116
  58. 58
    Kaur, T.; Raju, M.; Alshareedah, I.; Davis, R. B.; Potoyan, D. A.; Banerjee, P. R. Sequence-Encoded and Composition-Dependent Protein-RNA Interactions Control Multiphasic Condensate Morphologies. Nat. Commun. 2021, 12 (1), 872,  DOI: 10.1038/s41467-021-21089-4
  59. 59
    Dignon, G. L.; Zheng, W.; Kim, Y. C.; Mittal, J. Temperature-Controlled Liquid–Liquid Phase Separation of Disordered Proteins. ACS Cent. Sci. 2019, 5 (5), 821830,  DOI: 10.1021/acscentsci.9b00102
  60. 60
    Zwicker, D.; Seyboldt, R.; Weber, C. A.; Hyman, A. A.; Jülicher, F. Growth and Division of Active Droplets Provides a Model for Protocells. Nat. Phys. 2017, 13 (4), 408413,  DOI: 10.1038/nphys3984
  61. 61
    Wang, J.; Choi, J.-M.; Holehouse, A. S.; Lee, H. O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D.; Poser, I.; Pappu, R. V.; Alberti, S.; Hyman, A. A. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell 2018, 174 (3), 688699,  DOI: 10.1016/j.cell.2018.06.006
  62. 62
    Lu, Y.; Lim, L.; Song, J. RRM Domain of ALS/FTD-Causing FUS Characteristic of Irreversible Unfolding Spontaneously Self-Assembles into Amyloid Fibrils. Sci. Rep. 2017, 7 (1), 114,  DOI: 10.1038/s41598-017-01281-7
  63. 63
    Li, S.; Yoshizawa, T.; Yamazaki, R.; Fujiwara, A.; Kameda, T.; Kitahara, R. Pressure and Temperature Phase Diagram for Liquid–Liquid Phase Separation of the RNA-Binding Protein Fused in Sarcoma. J. Phys. Chem. B 2021, 125 (25), 68216829,  DOI: 10.1021/acs.jpcb.1c01451
  64. 64
    Gnutt, D.; Brylski, O.; Edengeiser, E.; Havenith, M.; Ebbinghaus, S. Imperfect Crowding Adaptation of Mammalian Cells towards Osmotic Stress and Its Modulation by Osmolytes. Mol. BioSyst. 2017, 13 (11), 22182221,  DOI: 10.1039/C7MB00432J
  65. 65
    Gnutt, D.; Sistemich, L.; Ebbinghaus, S. Protein Folding Modulation in Cells Subject to Differentiation and Stress. Front. Mol. Biosci. 2019, 6, 38,  DOI: 10.3389/fmolb.2019.00038
  66. 66
    Senske, M.; Törk, L.; Born, B.; Havenith, M.; Herrmann, C.; Ebbinghaus, S. Protein Stabilization by Macromolecular Crowding through Enthalpy Rather than Entropy. J. Am. Chem. Soc. 2014, 136 (25), 90369041,  DOI: 10.1021/ja503205y
  67. 67
    Smith, A. E.; Zhou, L. Z.; Gorensek, A. H.; Senske, M.; Pielak, G. J. In-Cell Thermodynamics and a New Role for Protein Surfaces. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (7), 17251730,  DOI: 10.1073/pnas.1518620113
  68. 68
    Monteith, W. B.; Cohen, R. D.; Smith, A. E.; Guzman-Cisneros, E.; Pielak, G. J. Quinary Structure Modulates Protein Stability in Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (6), 17391742,  DOI: 10.1073/pnas.1417415112
  69. 69
    Cohen, R. D.; Pielak, G. J. Quinary Interactions with an Unfolded State Ensemble: Quinary Interactions & Unfolded State Ensemble. Protein Sci. 2017, 26 (9), 16981703,  DOI: 10.1002/pro.3206
  70. 70
    Samanta, N.; Mahanta, D. D.; Hazra, S.; Kumar, G. S.; Mitra, R. K. Short Chain Polyethylene Glycols Unusually Assist Thermal Unfolding of Human Serum Albumin. Biochimie 2014, 104, 8189,  DOI: 10.1016/j.biochi.2014.05.009
  71. 71
    Sörensen, T.; Leeb, S.; Danielsson, J.; Oliveberg, M. Polyanions Cause Protein Destabilization Similar to That in Live Cells. Biochemistry 2021, 60 (10), 735746,  DOI: 10.1021/acs.biochem.0c00889
  72. 72
    Kaur, T.; Alshareedah, I.; Wang, W.; Ngo, J.; Moosa, M. M.; Banerjee, P. R. Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates. Biomolecules 2019, 9 (2), 71,  DOI: 10.3390/biom9020071
  73. 73
    Park, S.; Barnes, R.; Lin, Y.; Jeon, B.; Najafi, S.; Delaney, K. T.; Fredrickson, G. H.; Shea, J.-E.; Hwang, D. S.; Han, S. Dehydration Entropy Drives Liquid-Liquid Phase Separation by Molecular Crowding. Commun. Chem. 2020, 3 (1), 112,  DOI: 10.1038/s42004-020-0328-8
  74. 74
    Nguemaha, V.; Zhou, H.-X. Liquid-Liquid Phase Separation of Patchy Particles Illuminates Diverse Effects of Regulatory Components on Protein Droplet Formation. Sci. Rep. 2018, 8 (1), 6728,  DOI: 10.1038/s41598-018-25132-1
  75. 75
    Protter, D. S. W.; Rao, B. S.; Van Treeck, B.; Lin, Y.; Mizoue, L.; Rosen, M. K.; Parker, R. Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly. Cell Rep. 2018, 22 (6), 14011412,  DOI: 10.1016/j.celrep.2018.01.036
  76. 76
    Danielsson, J.; Mu, X.; Lang, L.; Wang, H.; Binolfi, A.; Theillet, F.-X.; Bekei, B.; Logan, D. T.; Selenko, P.; Wennerström, H.; Oliveberg, M. Thermodynamics of Protein Destabilization in Live Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (40), 1240212407,  DOI: 10.1073/pnas.1511308112
  77. 77
    Ghosh, A.; Mazarakos, K.; Zhou, H.-X. Three Archetypical Classes of Macromolecular Regulators of Protein Liquid–Liquid Phase Separation. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (39), 1947419483,  DOI: 10.1073/pnas.1907849116
  78. 78
    André, A. A. M.; Spruijt, E. Liquid–Liquid Phase Separation in Crowded Environments. Int. J. Mol. Sci. 2020, 21 (16), 5908,  DOI: 10.3390/ijms21165908
  79. 79
    Banani, S. F.; Rice, A. M.; Peeples, W. B.; Lin, Y.; Jain, S.; Parker, R.; Rosen, M. K. Compositional Control of Phase-Separated Cellular Bodies. Cell 2016, 166 (3), 651663,  DOI: 10.1016/j.cell.2016.06.010
  80. 80
    Sterpone, F.; Melchionna, S.; Tuffery, P.; Pasquali, S.; Mousseau, N.; Cragnolini, T.; Chebaro, Y.; St-Pierre, J.-F.; Kalimeri, M.; Barducci, A.; Laurin, Y.; Tek, A.; Baaden, M.; Nguyen, P. H.; Derreumaux, P. The OPEP Protein Model: From Single Molecules, Amyloid Formation, Crowding and Hydrodynamics to DNA/RNA Systems. Chem. Soc. Rev. 2014, 43 (13), 48714893,  DOI: 10.1039/C4CS00048J
  81. 81
    Stirnemann, F.; Derreumaux, P.; Melchionna, S. Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics. J. Chem. Theory Comput. 2015, 11 (4), 18431853,  DOI: 10.1021/ct501015h
  82. 82
    Claes, F.; Rudyak, S.; Laird, A. S.; Louros, N.; Beerten, J.; Debulpaep, M.; Michiels, E.; van der Kant, R.; Van Durme, J.; De Baets, G.; Houben, B.; Ramakers, M.; Yuan, K.; Gwee, S. S. L.; Hernandez, S.; Broersen, K.; Oliveberg, M.; Moahamed, B.; Kirstein, J.; Robberecht, W.; Rousseau, F.; Schymkowitz, J. Exposure of a Cryptic Hsp70 Binding Site Determines the Cytotoxicity of the ALS-Associated SOD1-Mutant A4V. Protein Eng., Des. Sel. 2019, 32 (10), 443457,  DOI: 10.1093/protein/gzaa008
  83. 83
    Imamoglu, R.; Balchin, D.; Hayer-Hartl, M.; Hartl, F. U. Bacterial Hsp70 Resolves Misfolded States and Accelerates Productive Folding of a Multi-Domain Protein. Nat. Commun. 2020, 11 (1), 113,  DOI: 10.1038/s41467-019-14245-4
  84. 84
    Gal, J.; Ström, A.-L.; Kilty, R.; Zhang, F.; Zhu, H. P62 Accumulates and Enhances Aggregate Formation in Model Systems of Familial Amyotrophic Lateral Sclerosis*. J. Biol. Chem. 2007, 282 (15), 1106811077,  DOI: 10.1074/jbc.M608787200
  85. 85
    Ciechanover, A.; Kwon, Y. T. Degradation of Misfolded Proteins in Neurodegenerative Diseases: Therapeutic Targets and Strategies. Exp. Mol. Med. 2015, 47 (3), e147e147,  DOI: 10.1038/emm.2014.117
  86. 86
    Vecchi, G.; Sormanni, P.; Mannini, B.; Vandelli, A.; Tartaglia, G. G.; Dobson, C. M.; Hartl, F. U.; Vendruscolo, M. Proteome-Wide Observation of the Phenomenon of Life on the Edge of Solubility. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (2), 10151020,  DOI: 10.1073/pnas.1910444117
  87. 87
    Dobson, C. M. Principles of Protein Folding, Misfolding and Aggregation. Semin. Cell Dev. Biol. 2004, 15 (1), 316,  DOI: 10.1016/j.semcdb.2003.12.008
  88. 88
    Zbinden, A.; Pérez-Berlanga, M.; De Rossi, P.; Polymenidou, M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev. Cell 2020, 55 (1), 4568,  DOI: 10.1016/j.devcel.2020.09.014

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 20 publications.

  1. Xiaoxu Chen, Xueying Zhang, Mingming Qin, Jingfei Chen, Mengting Wang, Zhijun Liu, Liaoyuan An, Xiangfei Song, Lishan Yao. Protein Allostery Study in Cells Using NMR Spectroscopy. Analytical Chemistry 2024, 96 (18) , 7065-7072. https://doi.org/10.1021/acs.analchem.4c00360
  2. Caterina Alfano, Yann Fichou, Klaus Huber, Matthias Weiss, Evan Spruijt, Simon Ebbinghaus, Giuseppe De Luca, Maria Agnese Morando, Valeria Vetri, Piero Andrea Temussi, Annalisa Pastore. Molecular Crowding: The History and Development of a Scientific Paradigm. Chemical Reviews 2024, 124 (6) , 3186-3219. https://doi.org/10.1021/acs.chemrev.3c00615
  3. Xenia Tschurikow, Aaron Gadzekpo, Mai P. Tran, Rakesh Chatterjee, Marcel Sobucki, Vasily Zaburdaev, Kerstin Göpfrich, Lennart Hilbert. Amphiphiles Formed from Synthetic DNA-Nanomotifs Mimic the Stepwise Dispersal of Transcriptional Clusters in the Cell Nucleus. Nano Letters 2023, 23 (17) , 7815-7824. https://doi.org/10.1021/acs.nanolett.3c01301
  4. Alexander Hautke, Arthur Voronin, Fathia Idiris, Anton Riel, Felix Lindner, Amandine Lelièvre-Büttner, Jikang Zhu, Bettina Appel, Edoardo Fatti, Karsten Weis, Sabine Müller, Alexander Schug, Simon Ebbinghaus. CAG-Repeat RNA Hairpin Folding and Recruitment to Nuclear Speckles with a Pivotal Role of ATP as a Cosolute. Journal of the American Chemical Society 2023, 145 (17) , 9571-9583. https://doi.org/10.1021/jacs.2c13653
  5. Yanyan Yan, Chao Yu, Bolun Xie, Hui Zhou, Caiyu Zhang, Li Tian. Characterization and Early Response of the DEAD Gene Family to Heat Stress in Tomato. Plants 2025, 14 (8) , 1172. https://doi.org/10.3390/plants14081172
  6. Linda Sistemich, Simon Ebbinghaus. Heat application in live cell imaging. FEBS Open Bio 2024, 14 (12) , 1940-1954. https://doi.org/10.1002/2211-5463.13912
  7. Brian Shaw, Phyo Han Thwin, Nan Jia, Hope Weng, Chunlong Ma, Haining Zhu, Lei Wang. Stress granules play a critical role in hexavalent chromium-induced malignancy in a G3BP1 dependent manner. Environmental Pollution 2024, 362 , 124997. https://doi.org/10.1016/j.envpol.2024.124997
  8. Roland Pollak, Leon Koch, Benedikt König, Sara S. Ribeiro, Nirnay Samanta, Klaus Huber, Simon Ebbinghaus. Cell stress and phase separation stabilize the monomeric state of pseudoisocyanine chloride employed as a self-assembly crowding sensor. Communications Chemistry 2024, 7 (1) https://doi.org/10.1038/s42004-024-01315-y
  9. Brent S. Visser, Wojciech P. Lipiński, Evan Spruijt. The role of biomolecular condensates in protein aggregation. Nature Reviews Chemistry 2024, 8 (9) , 686-700. https://doi.org/10.1038/s41570-024-00635-w
  10. Zheng Niu, Xinrui Gui, Shuang Feng, Bernd Reif. Aggregation Mechanisms and Molecular Structures of Amyloid‐β in Alzheimer's Disease. Chemistry – A European Journal 2024, 30 (48) https://doi.org/10.1002/chem.202400277
  11. Luis E. Coronas, Thong Van, Antonio Iorio, Lisa J. Lapidus, Michael Feig, Fabio Sterpone. Stability and deformation of biomolecular condensates under the action of shear flow. The Journal of Chemical Physics 2024, 160 (21) https://doi.org/10.1063/5.0209119
  12. Sara S. Ribeiro, David Gnutt, Salome Azoulay-Ginsburg, Zamira Fetahaj, Ella Spurlock, Felix Lindner, Damon Kuz, Yfat Cohen-Erez, Hanna Rapaport, Adrian Israelson, Arie-lev Gruzman, Simon Ebbinghaus. Intracellular spatially-targeted chemical chaperones increase native state stability of mutant SOD1 barrel. Biological Chemistry 2023, 404 (10) , 909-930. https://doi.org/10.1515/hsz-2023-0198
  13. Mengting Wang, Xiangfei Song, Jingfei Chen, Xiaoxu Chen, Xueying Zhang, Ying Yang, Zhijun Liu, Lishan Yao. Intracellular environment can change protein conformational dynamics in cells through weak interactions. Science Advances 2023, 9 (29) https://doi.org/10.1126/sciadv.adg9141
  14. Sibasankar Panigrahy, Rahul Sahu, Sandeep K. Reddy, Divya Nayar. Structure, energetics and dynamics in crowded amino acid solutions: a molecular dynamics study. Physical Chemistry Chemical Physics 2023, 25 (7) , 5430-5442. https://doi.org/10.1039/D2CP04238J
  15. Bidisha Das, Sumangal Roychowdhury, Priyesh Mohanty, Azamat Rizuan, Joy Chakraborty, Jeetain Mittal, Krishnananda Chattopadhyay. A Zn‐dependent structural transition of SOD1 modulates its ability to undergo phase separation. The EMBO Journal 2023, 42 (2) https://doi.org/10.15252/embj.2022111185
  16. Hong-Yu Hu, Ya-Jun Liu. Sequestration of cellular native factors by biomolecular assemblies: Physiological or pathological?. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2022, 1869 (12) , 119360. https://doi.org/10.1016/j.bbamcr.2022.119360
  17. Nirnay Samanta, Yasser B. Ruiz‐Blanco, Zamira Fetahaj, David Gnutt, Carter Lantz, Joseph A. Loo, Elsa Sanchez‐Garcia, Simon Ebbinghaus. Superoxide Dismutase 1 Folding Stability as a Target for Molecular Tweezers in SOD1‐Related Amyotrophic Lateral Sclerosis. ChemBioChem 2022, 23 (21) https://doi.org/10.1002/cbic.202200396
  18. Emmanuel Amzallag, Eran Hornstein. Crosstalk between Biomolecular Condensates and Proteostasis. Cells 2022, 11 (15) , 2415. https://doi.org/10.3390/cells11152415
  19. Oliver Brylski, Puja Shrestha, Patricia Gnutt, David Gnutt, Jonathan Wolf Mueller, Simon Ebbinghaus. Cellular ATP Levels Determine the Stability of a Nucleotide Kinase. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.790304
  20. Stepan Timr, Fabio Sterpone. Computational Insights into the Unfolding of a Destabilized Superoxide Dismutase 1 Mutant. Biology 2021, 10 (12) , 1240. https://doi.org/10.3390/biology10121240

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2021, 143, 47, 19909–19918
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.1c09589
Published November 17, 2021

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Article Views

5739

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. SOD1bar as a sensor to measure protein unfolding and SG association in-cell and in vitro. (A) SOD1FL (Protein Data Bank (PDB) ID: IHL5) and SOD1bar (PDB ID: 4BCZ), with mutations A4V, I35A, G41D, G85R, and G93V highlighted. Images were assembled using UCSF Chimera. (52) (B) Schematic representation of the FReI technique with two cameras (CCD1 and CCD2). DM and BS represent dichroic mirror and beam splitter, respectively. (C) Exemplary images of HeLaFUS-mCh cells showing different partitioning of the SOD1bar-AcGFP1 mutants G93V and A4V. Enrichment of SOD1bar-AcGFP1 was defined by a local apparent partition coefficient (PC) > 1, determined as the ratio of the mean fluorescence intensity inside the SG (region 1) and the mean fluorescence intensity at 0.6 μm (region 2) from the SG (right zoom-in). (D) PC of SOD1bar after 120 min at 43 °C (N = 437 to 523 SGs). PCs of mutants A4V, G93V, G41D, and G85R are significantly higher than Wt. (E) PCs as a function of ΔGf°′ at 37 °C. The values are significantly different between each of the three defined clusters: Wt and I35A (light gray), G93V, G41D, and G85R (light brown) and A4V (light red). (F) PCs of SOD1bar-Wt and SOD1FL-Wt and the respective A4V mutants. No statistical significance is found between the PCs of SOD1bar and SOD1FL for both Wt and A4V. (G) Correlation between SOD1bar PCs and the scaled sum [norm. ΔfU37–43°C + norm. Hphob]. We normalized ΔfU37–43°C values for the different constructs (1 represents the highest ΔfU37–43°C, while 0 represents the lowest one). Similarly, Hphob was normalized from 1 (highest) to the 0 (lowest) within the different SOD1bar sequences. Finally, we sum up the normalized values, [norm. ΔfU37–43°C + norm. Hphob] and scaled between 0 and 1 (lowest to highest). (H) Correlation between mobile fractions (MFs) inside SGs and PCs. The statistical analyses reported in panels D–F were carried out using one-way ANOVA, followed by a post hoc Tukey test for multiple comparisons, computed with a confidence interval of 95%. The values in panels E, G, and H are presented as mean ± SEM.

    Figure 2

    Figure 2. Association of SOD1bar with FUS droplets in vitro. (A) Schematic representation of the different FUS domains with predicted (dis)ordered domains by Prediction of Natural Disorder Regions (PONDR) Score bioinformatics tool. (56) (B) Exemplary images (mCherry channel) of SOD1bar added to FUS droplets (in buffer, pH 7.5) after 60 min of incubation at 23 or 43 °C. (C) PCs after 60 min of incubation shown as whisker box plots (N = 41–203 droplets for 23 °C, N = 422–895 droplets for 43 °C). The values are significantly different (except G85R vs A4V) among each other. Significant tests were carried out by one-way ANOVA analysis, followed by post hoc Tukey test for multiple comparisons, computed with a confidence interval of 95%. (D) Mean values of PCs (at 43 °C) plotted against ΔGf°′ at 43 °C.

    Figure 3

    Figure 3. Effect of crowding (in vitro) on SOD1bar association with FUS droplets at different temperatures. Exemplary images (mCherry channel) of SOD1bar enrichment/depletion in the presence of (A) 15% (w/v) Ficoll 70 and (C) 20% (w/v) BSA, after 60 min of incubation at 23 and 43 °C. (B and D) PCs measured after 60 min at 23 and 43 °C in the presence of Ficoll and BSA. PCs in buffer (data from Figure 2) are shown as gray box plots for comparison. (N = 96–304 droplets for 23 °C, N = 263–706 droplets for 43 °C). The values are significantly different among each other [except for (B) G85R (in buffer) vs G85R (in Ficoll), Wt (in Ficoll) vs I35A (in Ficoll), and (D) Wt (in BSA) vs I35A (in BSA)]. Significance tests were carried out by one-way ANOVA analysis, followed by post hoc Tukey test for multiple comparisons, computed with a confidence interval of 95%.

  • References


    This article references 88 other publications.

    1. 1
      Case, L. B.; Zhang, X.; Ditlev, J. A.; Rosen, M. K. Stoichiometry Controls Activity of Phase-Separated Clusters of Actin Signaling Proteins. Science 2019, 363 (6431), 10931097,  DOI: 10.1126/science.aau6313
    2. 2
      Huang, W. Y. C.; Alvarez, S.; Kondo, Y.; Lee, Y. K.; Chung, J. K.; Lam, H. Y. M.; Biswas, K. H.; Kuriyan, J.; Groves, J. T. A Molecular Assembly Phase Transition and Kinetic Proofreading Modulate Ras Activation by SOS. Science 2019, 363 (6431), 10981103,  DOI: 10.1126/science.aau5721
    3. 3
      Lu, Y.; Wu, T.; Gutman, O.; Lu, H.; Zhou, Q.; Henis, Y. I.; Luo, K. Phase Separation of TAZ Compartmentalizes the Transcription Machinery to Promote Gene Expression. Nat. Cell Biol. 2020, 22 (4), 453464,  DOI: 10.1038/s41556-020-0485-0
    4. 4
      Iserman, C.; Desroches Altamirano, C.; Jegers, C.; Friedrich, U.; Zarin, T.; Fritsch, A. W.; Mittasch, M.; Domingues, A.; Hersemann, L.; Jahnel, M. Condensation of Ded1p Promotes a Translational Switch from Housekeeping to Stress Protein Production. Cell 2020, 181, 818,  DOI: 10.1016/j.cell.2020.04.009
    5. 5
      Peeples, W.; Rosen, M. K. Mechanistic Dissection of Increased Enzymatic Rate in a Phase-Separated Compartment. Nat. Chem. Biol. 2021, 17 (6), 693702,  DOI: 10.1038/s41589-021-00801-x
    6. 6
      Riback, J. A.; Katanski, C. D.; Kear-Scott, J. L.; Pilipenko, E. V.; Rojek, A. E.; Sosnick, T. R.; Drummond, D. A. Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response. Cell 2017, 168 (6), 10281040,  DOI: 10.1016/j.cell.2017.02.027
    7. 7
      Franzmann, T. M.; Jahnel, M.; Pozniakovsky, A.; Mahamid, J.; Holehouse, A. S.; Nüske, E.; Richter, D.; Baumeister, W.; Grill, S. W.; Pappu, R. V. Phase Separation of a Yeast Prion Protein Promotes Cellular Fitness. Science 2018, 359 (6371), eaao5654,  DOI: 10.1126/science.aao5654
    8. 8
      Petrovska, I.; Nüske, E.; Munder, M. C.; Kulasegaran, G.; Malinovska, L.; Kroschwald, S.; Richter, D.; Fahmy, K.; Gibson, K.; Verbavatz, J.-M.; Alberti, S. Filament Formation by Metabolic Enzymes Is a Specific Adaptation to an Advanced State of Cellular Starvation. eLife 2014, 3, e02409  DOI: 10.7554/eLife.02409
    9. 9
      Munder, M. C.; Midtvedt, D.; Franzmann, T.; Nüske, E.; Otto, O.; Herbig, M.; Ulbricht, E.; Müller, P.; Taubenberger, A.; Maharana, S.; Malinovska, L.; Richter, D.; Guck, J.; Zaburdaev, V.; Alberti, S. A PH-Driven Transition of the Cytoplasm from a Fluid- to a Solid-like State Promotes Entry into Dormancy. eLife 2016, 5, e09347  DOI: 10.7554/eLife.09347
    10. 10
      Wallace, E. W. J.; Kear-Scott, J. L.; Pilipenko, E. V.; Schwartz, M. H.; Laskowski, P. R.; Rojek, A. E.; Katanski, C. D.; Riback, J. A.; Dion, M. F.; Franks, A. M.; Airoldi, E. M.; Pan, T.; Budnik, B. A.; Drummond, D. A. Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress. Cell 2015, 162 (6), 12861298,  DOI: 10.1016/j.cell.2015.08.041
    11. 11
      Cabrera, M.; Boronat, S.; Marte, L.; Vega, M.; Pérez, P.; Ayté, J.; Hidalgo, E. Chaperone-Facilitated Aggregation of Thermo-Sensitive Proteins Shields Them from Degradation during Heat Stress. Cell Rep. 2020, 30 (7), 24302443,  DOI: 10.1016/j.celrep.2020.01.077
    12. 12
      Gallardo, P.; Salas-Pino, S.; Daga, R. R. Reversible Protein Aggregation as Cytoprotective Mechanism against Heat Stress. Curr. Genet. 2021, 67, 849855,  DOI: 10.1007/s00294-021-01191-2
    13. 13
      Franzmann, T.; Alberti, S. Ubiquitin Protein Helps Cells to Recover from Stress. Nature 2021, 597, 183184,  DOI: 10.1038/d41586-021-02197-z
    14. 14
      Zhao, L.; Vecchi, G.; Vendruscolo, M.; Körner, R.; Hayer-Hartl, M.; Hartl, F. U. The Hsp70 Chaperone System Stabilizes a Thermo-Sensitive Subproteome in E. Coli. Cell Rep. 2019, 28 (5), 13351345,  DOI: 10.1016/j.celrep.2019.06.081
    15. 15
      Vabulas, R. M.; Raychaudhuri, S.; Hayer-Hartl, M.; Hartl, F. U. Protein Folding in the Cytoplasm and the Heat Shock Response. Cold Spring Harbor Perspect. Biol. 2010, 2 (12), a004390,  DOI: 10.1101/cshperspect.a004390
    16. 16
      Ganesan, S.; Rohde, G.; Eckermann, K.; Sroka, K.; Schaefer, M. K. E.; Dohm, C. P.; Kermer, P.; Haase, G.; Wouters, F.; Bähr, M.; Weishaupt, J. H. Mutant SOD1 Detoxification Mechanisms in Intact Single Cells. Cell Death Differ. 2008, 15 (2), 312321,  DOI: 10.1038/sj.cdd.4402262
    17. 17
      Wood, R. J.; Ormsby, A. R.; Radwan, M.; Cox, D.; Sharma, A.; Vöpel, T.; Ebbinghaus, S.; Oliveberg, M.; Reid, G. E.; Dickson, A.; Hatters, D. M. A Biosensor-Based Framework to Measure Latent Proteostasis Capacity. Nat. Commun. 2018, 9 (1), 287,  DOI: 10.1038/s41467-017-02562-5
    18. 18
      Mateju, D.; Franzmann, T. M.; Patel, A.; Kopach, A.; Boczek, E. E.; Maharana, S.; Lee, H. O.; Carra, S.; Hyman, A. A.; Alberti, S. An Aberrant Phase Transition of Stress Granules Triggered by Misfolded Protein and Prevented by Chaperone Function. EMBO J. 2017, 36 (12), 16691687,  DOI: 10.15252/embj.201695957
    19. 19
      Boronat, S.; Cabrera, M.; Hidalgo, E. Spatial Sequestration of Misfolded Proteins as an Active Chaperone-Mediated Process during Heat Stress. Curr. Genet. 2021, 67 (2), 237243,  DOI: 10.1007/s00294-020-01135-2
    20. 20
      Cherkasov, V.; Hofmann, S.; Druffel-Augustin, S.; Mogk, A.; Tyedmers, J.; Stoecklin, G.; Bukau, B. Coordination of Translational Control and Protein Homeostasis during Severe Heat Stress. Curr. Biol. 2013, 23 (24), 24522462,  DOI: 10.1016/j.cub.2013.09.058
    21. 21
      Hipp, M. S.; Kasturi, P.; Hartl, F. U. The Proteostasis Network and Its Decline in Ageing. Nat. Rev. Mol. Cell Biol. 2019, 20 (7), 421,  DOI: 10.1038/s41580-019-0101-y
    22. 22
      Patel, A.; Lee, H. O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M. Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T. M.; Pozniakovski, A.; Poser, I.; Maghelli, N.; Royer, L. A.; Weigert, M.; Myers, E. W.; Grill, S.; Drechsel, D.; Hyman, A. A.; Alberti, S. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015, 162 (5), 10661077,  DOI: 10.1016/j.cell.2015.07.047
    23. 23
      Marrone, L.; Drexler, H. C. A.; Wang, J.; Tripathi, P.; Distler, T.; Heisterkamp, P.; Anderson, E. N.; Kour, S.; Moraiti, A.; Maharana, S.; Bhatnagar, R.; Belgard, T. G.; Tripathy, V.; Kalmbach, N.; Hosseinzadeh, Z.; Crippa, V.; Abo-Rady, M.; Wegner, F.; Poletti, A.; Troost, D.; Aronica, E.; Busskamp, V.; Weis, J.; Pandey, U. B.; Hyman, A. A.; Alberti, S.; Goswami, A.; Sterneckert, J. FUS Pathology in ALS Is Linked to Alterations in Multiple ALS-Associated Proteins and Rescued by Drugs Stimulating Autophagy. Acta Neuropathol. 2019, 138 (1), 6784,  DOI: 10.1007/s00401-019-01998-x
    24. 24
      Alberti, S.; Hyman, A. A. Biomolecular Condensates at the Nexus of Cellular Stress, Protein Aggregation Disease and Ageing. Nat. Rev. Mol. Cell Biol. 2021, 22 (3), 196213,  DOI: 10.1038/s41580-020-00326-6
    25. 25
      Hofmann, S.; Kedersha, N.; Anderson, P.; Ivanov, P. Molecular Mechanisms of Stress Granule Assembly and Disassembly. Biochim. Biophys. Acta, Mol. Cell Res. 2021, 1868 (1), 118876,  DOI: 10.1016/j.bbamcr.2020.118876
    26. 26
      Burke, K. A.; Janke, A. M.; Rhine, C. L.; Fawzi, N. L. Residue-by-Residue View of In Vitro FUS Granules That Bind the C-Terminal Domain of RNA Polymerase II. Mol. Cell 2015, 60 (2), 231241,  DOI: 10.1016/j.molcel.2015.09.006
    27. 27
      Molliex, A.; Temirov, J.; Lee, J.; Coughlin, M.; Kanagaraj, A. P.; Kim, H. J.; Mittag, T.; Taylor, J. P. Phase Separation by Low Complexity Domains Promotes Stress Granule Assembly and Drives Pathological Fibrillization. Cell 2015, 163 (1), 123133,  DOI: 10.1016/j.cell.2015.09.015
    28. 28
      Guillén-Boixet, J.; Kopach, A.; Holehouse, A. S.; Wittmann, S.; Jahnel, M.; Schlüßler, R.; Kim, K.; Trussina, I. R. E. A.; Wang, J.; Mateju, D.; Poser, I.; Maharana, S.; Ruer-Gruß, M.; Richter, D.; Zhang, X.; Chang, Y.-T.; Guck, J.; Honigmann, A.; Mahamid, J.; Hyman, A. A.; Pappu, R. V.; Alberti, S.; Franzmann, T. M. RNA-Induced Conformational Switching and Clustering of G3BP Drive Stress Granule Assembly by Condensation. Cell 2020, 181 (2), 346361,  DOI: 10.1016/j.cell.2020.03.049
    29. 29
      Conicella, A. E.; Zerze, G. H.; Mittal, J.; Fawzi, N. L. ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain. Structure 2016, 24 (9), 15371549,  DOI: 10.1016/j.str.2016.07.007
    30. 30
      Zhou, H.-X.; Nguemaha, V.; Mazarakos, K.; Qin, S. Why Do Disordered and Structured Proteins Behave Differently in Phase Separation?. Trends Biochem. Sci. 2018, 43 (7), 499516,  DOI: 10.1016/j.tibs.2018.03.007
    31. 31
      Ruff, K. M.; Choi, Y. H.; Cox, D.; Ormsby, A. R.; Myung, Y.; Ascher, D. B.; Radford, S. E.; Pappu, R. V.; Hatters, D. M. Sequence Grammar Underlying Unfolding and Phase Separation of Globular Proteins. bioRxiv (Biophysics) , August 20, 2021, 2021.08.20.457073. DOI: 10.1101/2021.08.20.457073 (accessed 2021–09–08).
    32. 32
      Ribeiro, S.; Ebbinghaus, S.; Marcos, J. C. Protein Folding and Quinary Interactions: Creating Cellular Organisation through Functional Disorder. FEBS Lett. 2018, 592 (18), 30403053,  DOI: 10.1002/1873-3468.13211
    33. 33
      Ribeiro, S. S.; Samanta, N.; Ebbinghaus, S.; Marcos, J. C. The Synergic Effect of Water and Biomolecules in Intracellular Phase Separation. Nat. Rev. Chem. 2019, 3 (9), 552561,  DOI: 10.1038/s41570-019-0120-4
    34. 34
      Mathieu, C.; Pappu, R. V.; Taylor, J. P. Beyond Aggregation: Pathological Phase Transitions in Neurodegenerative Disease. Science 2020, 370 (6512), 5660,  DOI: 10.1126/science.abb8032
    35. 35
      Jahn, T. R.; Radford, S. E. Folding versus Aggregation: Polypeptide Conformations on Competing Pathways. Arch. Biochem. Biophys. 2008, 469 (1), 100117,  DOI: 10.1016/j.abb.2007.05.015
    36. 36
      Grad, L. I.; Yerbury, J. J.; Turner, B. J.; Guest, W. C.; Pokrishevsky, E.; O’Neill, M. A.; Yanai, A.; Silverman, J. M.; Zeineddine, R.; Corcoran, L.; Kumita, J. R.; Luheshi, L. M.; Yousefi, M.; Coleman, B. M.; Hill, A. F.; Plotkin, S. S.; Mackenzie, I. R.; Cashman, N. R. Intercellular Propagated Misfolding of Wild-Type Cu/Zn Superoxide Dismutase Occurs via Exosome-Dependent and -Independent Mechanisms. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (9), 36203625,  DOI: 10.1073/pnas.1312245111
    37. 37
      Sen Mojumdar, S.; Scholl, Z. N.; Dee, D. R.; Rouleau, L.; Anand, U.; Garen, C.; Woodside, M. T. Partially Native Intermediates Mediate Misfolding of SOD1 in Single-Molecule Folding Trajectories. Nat. Commun. 2017, 8 (1), 1881,  DOI: 10.1038/s41467-017-01996-1
    38. 38
      Lang, L.; Zetterström, P.; Brännström, T.; Marklund, S. L.; Danielsson, J.; Oliveberg, M. SOD1 Aggregation in ALS Mice Shows Simplistic Test Tube Behavior. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (32), 98789883,  DOI: 10.1073/pnas.1503328112
    39. 39
      Gnutt, D.; Timr, S.; Ahlers, J.; König, B.; Manderfeld, E.; Heyden, M.; Sterpone, F.; Ebbinghaus, S. Stability Effect of Quinary Interactions Reversed by Single Point Mutations. J. Am. Chem. Soc. 2019, 141 (11), 46604669,  DOI: 10.1021/jacs.8b13025
    40. 40
      Wright, G. S. A.; Antonyuk, S. V.; Hasnain, S. S. The Biophysics of Superoxide Dismutase-1 and Amyotrophic Lateral Sclerosis. Q. Rev. Biophys. 2019, 52, e12,  DOI: 10.1017/S003358351900012X
    41. 41
      Gal, J.; Kuang, L.; Barnett, K. R.; Zhu, B. Z.; Shissler, S. C.; Korotkov, K. V.; Hayward, L. J.; Kasarskis, E. J.; Zhu, H. ALS Mutant SOD1 Interacts with G3BP1 and Affects Stress Granule Dynamics. Acta Neuropathol. 2016, 132 (4), 563576,  DOI: 10.1007/s00401-016-1601-x
    42. 42
      Da Ros, M.; Deol, H. K.; Savard, A.; Guo, H.; Meiering, E. M.; Gibbings, D. Wild-Type and Mutant SOD1 Localizes to RNA-Rich Structures in Cells and Mice but Does Not Bind RNA. J. Neurochem. 2021, 156 (4), 524538,  DOI: 10.1111/jnc.15126
    43. 43
      Danielsson, J.; Kurnik, M.; Lang, L.; Oliveberg, M. Cutting Off Functional Loops from Homodimeric Enzyme Superoxide Dismutase 1 (SOD1) Leaves Monomeric β-Barrels. J. Biol. Chem. 2011, 286 (38), 3307033083,  DOI: 10.1074/jbc.M111.251223
    44. 44
      Nordlund, A.; Leinartaitė, L.; Saraboji, K.; Aisenbrey, C.; Gröbner, G.; Zetterström, P.; Danielsson, J.; Logan, D. T.; Oliveberg, M. Functional Features Cause Misfolding of the ALS-Provoking Enzyme SOD1. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (24), 96679672,  DOI: 10.1073/pnas.0812046106
    45. 45
      Niwa, J.; Yamada, S.; Ishigaki, S.; Sone, J.; Takahashi, M.; Katsuno, M.; Tanaka, F.; Doyu, M.; Sobue, G. Disulfide Bond Mediates Aggregation, Toxicity, and Ubiquitylation of Familial Amyotrophic Lateral Sclerosis-Linked Mutant SOD1 *. J. Biol. Chem. 2007, 282 (38), 2808728095,  DOI: 10.1074/jbc.M704465200
    46. 46
      Ebbinghaus, S.; Dhar, A.; McDonald, J. D.; Gruebele, M. Protein Folding Stability and Dynamics Imaged in a Living Cell. Nat. Methods 2010, 7 (4), 319323,  DOI: 10.1038/nmeth.1435
    47. 47
      van Lente, J. J.; Claessens, M. M. A. E.; Lindhoud, S. Charge-Based Separation of Proteins Using Polyelectrolyte Complexes as Models for Membraneless Organelles. Biomacromolecules 2019, 20 (10), 36963703,  DOI: 10.1021/acs.biomac.9b00701
    48. 48
      Raeburn, C. B.; Ormsby, A.; Moily, N. S.; Cox, D.; Ebbinghaus, S.; Dickson, A.; McColl, G.; Hatters, D. M. A Biosensor to Gauge Protein Homeostasis Resilience Differences in the Nucleus Compared to Cytosol of Mammalian Cells. bioRxiv (Biochemistry) , April 19, 2021, 2021.04.19.440383. DOI: 10.1101/2021.04.19.440383 (accessed 2021–09–08).
    49. 49
      Vassall, K. A.; Stubbs, H. R.; Primmer, H. A.; Tong, M. S.; Sullivan, S. M.; Sobering, R.; Srinivasan, S.; Briere, L.-A. K.; Dunn, S. D.; Colón, W.; Meiering, E. M. Decreased Stability and Increased Formation of Soluble Aggregates by Immature Superoxide Dismutase Do Not Account for Disease Severity in ALS. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (6), 22102215,  DOI: 10.1073/pnas.0913021108
    50. 50
      Wang, Q.; Johnson, J. L.; Agar, N. Y. R.; Agar, J. N. Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival. PLoS Biol. 2008, 6 (7), e170,  DOI: 10.1371/journal.pbio.0060170
    51. 51
      Rauscher, S.; Pomès, R. The Liquid Structure of Elastin. eLife 2017, 6, e26526  DOI: 10.7554/eLife.26526
    52. 52
      Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25 (13), 16051612,  DOI: 10.1002/jcc.20084
    53. 53
      Hofweber, M.; Hutten, S.; Bourgeois, B.; Spreitzer, E.; Niedner-Boblenz, A.; Schifferer, M.; Ruepp, M.-D.; Simons, M.; Niessing, D.; Madl, T.; Dormann, D. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 2018, 173 (3), 706719,  DOI: 10.1016/j.cell.2018.03.004
    54. 54
      Alexander, E. J.; Ghanbari Niaki, A.; Zhang, T.; Sarkar, J.; Liu, Y.; Nirujogi, R. S.; Pandey, A.; Myong, S.; Wang, J. Ubiquilin 2 Modulates ALS/FTD-Linked FUS–RNA Complex Dynamics and Stress Granule Formation. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (49), E11485E11494,  DOI: 10.1073/pnas.1811997115
    55. 55
      Ahlers, J.; Adams, E. M.; Bader, V.; Pezzotti, S.; Winklhofer, K. F.; Tatzelt, J.; Havenith, M. The Key Role of Solvent in Condensation: Mapping Water in Liquid-Liquid Phase-Separated FUS. Biophys. J. 2021, 120, 1266,  DOI: 10.1016/j.bpj.2021.01.019
    56. 56
      Li, X.; Romero, P.; Rani, M.; Dunker, A. K.; Obradovic, Z. Predicting Protein Disorder for N-, C-, and Internal Regions. Genome Inform. Workshop Genome Inform. 1999, 10, 3040
    57. 57
      Boeynaems, S.; Holehouse, A. S.; Weinhardt, V.; Kovacs, D.; Van Lindt, J.; Larabell, C.; Van Den Bosch, L.; Das, R.; Tompa, P. S.; Pappu, R. V.; Gitler, A. D. Spontaneous Driving Forces Give Rise to Protein–RNA Condensates with Coexisting Phases and Complex Material Properties. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 78897898,  DOI: 10.1073/pnas.1821038116
    58. 58
      Kaur, T.; Raju, M.; Alshareedah, I.; Davis, R. B.; Potoyan, D. A.; Banerjee, P. R. Sequence-Encoded and Composition-Dependent Protein-RNA Interactions Control Multiphasic Condensate Morphologies. Nat. Commun. 2021, 12 (1), 872,  DOI: 10.1038/s41467-021-21089-4
    59. 59
      Dignon, G. L.; Zheng, W.; Kim, Y. C.; Mittal, J. Temperature-Controlled Liquid–Liquid Phase Separation of Disordered Proteins. ACS Cent. Sci. 2019, 5 (5), 821830,  DOI: 10.1021/acscentsci.9b00102
    60. 60
      Zwicker, D.; Seyboldt, R.; Weber, C. A.; Hyman, A. A.; Jülicher, F. Growth and Division of Active Droplets Provides a Model for Protocells. Nat. Phys. 2017, 13 (4), 408413,  DOI: 10.1038/nphys3984
    61. 61
      Wang, J.; Choi, J.-M.; Holehouse, A. S.; Lee, H. O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D.; Poser, I.; Pappu, R. V.; Alberti, S.; Hyman, A. A. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell 2018, 174 (3), 688699,  DOI: 10.1016/j.cell.2018.06.006
    62. 62
      Lu, Y.; Lim, L.; Song, J. RRM Domain of ALS/FTD-Causing FUS Characteristic of Irreversible Unfolding Spontaneously Self-Assembles into Amyloid Fibrils. Sci. Rep. 2017, 7 (1), 114,  DOI: 10.1038/s41598-017-01281-7
    63. 63
      Li, S.; Yoshizawa, T.; Yamazaki, R.; Fujiwara, A.; Kameda, T.; Kitahara, R. Pressure and Temperature Phase Diagram for Liquid–Liquid Phase Separation of the RNA-Binding Protein Fused in Sarcoma. J. Phys. Chem. B 2021, 125 (25), 68216829,  DOI: 10.1021/acs.jpcb.1c01451
    64. 64
      Gnutt, D.; Brylski, O.; Edengeiser, E.; Havenith, M.; Ebbinghaus, S. Imperfect Crowding Adaptation of Mammalian Cells towards Osmotic Stress and Its Modulation by Osmolytes. Mol. BioSyst. 2017, 13 (11), 22182221,  DOI: 10.1039/C7MB00432J
    65. 65
      Gnutt, D.; Sistemich, L.; Ebbinghaus, S. Protein Folding Modulation in Cells Subject to Differentiation and Stress. Front. Mol. Biosci. 2019, 6, 38,  DOI: 10.3389/fmolb.2019.00038
    66. 66
      Senske, M.; Törk, L.; Born, B.; Havenith, M.; Herrmann, C.; Ebbinghaus, S. Protein Stabilization by Macromolecular Crowding through Enthalpy Rather than Entropy. J. Am. Chem. Soc. 2014, 136 (25), 90369041,  DOI: 10.1021/ja503205y
    67. 67
      Smith, A. E.; Zhou, L. Z.; Gorensek, A. H.; Senske, M.; Pielak, G. J. In-Cell Thermodynamics and a New Role for Protein Surfaces. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (7), 17251730,  DOI: 10.1073/pnas.1518620113
    68. 68
      Monteith, W. B.; Cohen, R. D.; Smith, A. E.; Guzman-Cisneros, E.; Pielak, G. J. Quinary Structure Modulates Protein Stability in Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (6), 17391742,  DOI: 10.1073/pnas.1417415112
    69. 69
      Cohen, R. D.; Pielak, G. J. Quinary Interactions with an Unfolded State Ensemble: Quinary Interactions & Unfolded State Ensemble. Protein Sci. 2017, 26 (9), 16981703,  DOI: 10.1002/pro.3206
    70. 70
      Samanta, N.; Mahanta, D. D.; Hazra, S.; Kumar, G. S.; Mitra, R. K. Short Chain Polyethylene Glycols Unusually Assist Thermal Unfolding of Human Serum Albumin. Biochimie 2014, 104, 8189,  DOI: 10.1016/j.biochi.2014.05.009
    71. 71
      Sörensen, T.; Leeb, S.; Danielsson, J.; Oliveberg, M. Polyanions Cause Protein Destabilization Similar to That in Live Cells. Biochemistry 2021, 60 (10), 735746,  DOI: 10.1021/acs.biochem.0c00889
    72. 72
      Kaur, T.; Alshareedah, I.; Wang, W.; Ngo, J.; Moosa, M. M.; Banerjee, P. R. Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates. Biomolecules 2019, 9 (2), 71,  DOI: 10.3390/biom9020071
    73. 73
      Park, S.; Barnes, R.; Lin, Y.; Jeon, B.; Najafi, S.; Delaney, K. T.; Fredrickson, G. H.; Shea, J.-E.; Hwang, D. S.; Han, S. Dehydration Entropy Drives Liquid-Liquid Phase Separation by Molecular Crowding. Commun. Chem. 2020, 3 (1), 112,  DOI: 10.1038/s42004-020-0328-8
    74. 74
      Nguemaha, V.; Zhou, H.-X. Liquid-Liquid Phase Separation of Patchy Particles Illuminates Diverse Effects of Regulatory Components on Protein Droplet Formation. Sci. Rep. 2018, 8 (1), 6728,  DOI: 10.1038/s41598-018-25132-1
    75. 75
      Protter, D. S. W.; Rao, B. S.; Van Treeck, B.; Lin, Y.; Mizoue, L.; Rosen, M. K.; Parker, R. Intrinsically Disordered Regions Can Contribute Promiscuous Interactions to RNP Granule Assembly. Cell Rep. 2018, 22 (6), 14011412,  DOI: 10.1016/j.celrep.2018.01.036
    76. 76
      Danielsson, J.; Mu, X.; Lang, L.; Wang, H.; Binolfi, A.; Theillet, F.-X.; Bekei, B.; Logan, D. T.; Selenko, P.; Wennerström, H.; Oliveberg, M. Thermodynamics of Protein Destabilization in Live Cells. Proc. Natl. Acad. Sci. U. S. A. 2015, 112 (40), 1240212407,  DOI: 10.1073/pnas.1511308112
    77. 77
      Ghosh, A.; Mazarakos, K.; Zhou, H.-X. Three Archetypical Classes of Macromolecular Regulators of Protein Liquid–Liquid Phase Separation. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (39), 1947419483,  DOI: 10.1073/pnas.1907849116
    78. 78
      André, A. A. M.; Spruijt, E. Liquid–Liquid Phase Separation in Crowded Environments. Int. J. Mol. Sci. 2020, 21 (16), 5908,  DOI: 10.3390/ijms21165908
    79. 79
      Banani, S. F.; Rice, A. M.; Peeples, W. B.; Lin, Y.; Jain, S.; Parker, R.; Rosen, M. K. Compositional Control of Phase-Separated Cellular Bodies. Cell 2016, 166 (3), 651663,  DOI: 10.1016/j.cell.2016.06.010
    80. 80
      Sterpone, F.; Melchionna, S.; Tuffery, P.; Pasquali, S.; Mousseau, N.; Cragnolini, T.; Chebaro, Y.; St-Pierre, J.-F.; Kalimeri, M.; Barducci, A.; Laurin, Y.; Tek, A.; Baaden, M.; Nguyen, P. H.; Derreumaux, P. The OPEP Protein Model: From Single Molecules, Amyloid Formation, Crowding and Hydrodynamics to DNA/RNA Systems. Chem. Soc. Rev. 2014, 43 (13), 48714893,  DOI: 10.1039/C4CS00048J
    81. 81
      Stirnemann, F.; Derreumaux, P.; Melchionna, S. Protein Simulations in Fluids: Coupling the OPEP Coarse-Grained Force Field with Hydrodynamics. J. Chem. Theory Comput. 2015, 11 (4), 18431853,  DOI: 10.1021/ct501015h
    82. 82
      Claes, F.; Rudyak, S.; Laird, A. S.; Louros, N.; Beerten, J.; Debulpaep, M.; Michiels, E.; van der Kant, R.; Van Durme, J.; De Baets, G.; Houben, B.; Ramakers, M.; Yuan, K.; Gwee, S. S. L.; Hernandez, S.; Broersen, K.; Oliveberg, M.; Moahamed, B.; Kirstein, J.; Robberecht, W.; Rousseau, F.; Schymkowitz, J. Exposure of a Cryptic Hsp70 Binding Site Determines the Cytotoxicity of the ALS-Associated SOD1-Mutant A4V. Protein Eng., Des. Sel. 2019, 32 (10), 443457,  DOI: 10.1093/protein/gzaa008
    83. 83
      Imamoglu, R.; Balchin, D.; Hayer-Hartl, M.; Hartl, F. U. Bacterial Hsp70 Resolves Misfolded States and Accelerates Productive Folding of a Multi-Domain Protein. Nat. Commun. 2020, 11 (1), 113,  DOI: 10.1038/s41467-019-14245-4
    84. 84
      Gal, J.; Ström, A.-L.; Kilty, R.; Zhang, F.; Zhu, H. P62 Accumulates and Enhances Aggregate Formation in Model Systems of Familial Amyotrophic Lateral Sclerosis*. J. Biol. Chem. 2007, 282 (15), 1106811077,  DOI: 10.1074/jbc.M608787200
    85. 85
      Ciechanover, A.; Kwon, Y. T. Degradation of Misfolded Proteins in Neurodegenerative Diseases: Therapeutic Targets and Strategies. Exp. Mol. Med. 2015, 47 (3), e147e147,  DOI: 10.1038/emm.2014.117
    86. 86
      Vecchi, G.; Sormanni, P.; Mannini, B.; Vandelli, A.; Tartaglia, G. G.; Dobson, C. M.; Hartl, F. U.; Vendruscolo, M. Proteome-Wide Observation of the Phenomenon of Life on the Edge of Solubility. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (2), 10151020,  DOI: 10.1073/pnas.1910444117
    87. 87
      Dobson, C. M. Principles of Protein Folding, Misfolding and Aggregation. Semin. Cell Dev. Biol. 2004, 15 (1), 316,  DOI: 10.1016/j.semcdb.2003.12.008
    88. 88
      Zbinden, A.; Pérez-Berlanga, M.; De Rossi, P.; Polymenidou, M. Phase Separation and Neurodegenerative Diseases: A Disturbance in the Force. Dev. Cell 2020, 55 (1), 4568,  DOI: 10.1016/j.devcel.2020.09.014
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c09589.

    • Description of materials and methods, visual and plot of agregates of Wt and A4V mutants in HeLaFUS-mCh cells; laser heating and FRET data; kinetic traces and amplitudes as a function of temperature; PCs of SOD1bar-Wt and the various mutants inside SGs as a function of protein expression levels; correlation plot for SOD1bar PCs; mobility of SOD1bar inside SGs and cytosol after 120 minutes of HS; SDS PAGE gel for purified FUS-MBP and SOD1bar constructs; DIC images of FUS droplets in the presence and absence of SOD1bar; line-ROI intensity plots; images of SOD1bar G41D-enriched into or depleted from FUS-Wt droplets; change of the cross section of FUS droplets after HS at 43 °C with time; difference in ΔGf°′ at 37 °C; PCs as a function of ΔGf°′; LBMD simulation snapshots; interaction energies and contacts; fractions of protein surface areas occupied by the different residue types; mean number of contacts between different categories of residues; Tables S1 and S2 (including all the data points shown in the graphics) (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.