ACS Publications. Most Trusted. Most Cited. Most Read
Precise Control of Radial Catenane Synthesis via Clipping and Pumping
My Activity

Figure 1Loading Img
    Communication

    Precise Control of Radial Catenane Synthesis via Clipping and Pumping
    Click to copy article linkArticle link copied!

    • Anquan Li
      Anquan Li
      School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
      More by Anquan Li
    • Zhengqi Tan
      Zhengqi Tan
      School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
      More by Zhengqi Tan
    • Yiheng Hu
      Yiheng Hu
      School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
      More by Yiheng Hu
    • Zonghuan Lu
      Zonghuan Lu
      School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
      More by Zonghuan Lu
    • Jun Yuan
      Jun Yuan
      School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
      More by Jun Yuan
    • Xia Li
      Xia Li
      School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
      More by Xia Li
    • Jialin Xie
      Jialin Xie
      School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
      More by Jialin Xie
    • Jiangwei Zhang*
      Jiangwei Zhang
      Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
      *Email: [email protected]
    • Kelong Zhu*
      Kelong Zhu
      School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
      *Email: [email protected]
      More by Kelong Zhu
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2022, 144, 5, 2085–2089
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c12303
    Published January 24, 2022
    Copyright © 2022 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    An unprecedented molecular pumping cassette was designed and implemented for the construction of molecular necklaces, that is, radial [n]catenanes. The mechanism was fully confirmed on a model [2]pseudorotaxane, and the novel clipping-followed-by-pumping strategy was used to prepare a series of [n]catenanes (n = 2–5). A pair of [3]catenane diastereomers sequentially threaded with two different wheels was also accomplished. The success of utilizing molecular pumping to construct molecular necklaces offers new insights into complex molecular architectures and expands the application of molecular machines in synthesis.

    Copyright © 2022 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c12303.

    • Synthetic details, NMR, and X-ray structural data (PDF)

    Accession Codes

    CCDC 1982932 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 35 publications.

    1. Jinsa Li, Rui Hu, Ziqing Hu, Shaoyu Xu, Ao Yu, Xiaofan Ji. High-Molecular-Weight Poly[2]catenanes Prepared by Hydroxyl-Alkyne Click Chemistry. Macromolecules 2024, 57 (8) , 3824-3830. https://doi.org/10.1021/acs.macromol.4c00431
    2. Kazuki Kuwahara, Sayaka Yajima, Yuuhei Yamano, Fumi Nagatsugi, Kazumitsu Onizuka. Formation of Direction-Controllable Pseudorotaxane and Catenane Using Chemically Cyclized Oligodeoxynucleotides and Their Noncovalent RNA Labeling. Bioconjugate Chemistry 2023, 34 (4) , 696-706. https://doi.org/10.1021/acs.bioconjchem.3c00031
    3. James S. W. Seale, Bo Song, Yunyan Qiu, J. Fraser Stoddart. Precise Non-Equilibrium Polypropylene Glycol Polyrotaxanes. Journal of the American Chemical Society 2022, 144 (37) , 16898-16904. https://doi.org/10.1021/jacs.2c05405
    4. Lorna Binks, Chong Tian, Stephen D. P. Fielden, Iñigo J. Vitorica-Yrezabal, David A. Leigh. Transamidation-Driven Molecular Pumps. Journal of the American Chemical Society 2022, 144 (34) , 15838-15844. https://doi.org/10.1021/jacs.2c06807
    5. Jinsa Li, Ziqing Hu, Hanwei Zhang, Xiaofan Ji. Poly[2]catenanes-based hydrogels prepared by hydroxyl-yne click chemistry. Supramolecular Materials 2024, 3 , 100076. https://doi.org/10.1016/j.supmat.2024.100076
    6. Long Zhang, Huang Wu, Xuesong Li, Hongliang Chen, R. Dean Astumian, J. Fraser Stoddart. Artificial molecular pumps. Nature Reviews Methods Primers 2024, 4 (1) https://doi.org/10.1038/s43586-024-00291-w
    7. Jingjing Yu, Marius Gaedke, Satyajit Das, Daniel L. Stares, Christoph A. Schalley, Fredrik Schaufelberger. Boronic ester-templated pre-rotaxanes as versatile intermediates for rotaxane endo -functionalisation. Chemical Science 2024, 15 (46) , 19443-19451. https://doi.org/10.1039/D4SC04879B
    8. Hanwei Zhang, Jinsa Li, Ziqing Hu, Xiaofan Ji. Poly[2]catenane Gels Based on Sequential Assembly of Small Molecules †. Chinese Journal of Chemistry 2024, 42 (22) , 2699-2704. https://doi.org/10.1002/cjoc.202400435
    9. Bo Qiao, Qinghong Zeng, Longyu Li. Efficient Synthesis of Metastable Cyclodextrin‐Based Polyrotaxanes with Tunable Threading Ratios. Angewandte Chemie 2024, 136 (46) https://doi.org/10.1002/ange.202412839
    10. Bo Qiao, Qinghong Zeng, Longyu Li. Efficient Synthesis of Metastable Cyclodextrin‐Based Polyrotaxanes with Tunable Threading Ratios. Angewandte Chemie International Edition 2024, 63 (46) https://doi.org/10.1002/anie.202412839
    11. Anquan Li, Zhenglin Du, Shilong Zhang, Jialin Xie, Xia Li, Qing Chen, Yisong Tang, Jiawen Chen, Kelong Zhu. A compact chemically driven [2]catenane rotary motor operated through alternate pumping and discharging. Chemical Science 2024, 15 (36) , 14721-14725. https://doi.org/10.1039/D4SC04292A
    12. Qian Feng, Rui Ding, Yali Hou, Zeyuan Zhang, Yafei Zhang, Haifei Liu, Chenxing Guo, Gang He, Bo Zheng, Yanmin Zhang, Mingming Zhang. Highly Efficient Self‐Assembly of Heterometallic [2]Catenanes and Cyclic Bis[2]catenanes via Orthogonal Metal‐Coordination Interactions. Angewandte Chemie 2024, 136 (32) https://doi.org/10.1002/ange.202407923
    13. Qian Feng, Rui Ding, Yali Hou, Zeyuan Zhang, Yafei Zhang, Haifei Liu, Chenxing Guo, Gang He, Bo Zheng, Yanmin Zhang, Mingming Zhang. Highly Efficient Self‐Assembly of Heterometallic [2]Catenanes and Cyclic Bis[2]catenanes via Orthogonal Metal‐Coordination Interactions. Angewandte Chemie International Edition 2024, 63 (32) https://doi.org/10.1002/anie.202407923
    14. Kelun Shi, Guohui Jia, Ying Wu, Shilong Zhang, Jiawen Chen. Dynamic control of circumrotation of a [2]catenane by acid‐base switching. ChemistryOpen 2024, 13 (8) https://doi.org/10.1002/open.202300304
    15. Mana Bhanjan Podh, Radhakrishna Ratha, Chandra Shekhar Purohit. Template Assisted Synthesis of Linear [5]Catenane by Post‐Functionalization of Templated [2]Catenane and Using Click Reaction. Chemistry – An Asian Journal 2024, 19 (13) https://doi.org/10.1002/asia.202400351
    16. Qing Chen, Kelong Zhu. Advancements and strategic approaches in catenane synthesis. Chemical Society Reviews 2024, 53 (11) , 5677-5703. https://doi.org/10.1039/D3CS00499F
    17. Stefan Borsley, David A. Leigh, Benjamin M. W. Roberts. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angewandte Chemie 2024, 136 (23) https://doi.org/10.1002/ange.202400495
    18. Stefan Borsley, David A. Leigh, Benjamin M. W. Roberts. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angewandte Chemie International Edition 2024, 63 (23) https://doi.org/10.1002/anie.202400495
    19. Sibei Liao, Jie Tang, Chunmiao Ma, Lu Yu, Ying Tan, Xuanzhu Li, Quan Gan. Foldaxane‐Based Switchable [ c 2]Daisy Chains. Angewandte Chemie International Edition 2024, 63 (14) https://doi.org/10.1002/anie.202315668
    20. Sibei Liao, Jie Tang, Chunmiao Ma, Lu Yu, Ying Tan, Xuanzhu Li, Quan Gan. Foldaxane‐Based Switchable [ c 2]Daisy Chains. Angewandte Chemie 2024, 136 (14) https://doi.org/10.1002/ange.202315668
    21. Wei‐Tao Xu, Xue Li, Peicong Wu, Wei‐Jian Li, Yu Wang, Xiao‐Qin Xu, Xu‐Qing Wang, Jinquan Chen, Hai‐Bo Yang, Wei Wang. Dual Stimuli‐Responsive [2]Rotaxanes with Tunable Vibration‐Induced Emission and Switchable Circularly Polarized Luminescence. Angewandte Chemie 2024, 136 (12) https://doi.org/10.1002/ange.202319502
    22. Wei‐Tao Xu, Xue Li, Peicong Wu, Wei‐Jian Li, Yu Wang, Xiao‐Qin Xu, Xu‐Qing Wang, Jinquan Chen, Hai‐Bo Yang, Wei Wang. Dual Stimuli‐Responsive [2]Rotaxanes with Tunable Vibration‐Induced Emission and Switchable Circularly Polarized Luminescence. Angewandte Chemie International Edition 2024, 63 (12) https://doi.org/10.1002/anie.202319502
    23. Kang-Kang Feng, Ji-Song Wu, Yan-Ping Li, Yong-An Tan, Xin-Zhang. Cu+-Induced in-situ Methylene-Transformation and Aggregation-Induced emission activity. Inorganic Chemistry Communications 2023, 158 , 111710. https://doi.org/10.1016/j.inoche.2023.111710
    24. Houyang Xu, Kelong Zhu. Supramolecular recognition and mechanically interlocked molecules based on imidazoliums and crown ethers. SCIENTIA SINICA Chimica 2023, 94 https://doi.org/10.1360/SSC-2023-0171
    25. Jiaxin Chen, Lu Huang, Lifang Wu, Yichi Zhang, Rong Zhang, Yinhuan Li, Yunqing Zhao, Liliang Wang, Dewei Feng, Mitsuo Kira, Zhenyang Lin, Zhifang Li. Isolable Tetragold(0) Clusters with Polarity‐Tunable exo ‐Au−Au Bond via Intramolecular σ‐Aromatization. Angewandte Chemie 2023, 135 (40) https://doi.org/10.1002/ange.202311230
    26. Jiaxin Chen, Lu Huang, Lifang Wu, Yichi Zhang, Rong Zhang, Yinhuan Li, Yunqing Zhao, Liliang Wang, Dewei Feng, Mitsuo Kira, Zhenyang Lin, Zhifang Li. Isolable Tetragold(0) Clusters with Polarity‐Tunable exo ‐Au−Au Bond via Intramolecular σ‐Aromatization. Angewandte Chemie International Edition 2023, 62 (40) https://doi.org/10.1002/anie.202311230
    27. Yeye Ai, Yihang Zhu, Xin Lei, Yinghao Zhang, Qingguo Zeng, Yuncan Dou, Yuexuan Fei, Zhu Shu, Jiayun Xu, Hongliang Xu, Junqiu Liu, Yongguang Li. Acid/Base-driven visualized molecular hinge for advanced information encryption. Chemical Engineering Journal 2023, 465 , 142927. https://doi.org/10.1016/j.cej.2023.142927
    28. Han Han, James S. W. Seale, Liang Feng, Yunyan Qiu, J. Fraser Stoddart. Sequence‐controlled synthesis of rotaxanes. Journal of Polymer Science 2023, 61 (10) , 881-902. https://doi.org/10.1002/pol.20220691
    29. Yefei Jiang, Zhi-yong Zeng, Tongxia Jin, Zhiyong Peng, Lin Xu. Precision syntheses of molecular necklaces based on coordination interactions. Dalton Transactions 2023, 52 (10) , 2915-2923. https://doi.org/10.1039/D2DT03594D
    30. Katsuhiko Ariga. Molecular Machines and Microrobots: Nanoarchitectonics Developments and On-Water Performances. Micromachines 2023, 14 (1) , 25. https://doi.org/10.3390/mi14010025
    31. Gosuke Washino, Miguel A. Soto, Siad Wolff, Mark J. MacLachlan. Preprogrammed assembly of supramolecular polymer networks via the controlled disassembly of a metastable rotaxane. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-022-00774-5
    32. Taeko Aizawa, Shigehisa Akine, Toshiyuki Saiki, Takashi Nakamura, Tatsuya Nabeshima. Rotaxane formation by an allosteric pseudomacrocyclic anion receptor utilising kinetically labile copper( i ) coordination properties. Dalton Transactions 2022, 51 (45) , 17277-17282. https://doi.org/10.1039/D2DT03331C
    33. James S. W. Seale, Yuanning Feng, Liang Feng, R. Dean Astumian, J. Fraser Stoddart. Polyrotaxanes and the pump paradigm. Chemical Society Reviews 2022, 51 (20) , 8450-8475. https://doi.org/10.1039/D2CS00194B
    34. Guancen Liu, Phillip M. Rauscher, Benjamin W. Rawe, Marissa M. Tranquilli, Stuart J. Rowan. Polycatenanes: synthesis, characterization, and physical understanding. Chemical Society Reviews 2022, 51 (12) , 4928-4948. https://doi.org/10.1039/D2CS00256F
    35. 珍 杨. The Recent Progress in Molecular Machines of Organoplatinum Complexes. Advances in Material Chemistry 2022, 10 (03) , 61-66. https://doi.org/10.12677/AMC.2022.103009

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2022, 144, 5, 2085–2089
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c12303
    Published January 24, 2022
    Copyright © 2022 American Chemical Society

    Article Views

    4582

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.