ACS Publications. Most Trusted. Most Cited. Most Read
Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability
My Activity

Figure 1Loading Img
    Article

    Redesigned Hybrid Nylons with Optical Clarity and Chemical Recyclability
    Click to copy article linkArticle link copied!

    • Robin M. Cywar
      Robin M. Cywar
      Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
      Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    • Nicholas A. Rorrer
      Nicholas A. Rorrer
      Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    • Heather B. Mayes
      Heather B. Mayes
      Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    • Anjani K. Maurya
      Anjani K. Maurya
      SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
    • Christopher J. Tassone
      Christopher J. Tassone
      SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
    • Gregg T. Beckham
      Gregg T. Beckham
      Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
      Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    • Eugene Y.-X. Chen*
      Eugene Y.-X. Chen
      Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2022, 144, 12, 5366–5376
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c12611
    Published March 15, 2022
    Copyright © 2022 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Aliphatic polyamides, or nylons, are typically highly crystalline and thermally robust polymers used in high-performance applications. Nylon 6, a high-ceiling-temperature (HCT) polyamide from ε-caprolactam, lacks expedient chemical recyclability, while low-ceiling temperature (LCT) nylon 4 from pyrrolidone exhibits complete chemical recyclability, but it is thermally unstable and not melt-processable. Here, we introduce a hybrid nylon, nylon 4/6, based on a bicyclic lactam composed of both HCT ε-caprolactam and LCT pyrrolidone motifs in a hybridized offspring structure. Hybrid nylon 4/6 overcomes trade-offs in (de)polymerizability and performance properties of the parent nylons, exhibiting both excellent polymerization and facile depolymerization characteristics. This stereoregular polyamide forms nanocrystalline domains, allowing optical clarity and high thermal stability, however, without displaying a melting transition before decomposition. Of a series of statistical copolymers comprising nylon 4/6 and nylon 4, a 50/50 copolymer achieves the greatest synergy in both reactivity and polymer properties of each homopolymer, offering an amorphous nylon with favorable properties, including optical clarity, a high glass transition temperature, melt processability, and full chemical recyclability.

    Copyright © 2022 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c12611.

    • Details of instruments, experimental and computational procedures, additional figures, photographs, tables, and DFT-optimized Cartesian coordinates (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 80 publications.

    1. Na Lin, Jingwei Wu, Rankun Yin, Hongliang Kang, Ruigang Liu. Odd–Even and Even–Odd Copolyamides PA(56-co-65): Synthesis, Crystallization, and Properties. Macromolecules 2025, Article ASAP.
    2. Chureh Atasi, Joseph Kern, Rampi Ramprasad. Design of Recyclable Plastics with Machine Learning and Genetic Algorithm. Journal of Chemical Information and Modeling 2024, 64 (24) , 9249-9259. https://doi.org/10.1021/acs.jcim.4c01530
    3. Yaodu Zhang, Fei Wu, Hui-Yi Yang, Gang Wang, Zhi-Hui Ren, Zheng-Hui Guan. Synthesis of Cycloaliphatic Polyamides via Palladium-Catalyzed Hydroaminocarbonylative Polymerization. Journal of the American Chemical Society 2024, 146 (19) , 12883-12888. https://doi.org/10.1021/jacs.4c01210
    4. Robbie A. Clark, Michael P. Shaver. Depolymerization within a Circular Plastics System. Chemical Reviews 2024, 124 (5) , 2617-2650. https://doi.org/10.1021/acs.chemrev.3c00739
    5. Karthik Rajan Rajamanickam, Sunwoo Lee. Ring Opening of N-Acyl Lactams Using Nickel-Catalyzed Transamidation. The Journal of Organic Chemistry 2024, 89 (2) , 1336-1344. https://doi.org/10.1021/acs.joc.3c02486
    6. Zhengyu Deng, Elizabeth R. Gillies. Emerging Trends in the Chemistry of End-to-End Depolymerization. JACS Au 2023, 3 (9) , 2436-2450. https://doi.org/10.1021/jacsau.3c00345
    7. Yasunori Minami, Yuuki Inagaki, Tomoo Tsuyuki, Kazuhiko Sato, Yumiko Nakajima. Hydroxylation-Depolymerization of Oxyphenylene-Based Super Engineering Plastics To Regenerate Arenols. JACS Au 2023, 3 (8) , 2323-2332. https://doi.org/10.1021/jacsau.3c00357
    8. Chen Xu, Liying Wang, Yalei Liu, Haining Niu, Yong Shen, Zhibo Li. Rapid and Controlled Ring-Opening (Co)Polymerization of Bio-Sourced Alkyl-δ-Lactones To Produce Recyclable (Co)Polyesters and Their Application as Pressure-Sensitive Adhesives. Macromolecules 2023, 56 (15) , 6117-6125. https://doi.org/10.1021/acs.macromol.3c00920
    9. Christopher M. Plummer, Le Li, Yongming Chen. Ring-Opening Polymerization for the Goal of Chemically Recyclable Polymers. Macromolecules 2023, 56 (3) , 731-750. https://doi.org/10.1021/acs.macromol.2c01694
    10. Jin Huang, Rui Yan, Yongwei Ni, Na Shi, Zhenjiang Li, Canliang Ma, Kai Guo. Cyclic Polycarbonates by N-Heterocyclic Carbene-Mediated Ring-Expansion Polymerization and Their Selective Depolymerization to Monomers. ACS Sustainable Chemistry & Engineering 2022, 10 (46) , 15007-15016. https://doi.org/10.1021/acssuschemeng.2c04230
    11. Taoguang Qu, Paul A. Rupar. Carbonyl Aziridines: Strained Amides for Rapid Polyamide Synthesis. Macromolecules 2022, 55 (21) , 9513-9519. https://doi.org/10.1021/acs.macromol.2c01748
    12. Jin-Zhuo Zhao, Tian-Jun Yue, Bai-Hao Ren, Ye Liu, Wei-Min Ren, Xiao-Bing Lu. Recyclable Sulfur-Rich Polymers with Enhanced Thermal, Mechanical, and Optical Performance. Macromolecules 2022, 55 (19) , 8651-8658. https://doi.org/10.1021/acs.macromol.2c01628
    13. Qin Yan, Changjian Li, Ting Yan, Yong Shen, Zhibo Li. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-renewable δ-Caprolactone. Macromolecules 2022, 55 (10) , 3860-3868. https://doi.org/10.1021/acs.macromol.2c00439
    14. Min Zhang, Qin Yan, Xinxin Yu, Yong Shen, Zhibo Li. High performance polyurethanes with extraordinary hydrolytic resistance prepared from bio-renewable alkyl-δ-lactones: Synthesis, properties and chemical recycling. Polymer Degradation and Stability 2025, 237 , 111322. https://doi.org/10.1016/j.polymdegradstab.2025.111322
    15. Chengzhen Meng, Yuhao Wu, Rongkai Wang, Shengming Zhang, Peng Ji, Chaosheng Wang, Huaping Wang. Efficient hydrolytic recycling of PA6 supported by kinetic modeling. Polymer Degradation and Stability 2025, 233 , 111178. https://doi.org/10.1016/j.polymdegradstab.2025.111178
    16. Qin Yan, Jiashu Ma, Weijie Pei, Yaxin Zhang, Ronglin Zhong, Shaofeng Liu, Yong Shen, Zhibo Li. Chemoselective Ring‐Opening Polymerization of α‐Methylene‐δ‐valerolactone Catalyzed by a Simple Organoaluminum Complex to Prepare Closed‐Loop Recyclable Functional Polyester. Angewandte Chemie International Edition 2025, 64 (6) https://doi.org/10.1002/anie.202418488
    17. Qin Yan, Jiashu Ma, Weijie Pei, Yaxin Zhang, Ronglin Zhong, Shaofeng Liu, Yong Shen, Zhibo Li. Chemoselective Ring‐Opening Polymerization of α‐Methylene‐δ‐valerolactone Catalyzed by a Simple Organoaluminum Complex to Prepare Closed‐Loop Recyclable Functional Polyester. Angewandte Chemie 2025, 137 (6) https://doi.org/10.1002/ange.202418488
    18. Linyi Shui, Xianxin Guo, Jinrong Li, Zimeng Li, Qinghua Zhao, Guohua Chen, Xiaomin Zhao. Thermal, Crystallization, and Toughness Behavior of Polyamide 4/Long-Chain Hyperbranched Polymer Blends. Polymers 2025, 17 (3) , 318. https://doi.org/10.3390/polym17030318
    19. Qixuan Hu, Xuyi Luo, Lawal Adewale Ogunfowora, Abhay Athaley, Jason S. DesVeaux, Bruno C. Klein, Shu Xu, Pengfei Wu, Zitang Wei, Chenjian Lin, Tejaswini Haraniya, Dominick Maiorano, Bryan Boudouris, Jianguo Mei, Meltem Urgun-Demirtas, Gregg T. Beckham, Brett M. Savoie, Letian Dou. Scalable, biologically sourced depolymerizable polydienes with intrinsically weakened carbon–carbon bonds. Nature Chemical Engineering 2025, 2 (2) , 130-141. https://doi.org/10.1038/s44286-025-00183-0
    20. Juho Lee, Dongju Lee, Cheol‐Hee Ahn, Tae Ann Kim. High‐Performance Dynamic Photo‐Responsive Polymers With Superior Closed‐Loop Recyclability. Advanced Functional Materials 2025, 35 (8) https://doi.org/10.1002/adfm.202414842
    21. Kai Ma, Hai-Yan An, Jiyun Nam, Liam T. Reilly, Yi-Lin Zhang, Eugene Y.-X. Chen, Tie-Qi Xu. Fully recyclable and tough thermoplastic elastomers from simple bio-sourced δ-valerolactones. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-52229-1
    22. Kyuhyun Kim, Minsoo Kim, Yerim Kim, Jinhyeong Kim, Jihwan Lim, Woojin Lee, Han Seong Kim, Dong-Hyun Cho, Jaejun Lee, Sejin Choi. Melt Spinnability Comparison of Mechanically and Chemically Recycled Polyamide 6 for Plastic Waste Reuse. Polymers 2024, 16 (22) , 3152. https://doi.org/10.3390/polym16223152
    23. Shuaiqi Yang, Shuai Du, Jin Zhu, Songqi Ma. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization–depolymerization cycle. Chemical Society Reviews 2024, 53 (19) , 9609-9651. https://doi.org/10.1039/D4CS00663A
    24. Yangyang Sun, Zesheng An, Yanshan Gao, Rongrong Hu, Ye Liu, Hua Lu, Xiao-Bing Lu, Xuan Pang, Anjun Qin, Yong Shen, Youhua Tao, Yu-Zhong Wang, Junpeng Wang, Gang Wu, Guang-Peng Wu, Tie-Qi Xu, Xing-Hong Zhang, Yuetao Zhang, Zhenbiao Zhang, Jian-Bo Zhu, Miao Hong, Zhibo Li. New sustainable polymers with on-demand depolymerization property. Science China Chemistry 2024, 67 (9) , 2803-2841. https://doi.org/10.1007/s11426-024-2167-9
    25. Changxia Shi, Wilfred T. Diment, Eugene Y.‐X. Chen. Closed‐Loop Recycling of Mixed Plastics of Polyester and CO 2 ‐Based Polycarbonate to a Single Monomer. Angewandte Chemie 2024, 136 (34) https://doi.org/10.1002/ange.202405083
    26. Changxia Shi, Wilfred T. Diment, Eugene Y.‐X. Chen. Closed‐Loop Recycling of Mixed Plastics of Polyester and CO 2 ‐Based Polycarbonate to a Single Monomer. Angewandte Chemie International Edition 2024, 63 (34) https://doi.org/10.1002/anie.202405083
    27. Yihuan Liu, Rongji Zhao, Yu Dai, Shi Ou, Zhe Tian, Jiaqi Wu, Ning Xu, Yongxiang Sun, Yuguang Li, Xin Hu, Ning Zhu, Kai Guo. Access to bromo-functionalized polyester by ring-opening polymerization of a bridged bicyclic lactone and application for grafted copolymers. European Polymer Journal 2024, 216 , 113264. https://doi.org/10.1016/j.eurpolymj.2024.113264
    28. Na Lin, Zhe Wang, Hongliang Kang, Xinmin Hao, Ruigang Liu. Synthesis and characterizations of random copolyamide PA(56-co-66): Excellent toughness and transparency. Polymer 2024, 307 , 127271. https://doi.org/10.1016/j.polymer.2024.127271
    29. Da Zhang, Xin Wang, Zhengbiao Zhang, Nikos Hadjichristidis. Heteroatom Substitution Strategy Modulates Thermodynamics Towards Chemically Recyclable Polyesters and Monomeric Unit Sequence by Temperature Switching. Angewandte Chemie 2024, 136 (24) https://doi.org/10.1002/ange.202402233
    30. Da Zhang, Xin Wang, Zhengbiao Zhang, Nikos Hadjichristidis. Heteroatom Substitution Strategy Modulates Thermodynamics Towards Chemically Recyclable Polyesters and Monomeric Unit Sequence by Temperature Switching. Angewandte Chemie International Edition 2024, 63 (24) https://doi.org/10.1002/anie.202402233
    31. Wuchao Zhao, Jianghua He, Yuetao Zhang. Chemical closed-loop recycling of polymers realized by monomer design. Fundamental Research 2024, 358 https://doi.org/10.1016/j.fmre.2024.05.015
    32. Ritu Rani, Sachin Malik, Dharmender Kumar, Ravinder Kumar, Sourik Mukherjee, Baljeet Singh Saharan, Joginder Singh Duhan. Advances in the role of microorganisms, waste management strategies and policies on microplastic abatement in the era of bio-circular economy. Sustainable Chemistry and Pharmacy 2024, 39 , 101595. https://doi.org/10.1016/j.scp.2024.101595
    33. Christina Podara, Stefania Termine, Maria Modestou, Dionisis Semitekolos, Christos Tsirogiannis, Melpo Karamitrou, Aikaterini-Flora Trompeta, Tatjana Kosanovic Milickovic, Costas Charitidis. Recent Trends of Recycling and Upcycling of Polymers and Composites: A Comprehensive Review. Recycling 2024, 9 (3) , 37. https://doi.org/10.3390/recycling9030037
    34. Xiao‐Tong Wu, Chun Yang, Jian‐Shu Xi, Changxia Shi, Fu‐Sheng Du, Zi‐Chen Li. Enabling Closed‐Loop Circularity of “Non‐Polymerizable” α, β‐Conjugated Lactone Towards High‐Performance Polyester with the Assistance of Cyclopentadiene. Angewandte Chemie 2024, 136 (22) https://doi.org/10.1002/ange.202404179
    35. Xiao‐Tong Wu, Chun Yang, Jian‐Shu Xi, Changxia Shi, Fu‐Sheng Du, Zi‐Chen Li. Enabling Closed‐Loop Circularity of “Non‐Polymerizable” α, β‐Conjugated Lactone Towards High‐Performance Polyester with the Assistance of Cyclopentadiene. Angewandte Chemie International Edition 2024, 63 (22) https://doi.org/10.1002/anie.202404179
    36. Jun‐Jie Tian, Xiaoyang Liu, Liwei Ye, Zhen Zhang, Ethan C. Quinn, Changxia Shi, Linda J. Broadbelt, Tobin J. Marks, Eugene Y.‐X. Chen. Redesigned Nylon 6 Variants with Enhanced Recyclability, Ductility, and Transparency. Angewandte Chemie 2024, 136 (17) https://doi.org/10.1002/ange.202320214
    37. Jun‐Jie Tian, Xiaoyang Liu, Liwei Ye, Zhen Zhang, Ethan C. Quinn, Changxia Shi, Linda J. Broadbelt, Tobin J. Marks, Eugene Y.‐X. Chen. Redesigned Nylon 6 Variants with Enhanced Recyclability, Ductility, and Transparency. Angewandte Chemie International Edition 2024, 63 (17) https://doi.org/10.1002/anie.202320214
    38. Jia-Hao Chen, Yi-Min Tu, Jia-Rong Yao, Xiang-Ting Tang, Yun-Yun Xia, Zhongzheng Cai, Qi Zhang, Jian-Bo Zhu. Accessing chemically recyclable polyamides via geminal dimethyl substitution. Polymer 2024, 298 , 126898. https://doi.org/10.1016/j.polymer.2024.126898
    39. Julian F. Highmoore, Lasith S. Kariyawasam, Scott R. Trenor, Ying Yang. Design of depolymerizable polymers toward a circular economy. Green Chemistry 2024, 26 (5) , 2384-2420. https://doi.org/10.1039/D3GC04215D
    40. Irene De Franceschi, Nezha Badi, Filip E. Du Prez. Telechelic sequence-defined oligoamides: their step-economical synthesis, depolymerization and use in polymer networks. Chemical Science 2024, 15 (8) , 2805-2816. https://doi.org/10.1039/D3SC04820A
    41. Xingyuan Lu, Peng Xie, Xiang Li, Tianqi Li, Junqi Sun. Acid‐Cleavable Aromatic Polymers for the Fabrication of Closed‐Loop Recyclable Plastics with High Mechanical Strength and Excellent Chemical Resistance. Angewandte Chemie 2024, 136 (7) https://doi.org/10.1002/ange.202316453
    42. Xingyuan Lu, Peng Xie, Xiang Li, Tianqi Li, Junqi Sun. Acid‐Cleavable Aromatic Polymers for the Fabrication of Closed‐Loop Recyclable Plastics with High Mechanical Strength and Excellent Chemical Resistance. Angewandte Chemie International Edition 2024, 63 (7) https://doi.org/10.1002/anie.202316453
    43. Magdalena M. Kleybolte, Malte Winnacker. From Forest to Future: Synthesis of Sustainable High Molecular Weight Polyamides Using and Investigating the AROP of β‐Pinene Lactam. Macromolecular Rapid Communications 2024, 45 (3) https://doi.org/10.1002/marc.202300524
    44. Liwei Ye, Xiaoyang Liu, Kristen B. Beckett, Jacob O. Rothbaum, Clarissa Lincoln, Linda J. Broadbelt, Yosi Kratish, Tobin J. Marks. Catalyst metal-ligand design for rapid, selective, and solventless depolymerization of Nylon-6 plastics. Chem 2024, 10 (1) , 172-189. https://doi.org/10.1016/j.chempr.2023.10.022
    45. Shikun Zhao, Shun Gong, Biao Zhao, Like Hou, Lurong Zhang, Qing Hu, Kai Pan. Mechanism Study of the Polymerization of Polyamide 56: Reaction Kinetics and Process Parameters. Macromolecular Rapid Communications 2023, 44 (24) https://doi.org/10.1002/marc.202300371
    46. Jeremy Demarteau, Benjamin Cousineau, Zilong Wang, Baishakhi Bose, Seokjung Cheong, Guangxu Lan, Nawa R. Baral, Simon J. Teat, Corinne D. Scown, Jay D. Keasling, Brett A. Helms. Biorenewable and circular polydiketoenamine plastics. Nature Sustainability 2023, 6 (11) , 1426-1435. https://doi.org/10.1038/s41893-023-01160-2
    47. Valerian Hirschberg, Denis Rodrigue. Recycling of polyamides: Processes and conditions. Journal of Polymer Science 2023, 61 (17) , 1937-1958. https://doi.org/10.1002/pol.20230154
    48. Changxia Shi, Liam T. Reilly, Eugene Y.‐X. Chen. Hybrid Monomer Design Synergizing Property Trade‐offs in Developing Polymers for Circularity and Performance. Angewandte Chemie 2023, 135 (31) https://doi.org/10.1002/ange.202301850
    49. Changxia Shi, Liam T. Reilly, Eugene Y.‐X. Chen. Hybrid Monomer Design Synergizing Property Trade‐offs in Developing Polymers for Circularity and Performance. Angewandte Chemie International Edition 2023, 62 (31) https://doi.org/10.1002/anie.202301850
    50. Yan Zhang, Jiayu Lu, Jin Yu, Xinbo Jiang, Yanming Wang, Xiaotian Chen, Hongbin Zhang, Liwei Yang, Yihao Yu, Dongming Qi. Large scale fabrication of recyclable and multifunctional sandwich-structured electromagnetic interference shielding films based on waste Nylon-6 silk. Materials Today Physics 2023, 36 , 101177. https://doi.org/10.1016/j.mtphys.2023.101177
    51. Grant M. Musgrave, Katie M. Bishop, John S. Kim, Amelia C. Heiner, Chen Wang. Polyester networks from structurally similar monomers: recyclable-by-design and upcyclable to photopolymers. Polymer Chemistry 2023, 14 (25) , 2964-2970. https://doi.org/10.1039/D3PY00338H
    52. Lasith S. Kariyawasam, Julian F. Highmoore, Ying Yang. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy‐Driven Ring‐Opening Polymerization**. Angewandte Chemie 2023, 135 (26) https://doi.org/10.1002/ange.202303039
    53. Xin‐Lei Li, Ryan W. Clarke, Hai‐Yan An, Ravikumar R. Gowda, Jing‐Yang Jiang, Tie‐Qi Xu, Eugene Y.‐X. Chen. Dual Recycling of Depolymerization Catalyst and Biodegradable Polyester that Markedly Outperforms Polyolefins. Angewandte Chemie 2023, 135 (26) https://doi.org/10.1002/ange.202303791
    54. Lasith S. Kariyawasam, Julian F. Highmoore, Ying Yang. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy‐Driven Ring‐Opening Polymerization**. Angewandte Chemie International Edition 2023, 62 (26) https://doi.org/10.1002/anie.202303039
    55. Xin‐Lei Li, Ryan W. Clarke, Hai‐Yan An, Ravikumar R. Gowda, Jing‐Yang Jiang, Tie‐Qi Xu, Eugene Y.‐X. Chen. Dual Recycling of Depolymerization Catalyst and Biodegradable Polyester that Markedly Outperforms Polyolefins. Angewandte Chemie International Edition 2023, 62 (26) https://doi.org/10.1002/anie.202303791
    56. Yinuo Zhu, Maosheng Li, Yanchao Wang, Xianhong Wang, Youhua Tao. Performance‐Advantaged Stereoregular Recyclable Plastics Enabled by Aluminum‐Catalytic Ring‐Opening Polymerization of Dithiolactone. Angewandte Chemie 2023, 135 (24) https://doi.org/10.1002/ange.202302898
    57. Yinuo Zhu, Maosheng Li, Yanchao Wang, Xianhong Wang, Youhua Tao. Performance‐Advantaged Stereoregular Recyclable Plastics Enabled by Aluminum‐Catalytic Ring‐Opening Polymerization of Dithiolactone. Angewandte Chemie International Edition 2023, 62 (24) https://doi.org/10.1002/anie.202302898
    58. Zheng Li, Dongfang Zhao, Yong Shen, Zhibo Li. Ring‐opening Polymerization of Enantiopure Bicyclic Ether‐ester Monomers toward Closed‐loop Recyclable and Crystalline Stereoregular Polyesters via Chemical Upcycling of Bioplastic. Angewandte Chemie 2023, 135 (23) https://doi.org/10.1002/ange.202302101
    59. Zheng Li, Dongfang Zhao, Yong Shen, Zhibo Li. Ring‐opening Polymerization of Enantiopure Bicyclic Ether‐ester Monomers toward Closed‐loop Recyclable and Crystalline Stereoregular Polyesters via Chemical Upcycling of Bioplastic. Angewandte Chemie International Edition 2023, 62 (23) https://doi.org/10.1002/anie.202302101
    60. Xue-Mei Wang, Hao-Yi Huang, Yi-Min Tu, Zhongzheng Cai, Jian-Bo Zhu. Naphthalene engineering of chemically recyclable polyesters with enhanced thermal and mechanical properties. Polymer Chemistry 2023, 14 (17) , 2027-2033. https://doi.org/10.1039/D3PY00275F
    61. Malte Winnacker. Polyamides Derived from Terpenes: Advances in Their Synthesis, Characterization and Applications. European Journal of Lipid Science and Technology 2023, 125 (5) https://doi.org/10.1002/ejlt.202300014
    62. Jian-Qun Wang, Xian-Hong Wang, You-Hua Tao. Sustainable Polyamides Enabled by Controlled Ring-Opening Polymerization of 4-Hydroxyproline-derived Lactams. Chinese Journal of Polymer Science 2023, 41 (5) , 728-734. https://doi.org/10.1007/s10118-022-2871-5
    63. Yongliang Xia, Pengjun Yuan, Yanping Zhang, Yangyang Sun, Miao Hong. Converting Non‐strained γ‐Valerolactone and Derivatives into Sustainable Polythioesters via Isomerization‐driven Cationic Ring‐Opening Polymerization of Thionolactone Intermediate. Angewandte Chemie 2023, 135 (14) https://doi.org/10.1002/ange.202217812
    64. Yongliang Xia, Pengjun Yuan, Yanping Zhang, Yangyang Sun, Miao Hong. Converting Non‐strained γ‐Valerolactone and Derivatives into Sustainable Polythioesters via Isomerization‐driven Cationic Ring‐Opening Polymerization of Thionolactone Intermediate. Angewandte Chemie International Edition 2023, 62 (14) https://doi.org/10.1002/anie.202217812
    65. Yanni Xia, Xinchen Yue, Yue Sun, Chengjian Zhang, Xinghong Zhang. Chemically Recyclable Polyethylene‐like Sulfur‐Containing Plastics from Sustainable Feedstocks. Angewandte Chemie 2023, 135 (13) https://doi.org/10.1002/ange.202219251
    66. Yanni Xia, Xinchen Yue, Yue Sun, Chengjian Zhang, Xinghong Zhang. Chemically Recyclable Polyethylene‐like Sulfur‐Containing Plastics from Sustainable Feedstocks. Angewandte Chemie International Edition 2023, 62 (13) https://doi.org/10.1002/anie.202219251
    67. Chandan Upadhyay, Umaprasana Ojha. Stress‐Induced Shape‐Shifting Materials Possessing Autonomous Self‐Healing and Scratch‐Resistant Ability. Chemistry – An Asian Journal 2023, 18 (4) https://doi.org/10.1002/asia.202201082
    68. Hua-Zhong Fan, Xing Yang, Yan-Chen Wu, Qing Cao, Zhongzheng Cai, Jian-Bo Zhu. Leveraging the monomer structure for high-performance chemically recyclable semiaromatic polyesters. Polymer Chemistry 2023, 14 (6) , 747-753. https://doi.org/10.1039/D2PY01491B
    69. Zhuoqiang Zhang, Dong Lei, Chenxuan Zhang, Zhenyu Wang, Yinghua Jin, Wei Zhang, Xiaokong Liu, Junqi Sun. Strong and Tough Supramolecular Covalent Adaptable Networks with Room‐Temperature Closed‐Loop Recyclability. Advanced Materials 2023, 35 (7) https://doi.org/10.1002/adma.202208619
    70. Yiming Liu, Jizhe Xu, Yiming Zhang, Yong Shen, Zhibo Li. Rapid Ring‐Opening Polymerization of γ‐Butyrolactone toward High‐Molecular‐Weight Poly (γ‐butyrolactone) by an Organophosphazene Base and Bisurea Binary Catalyst. Chemistry – An Asian Journal 2023, 18 (3) https://doi.org/10.1002/asia.202201107
    71. Lukas Wursthorn, Kristen Beckett, Jacob O. Rothbaum, Robin M. Cywar, Clarissa Lincoln, Yosi Kratish, Tobin J. Marks. Selective Lanthanide‐Organic Catalyzed Depolymerization of Nylon‐6 to ϵ‐Caprolactam. Angewandte Chemie 2023, 135 (4) https://doi.org/10.1002/ange.202212543
    72. Lukas Wursthorn, Kristen Beckett, Jacob O. Rothbaum, Robin M. Cywar, Clarissa Lincoln, Yosi Kratish, Tobin J. Marks. Selective Lanthanide‐Organic Catalyzed Depolymerization of Nylon‐6 to ϵ‐Caprolactam. Angewandte Chemie International Edition 2023, 62 (4) https://doi.org/10.1002/anie.202212543
    73. Kangle Yan, Jie Wang, Zhongkai Wang, Liang Yuan. Bio-based monomers for amide-containing sustainable polymers. Chemical Communications 2023, 59 (4) , 382-400. https://doi.org/10.1039/D2CC05161C
    74. Guan‐Wen Yang, Yuhui Wang, Huan Qi, Yao‐Yao Zhang, Xiao‐Feng Zhu, Chenjie Lu, Li Yang, Guang‐Peng Wu. Highly Selective Preparation and Depolymerization of Chemically Recyclable Poly(cyclopentene carbonate) Enabled by Organoboron Catalysts. Angewandte Chemie 2022, 134 (46) https://doi.org/10.1002/ange.202210243
    75. Guan‐Wen Yang, Yuhui Wang, Huan Qi, Yao‐Yao Zhang, Xiao‐Feng Zhu, Chenjie Lu, Li Yang, Guang‐Peng Wu. Highly Selective Preparation and Depolymerization of Chemically Recyclable Poly(cyclopentene carbonate) Enabled by Organoboron Catalysts. Angewandte Chemie International Edition 2022, 61 (46) https://doi.org/10.1002/anie.202210243
    76. Jiafeng Su, Guangqiang Xu, Bingzhe Dong, Rulin Yang, Hongguang Sun, Qinggang Wang. Closed-loop chemical recycling of poly(ε-caprolactone) by tuning reaction parameters. Polymer Chemistry 2022, 13 (41) , 5897-5904. https://doi.org/10.1039/D2PY00953F
    77. Maria Varghese, Mark W. Grinstaff. Beyond nylon 6: polyamides via ring opening polymerization of designer lactam monomers for biomedical applications. Chemical Society Reviews 2022, 51 (19) , 8258-8275. https://doi.org/10.1039/D1CS00930C
    78. Liyun Yuan, Wei Zhou, Yong Shen, Zhibo Li. Chemically recyclable polyurethanes based on bio-renewable γ-butyrolactone: From thermoplastics to elastomers. Polymer Degradation and Stability 2022, 204 , 110116. https://doi.org/10.1016/j.polymdegradstab.2022.110116
    79. Yu-Hao Chen, Yi-Che Chang, Syang-Peng Rwei. High-value copolyamide 6 materials with colorless transparent and low water absorption upgraded from upcycled and biomass comonomers. Polymer 2022, 257 , 125269. https://doi.org/10.1016/j.polymer.2022.125269
    80. Zhongzheng Cai, Ye Liu, Youhua Tao, Jian-Bo Zhu. Recent Advances in Monomer Design for Recyclable Polymers. Acta Chimica Sinica 2022, 80 (8) , 1165. https://doi.org/10.6023/A22050235

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2022, 144, 12, 5366–5376
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.1c12611
    Published March 15, 2022
    Copyright © 2022 American Chemical Society

    Article Views

    8477

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.