ACS Publications. Most Trusted. Most Cited. Most Read
Hydrogen-Bond Network Promotes Water Splitting on the TiO2 Surface
My Activity

Figure 1Loading Img
    Article

    Hydrogen-Bond Network Promotes Water Splitting on the TiO2 Surface
    Click to copy article linkArticle link copied!

    • Xiaochuan Ma
      Xiaochuan Ma
      Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
      More by Xiaochuan Ma
    • Yongliang Shi
      Yongliang Shi
      Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
    • Jianyi Liu
      Jianyi Liu
      Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
      More by Jianyi Liu
    • Xintong Li
      Xintong Li
      Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
      More by Xintong Li
    • Xuefeng Cui
      Xuefeng Cui
      Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
      Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
      More by Xuefeng Cui
    • Shijing Tan*
      Shijing Tan
      Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
      Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
      *E-mail: [email protected]
      More by Shijing Tan
    • Jin Zhao*
      Jin Zhao
      Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
      ICQD/Hefei National Research Center for Physical Sciences at the Microscale, and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
      *E-mail: [email protected]
      More by Jin Zhao
    • Bing Wang*
      Bing Wang
      Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
      Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
      *E-mail: [email protected]
      More by Bing Wang
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2022, 144, 30, 13565–13573
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.2c03690
    Published July 19, 2022
    Copyright © 2022 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Breaking the strong covalent O–H bond of an isolated H2O molecule is difficult, but it can be largely facilitated when the H2O molecule is connected with others through hydrogen-bonding. How a hydrogen-bond network forms and performs becomes crucial for water splitting in natural photosynthesis and artificial photocatalysis and is awaiting a microscopic and spectroscopic understanding at the molecular level. At the prototypical photocatalytic H2O/anatase-TiO2(001)-(1×4) interface, we report the hydrogen-bond network can promote the coupled proton and hole transfer for water splitting. The formation of a hydrogen-bond network is controlled by precisely tuning the coverage of water to above one monolayer. Under ultraviolet (UV) light irradiation, the hydrogen-bond network opens a cascaded channel for the transfer of a photoexcited hole, concomitant with the release of the proton to form surface hydroxyl groups. The yielded hydroxyl groups provide excess electrons to the TiO2 surface, causing the reduction of Ti4+ to Ti3+ and leading to the emergence of gap states, as monitored by in situ UV/X-ray photoelectron spectroscopy. The density functional theory calculation reveals that the water splitting becomes an exothermic process through hole oxidation with the assistance of the hydrogen-bond network. In addition to the widely concerned exotic activity from photocatalysts, our study demonstrates the internal hydrogen-bond network, which is ubiquitous at practical aqueous/catalyst interfaces, is also indispensable for water splitting.

    Copyright © 2022 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c03690.

    • Sample preparation; UPS, XPS, ARPES, and STM measurements; DFT calculation details; full and zoom-in UPS spectral features; work function change with H2O adsorption; temperature-dependent adsorption of water at the anatase-TiO2(001)-(1×4) surface; XPS peak fitting of O 1s spectra at the anatase-TiO2(001) surface; extracting the 1π and 3σ contributions of hydroxyl groups in UPS spectra; lattice distortion around OHb at the terrace sites; 3a1 peak splitting in 2D energy-momentum space; additional STM images of H2O at the anatase-TiO2(001)-(1×4) surface obtained at 80 K; proposed H2O configurations and adsorption energies; AIMD simulations; energy change of the transition state and split state by injecting holes; calculated total and partial DOS for valence bands of the anatase-TiO2(001)-(1×4) surface (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 101 publications.

    1. Hanyu Yao, Qian Li, Yuying Gao, Han Feng, Panwang Zhou, Zhongrui Min, Thomas Dittrich, Prajakta Kokate, Keshav M. Dani, Ruotian Chen, Can Li, Fengtao Fan. Revealing Effect of Surface Hydroxyl Variation on Charge Spatiotemporal Dynamics in Photocatalysis. Journal of the American Chemical Society 2025, Article ASAP.
    2. Changping Liu, Xi Cheng, Xiaoyu Liang, Ning Wei, Yanxiao Ning, Rentao Mu, Qiang Fu. Frontline Autocatalysis Mediates the Water Reaction with Single-Layer ZnO. ACS Catalysis 2025, 15 (9) , 7093-7100. https://doi.org/10.1021/acscatal.5c01021
    3. Meryem Bouchabou, Juan Manuel Rives López, María del Carmen Román Martínez, María Angeles Lillo-Rodenas. Evaluating H2 Production by Ultraviolet-Induced Water Splitting over (Cu or Ni)-TiO2 Nanoparticle Photocatalysts. ACS Applied Nano Materials 2025, 8 (17) , 8646-8662. https://doi.org/10.1021/acsanm.5c00100
    4. Xiao Feng, Piaoping Yang, Yinwei Wang, Jieqi Cao, Jin Gao, Song Shi, Dionisios G. Vlachos. Tailoring the Selective Oxidation of Hydroxyl-Containing Compounds via Precisely Tuning the Hydrogen-Bond Strength of Catalyst H-Bond Acceptors. JACS Au 2025, 5 (3) , 1359-1366. https://doi.org/10.1021/jacsau.4c01262
    5. Siqin Liu, Kun Dang, Lei Wu, Shuming Bai, Yuchao Zhang, Jincai Zhao. Nearly Barrierless Four-Hole Water Oxidation Catalysis on Semiconductor Photoanodes with High Density of Accumulated Surface Holes. Journal of the American Chemical Society 2025, 147 (5) , 4520-4530. https://doi.org/10.1021/jacs.4c16443
    6. Young Jae Kim, Daeho Kim, Yongman Kim, Yongchan Jeong, Han-Koo Lee, Jeong Young Park. Correlation between Defect and Lattice States on Modulated TiO2(110) during Redox Reaction. The Journal of Physical Chemistry C 2025, 129 (4) , 2028-2035. https://doi.org/10.1021/acs.jpcc.4c08280
    7. Liming Deng, Hongjun Chen, Sung-Fu Hung, Ying Zhang, Hanzhi Yu, Han-Yi Chen, Linlin Li, Shengjie Peng. Lewis Acid-Mediated Interfacial Water Supply for Sustainable Proton Exchange Membrane Water Electrolysis. Journal of the American Chemical Society 2024, 146 (51) , 35438-35448. https://doi.org/10.1021/jacs.4c14529
    8. Xin Gao, Juan Chen, Huinan Che, Hong Bin Yang, Bin Liu, Yanhui Ao. Accelerating Small Electron Polaron Dissociation and Hole Transfer at Solid–Liquid Interface for Enhanced Heterogeneous Photoreaction. Journal of the American Chemical Society 2024, 146 (44) , 30455-30463. https://doi.org/10.1021/jacs.4c11123
    9. Zhongqiu Lin, Hikaru Saito, Hiromasa Sato, Toshiki Sugimoto. Positive and Negative Impacts of Interfacial Hydrogen Bonds on Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society 2024, 146 (32) , 22276-22283. https://doi.org/10.1021/jacs.4c04271
    10. Rosaria Verduci, Fabrizio Creazzo, Francesco Tavella, Salvatore Abate, Claudio Ampelli, Sandra Luber, Siglinda Perathoner, Giuseppe Cassone, Gabriele Centi, Giovanna D’Angelo. Water Structure in the First Layers on TiO2: A Key Factor for Boosting Solar-Driven Water-Splitting Performances. Journal of the American Chemical Society 2024, 146 (26) , 18061-18073. https://doi.org/10.1021/jacs.4c05042
    11. Xuefan Feng, Qisheng Zang, Xinyan Feng, Bo Lv, Hao Yu, Tingting Sun, Zhenyu Yuan, Junliang Liu, Yu Yang, Fuqin Zhang. Enhanced Solar-to-Hydrogen Conversion and Hydrogen Isotope Separation through Interfacial Hydrogen-Bond Engineering and Homolytic O–H Cleavage on Multianionic Sulfides in Large-Scale Floating Nanocomposites. ACS Catalysis 2024, 14 (11) , 9077-9092. https://doi.org/10.1021/acscatal.4c00903
    12. Shiyang Liu, Yike Huang, Nengchao Luo, Jian Zhang, Botao Qiao, Feng Wang. Water-Mediated Photocatalytic Coproduction of Diesel Fuel Additives and Hydrogen from Dimethyl Ether. ACS Catalysis 2024, 14 (9) , 6807-6815. https://doi.org/10.1021/acscatal.4c01132
    13. Pu Yang, Honggang Liu, Qingwei Jin, Yuemiao Lai, Yi Zeng, Chen Zhang, Jia Dong, Wenyu Sun, Qing Guo, Duanyun Cao, Jing Guo. Visualizing the Promoting Role of Interfacial Water in the Deprotonation of Formic Acid on Cu(111). Journal of the American Chemical Society 2024, 146 (1) , 210-217. https://doi.org/10.1021/jacs.3c07726
    14. Yiwei Fu, Kejian Lu, Anlan Hu, Jie Huang, Liejin Guo, Jian Zhou, Jin Zhao, Oleg V. Prezhdo, Maochang Liu. dz2 Band Links Frontier Orbitals and Charge Carrier Dynamics of Single-Atom Cocatalyst-Aided Photocatalytic H2 Production. Journal of the American Chemical Society 2023, 145 (51) , 28166-28175. https://doi.org/10.1021/jacs.3c10661
    15. Solana Di Pino, Edward Danquah Donkor, Veronica M. Sánchez, Alex Rodriguez, Giuseppe Cassone, Damian Scherlis, Ali Hassanali. ZundEig: The Structure of the Proton in Liquid Water from Unsupervised Learning. The Journal of Physical Chemistry B 2023, 127 (45) , 9822-9832. https://doi.org/10.1021/acs.jpcb.3c06078
    16. Jin-Ying Li, Qiang Fu, Chun-Jiang Jia. First-Principles Simulations of H2O Dissociation at the Interfacial Region Formed by a Molybdenum Oxide Cluster and a Reduced MoO3–x Surface. The Journal of Physical Chemistry C 2023, 127 (29) , 14177-14184. https://doi.org/10.1021/acs.jpcc.3c01923
    17. Yongjia Li, Kaixin Zhang, Yingjie Ji, Zheng Tang, Yebo Yao, Xia Liu, Dewei Wang, Xiaoxuan Wang, Lanlan Shi, Kaiqi Nie, Zhiyu Yang, Jiangzhou Xie, Yi-Ming Yan. Modulating the Interfacial Water Network of Dual-Site Pd/FeOx/C Catalyst for Efficient Formate Electrooxidation. ACS Applied Materials & Interfaces 2023, 15 (23) , 28790-28798. https://doi.org/10.1021/acsami.3c03046
    18. Yunfei Wu, Mengnan Ruan, Zhengang Guo, Chengyi Wang, Zhifeng Liu. Thickness Control of BiOIO3 Enables Polarization Enhancement To Promote Carrier Separation and Pyro-PEC Performance. The Journal of Physical Chemistry C 2023, 127 (18) , 8493-8502. https://doi.org/10.1021/acs.jpcc.3c01968
    19. Hang Zhou, Xia Sheng, Zhenyao Ding, Xi Chen, Xiqi Zhang, Xinjian Feng, Lei Jiang. Liquid–Liquid–Solid Triphase Interface Microenvironment Mediates Efficient Photocatalysis. ACS Catalysis 2022, 12 (21) , 13690-13696. https://doi.org/10.1021/acscatal.2c03987
    20. Zeyou Meng, Yuhao Hu, Xin Ye, Xiao Sun, Jun Hu, Zhen Wang, Jiabao Qiang, Sanping Chen, Gang Xie. Dual-mesopore mode and surface hydrogen bonding synergistic boosting CO2 adsorption. Separation and Purification Technology 2025, 370 , 133189. https://doi.org/10.1016/j.seppur.2025.133189
    21. Zhihao Wang, Xu Zhang, Zhiyu Ren, Zhimin Chen. A hydrogen-centric perspective on electrocatalytic nitrate reduction: Managing the active hydrogen lifecycle from generation to utilization. Journal of Energy Chemistry 2025, 109 , 210-230. https://doi.org/10.1016/j.jechem.2025.05.032
    22. Min Liu, Zhaogui Lai, Shuhui Chen, Feifei Huang, Gen Li, Shuai Liu, Lin Fan, Li Ma, Tao Wu, Ying Jin. Tunable reactivity of anatase TiO2(101) by oxygen defects towards explicit aqueous H2O ad-layers with implications for surface passivation: a DFT study. Surfaces and Interfaces 2025, 69 , 106760. https://doi.org/10.1016/j.surfin.2025.106760
    23. Fanfan Gao, Wei Li, Wen Duan, Guocheng Liao, Chuanyi Wang. Improved Solar‐Powered Water‐Splitting Performance of Bi 4 Ti 3 O 12 /TiO 2 Composite with Synergistically Interacted Heterointerfaces Under Platinum Cocatalysis. Small 2025, 598 https://doi.org/10.1002/smll.202503677
    24. Yitao Si, Yun Li, Miao Cheng, Yuqi Ren, Jiancheng Zhou, Zhenkun Sun, Jie Guan, Maochang Liu, Lunbo Duan, Naixu Li. Synergistic dual-oxygen-vacancy design boosts photothermal CO2 reduction into ethylene. Nano Energy 2025, 138 , 110838. https://doi.org/10.1016/j.nanoen.2025.110838
    25. Weihao Wang, Fang Kou, Zhigang Quan, Jiajia Sun, Zhi Zhang. Synthesis and characterization of a delivery system by combining cobalt (II) with soluble dietary fiber from Cyperus esculentus L. to regulate gut-derived neuroactive metabolite biosynthesis. Food Research International 2025, 211 , 116356. https://doi.org/10.1016/j.foodres.2025.116356
    26. Hui Li, Wenqi Zheng, Xinyi Liu, Jiashi Li, Lianbing Wen, Fujie Tang, Wei-Tao Liu. Auto-dissociation of atmospheric water on TiO 2 : insights from sum-frequency spectroscopy of Ti–O vibrations. Physical Chemistry Chemical Physics 2025, 27 (19) , 9991-9997. https://doi.org/10.1039/D5CP00400D
    27. Luke Roebuck, Min Hu, Helen Daly, Hubertus Warsahartana, Louise S. Natrajan, Arthur Garforth, Carmine D’Agostino, Marta Falkowska, Christopher Hardacre. H2 production from photocatalytic reforming of PET over Pt/TiO2: The role of terephthalic acid. Catalysis Today 2025, 452 , 115242. https://doi.org/10.1016/j.cattod.2025.115242
    28. Minzhi Ma, Yuanxing Fang, Zeai Huang, Sixin Wu, Weiwei He, Suxiang Ge, Zhi Zheng, Ying Zhou, Wenjun Fa, Xinchen Wang. Mechanistic Insights Into H 2 O Dissociation in Overall Photo‐/Electro‐Catalytic CO 2 Reduction. Angewandte Chemie 2025, 137 (19) https://doi.org/10.1002/ange.202425195
    29. Minzhi Ma, Yuanxing Fang, Zeai Huang, Sixin Wu, Weiwei He, Suxiang Ge, Zhi Zheng, Ying Zhou, Wenjun Fa, Xinchen Wang. Mechanistic Insights Into H 2 O Dissociation in Overall Photo‐/Electro‐Catalytic CO 2 Reduction. Angewandte Chemie International Edition 2025, 64 (19) https://doi.org/10.1002/anie.202425195
    30. Yan Zhao, Zhenming Tian, Qisen Jia, Ting Yao, Jiashu Li, Yanan Wang, Xuejing Cui, Jing Liu, Xin Chen, Luhua Jiang. Crystal orientation dependent charge transfer dynamics and interfacial water configuration boosting photoelectrocatalytic water oxidation to H2O2. Chinese Journal of Structural Chemistry 2025, 686 , 100619. https://doi.org/10.1016/j.cjsc.2025.100619
    31. Qisen Jia, Yanan Wang, Yan Zhao, Zhenming Tian, Luyao Ren, Xuejing Cui, Guangbo Liu, Xin Chen, Wenzhen Li, Luhua Jiang. Driving selective photoelectrocatalytic oxidation of seawater to oxygen via regulating interfacial water structures on titanium oxides. Chinese Journal of Catalysis 2025, 72 , 154-163. https://doi.org/10.1016/S1872-2067(24)60282-2
    32. Yinwei Wang, Xiao Feng, Chaochao Dun, Min Wang, Song Shi. Turning the lifetime of the N-oxyl radicals for enhanced photocatalytic oxidation of C–H bonds via π-π interactions. Chemical Engineering Journal 2025, 511 , 162068. https://doi.org/10.1016/j.cej.2025.162068
    33. Vo Thi Thanh Thuy, Tran Doan Trang, Yi-Feng Lin, Nguyen Nhat Huy, Yiu Fai Tsang, Kun-Yi Andrew Lin. Enhanced Photocatalytic Reduction of Carcinogenic Bromate in Water Using Self-Assembled Integration of Titanium Dioxide and Alpha-Sulfur. Korean Journal of Chemical Engineering 2025, 181 https://doi.org/10.1007/s11814-025-00464-7
    34. Hiromasa Sato, Hikaru Saito, Taisuke Higashi, Toshiki Sugimoto. Critical impacts of metal cocatalysts on oxidation kinetics and optimal reaction conditions of photocatalytic methane reforming. Chemical Communications 2025, 61 (32) , 5942-5945. https://doi.org/10.1039/D4CC06774F
    35. Minzhi Ma, Shuaikang Zhang, Mengge Jia, Tongqing Li, Jinshuo Chen, Shichu Zhao, Suxiang Ge, Zhi Zheng, Sixin Wu, Wenjun Fa. Confining asymmetric water hydrogen-bond network to boost photoreduction of CO2 to formaldehyde. Chemical Engineering Journal 2025, 509 , 161232. https://doi.org/10.1016/j.cej.2025.161232
    36. Nan Ni, Yifan Hao, Yinglao Liu, Haibo Li, Jin Feng, Wei Liu, Wenxu Zheng. Hybrid solar-energy harvest model for durable photocatalytic hydrogen production. International Journal of Hydrogen Energy 2025, 116 , 168-177. https://doi.org/10.1016/j.ijhydene.2025.03.119
    37. Na Ye, Kai Wang, Yingjun Tan, Zhengyi Qian, Hongyu Guo, Changshuai Shang, Zheng Lin, Qizheng Huang, Youxing Liu, Lu Li, Yu Gu, Ying Han, Chenhui Zhou, Mingchuan Luo, Shaojun Guo. Industrial-level CO2 to formate conversion on Turing-structured electrocatalysts. Nature Synthesis 2025, 7 https://doi.org/10.1038/s44160-025-00769-9
    38. Ziyu Zengcai, Shuting Liu, Yating Han, Baofang Zhang, Wenting Lin, Jingyao Yang, Yunhong Pi, Tiejun Wang. Insights into photothermal methanol reforming into hydrogen: The role of tailored dual-active-centered defective amino-MOFs for hydroxyl activation. Applied Catalysis B: Environment and Energy 2025, 362 , 124767. https://doi.org/10.1016/j.apcatb.2024.124767
    39. Yi Liu, Xinyi Lu, Runzhe Zhang, Jian Wang, Zhikui Zhou, Yanyan Xia, Ning Li, Dongyi Chen, Zhenjian Zhou, Xiaoyun Fan. Local Polarization Piezoelectric Electric Field Promoted Water Dissociation for Hydroxyl Radical Generation under Ambient Humidity Condition. Advanced Materials 2025, 37 (9) https://doi.org/10.1002/adma.202418554
    40. Young Jae Kim, Hyuk Choi, Daeho Kim, Yongman Kim, Ki‐jeong Kim, Jeongjin Kim, Geoff Thornton, Hyun You Kim, Jeong Young Park. CO 2 ‐Driven Oxygen Vacancy Diffusion and Healing on TiO 2 (110) at Ambient Pressure. Angewandte Chemie 2025, 137 (8) https://doi.org/10.1002/ange.202420449
    41. Young Jae Kim, Hyuk Choi, Daeho Kim, Yongman Kim, Ki‐jeong Kim, Jeongjin Kim, Geoff Thornton, Hyun You Kim, Jeong Young Park. CO 2 ‐Driven Oxygen Vacancy Diffusion and Healing on TiO 2 (110) at Ambient Pressure. Angewandte Chemie International Edition 2025, 64 (8) https://doi.org/10.1002/anie.202420449
    42. Xuzhao Shi, Wei Song, Tao Wei, Kui Zhang, Zhigang Shao. Improved CO tolerance of Pt nanoparticles on polyaniline-modified carbon for PEMFC anode. Fuel 2025, 382 , 133239. https://doi.org/10.1016/j.fuel.2024.133239
    43. Chuyu Lu, Futao Yi, Jianqing Ma, Mika Erik Tapio Sillanpää, Minghua Zhou, Qing Ye, Huixia Jin, Kefeng Zhang. In-Situ generation of nano TiO2 from MIL-125(Ti) and its role in boosting the photocatalytic degradation of tetracycline hydrochloride. Journal of Photochemistry and Photobiology A: Chemistry 2025, 459 , 116103. https://doi.org/10.1016/j.jphotochem.2024.116103
    44. Mohammadreza Rostami, Biao Yang, Xiaochuan Ma, Sifan You, Jin Zhou, Meng Zhang, Xuefeng Cui, Haiming Zhang, Francesco Allegretti, Bing Wang, Lifeng Chi, Johannes V. Barth. Catalytic effects of iron adatoms in poly( para -phenylene) synthesis on rutile TiO 2 (110). Nanoscale 2025, 17 (5) , 2621-2630. https://doi.org/10.1039/D4NR04407J
    45. Feng Chen, Ling‐Wei Wu, Zhen‐Wu Liu, Qiao‐Wei Yan, Li‐Ping Si, Shu‐Zhong Zhan, Hai‐Yang Liu. Carboxyl‐Group‐Bearing Metal Corroles of Cobalt, Manganese and Copper for Electrocatalytic Hydrogen Evolution. ChemPlusChem 2025, 90 (1) https://doi.org/10.1002/cplu.202400589
    46. Weijun Zhou, Ping Wang, Zhipeng Chen, Xuefei Wang, Huogen Yu. Constructing stable Fe-coordinated tannate acid three-dimensional network for long-lasting superhydrophilicity of TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2025, 704 , 135495. https://doi.org/10.1016/j.colsurfa.2024.135495
    47. Jing Wang, Mingying Zhao, Lei E, Dan Zhao, Chengyi Wang, Zhifeng Liu. Enhancing the oxygen evolution performance by introducing Pd-Cu alloy supported rod-like hollow titanium dioxide. Journal of Electroanalytical Chemistry 2025, 977 , 118844. https://doi.org/10.1016/j.jelechem.2024.118844
    48. Shalini Viswanathan, A.C. Swathi, K. Aparna. Photocatalytic water splitting. 2025, 97-117. https://doi.org/10.1016/B978-0-443-29064-0.00003-6
    49. Baijie Cheng, Ruolin Wang, Xinhao Wang, Nan Wang, Xiao-kun Ouyang. Heterojunction functionalized sodium alginate/carboxylated cellulose nanocrystals film enhancing sterilization performance for wound healing. Carbohydrate Polymers 2024, 345 , 122550. https://doi.org/10.1016/j.carbpol.2024.122550
    50. Xin Li, Zhen Xu, Donglei Bu, Jinming Cai, Huamei Chen, Qi Chen, Ting Chen, Fang Cheng, Lifeng Chi, Wenjie Dong, Zhenchao Dong, Shixuan Du, Qitang Fan, Xing Fan, Qiang Fu, Song Gao, Jing Guo, Weijun Guo, Yang He, Shimin Hou, Ying Jiang, Huihui Kong, Baojun Li, Dengyuan Li, Jie Li, Qing Li, Ruoning Li, Shuying Li, Yuxuan Lin, Mengxi Liu, Peinian Liu, Yanyan Liu, Jingtao Lü, Chuanxu Ma, Haoyang Pan, JinLiang Pan, Minghu Pan, Xiaohui Qiu, Ziyong Shen, Shijing Tan, Bing Wang, Dong Wang, Li Wang, Lili Wang, Tao Wang, Xiang Wang, Xingyue Wang, Xueyan Wang, Yansong Wang, Yu Wang, Kai Wu, Wei Xu, Na Xue, Linghao Yan, Fan Yang, Zhiyong Yang, Chi Zhang, Xue Zhang, Yang Zhang, Yao Zhang, Xiong Zhou, Junfa Zhu, Yajie Zhang, Feixue Gao, Yongfeng Wang. Recent progress on surface chemistry I: Assembly and reaction. Chinese Chemical Letters 2024, 35 (12) , 110055. https://doi.org/10.1016/j.cclet.2024.110055
    51. Xin Li, Shukui Shi, Tingting Yin, Xingjian Zhang, Mohan Zu, Linzhuo Yan, Zhengdao Li, Fengyun Su, Lin Guo, Xiaoli Jin, Haiquan Xie. The effect of co-modification of ultrathin g-C3N4 nanosheets with Ag and S on photocatalytic hydrogen production. Vacuum 2024, 230 , 113740. https://doi.org/10.1016/j.vacuum.2024.113740
    52. Xiaochuan Ma, Yongliang Shi, Zhengwang Cheng, Xiaofeng Liu, Jianyi Liu, Ziyang Guo, Xuefeng Cui, Xia Sun, Jin Zhao, Shijing Tan, Bing Wang. Unveiling diverse coordination-defined electronic structures of reconstructed anatase TiO2(001)-(1 × 4) surface. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46570-8
    53. Xiangcheng Zhang, Silian Cheng, Chao Chen, Xue Wen, Jie Miao, Baoxue Zhou, Mingce Long, Lizhi Zhang. Keto-anthraquinone covalent organic framework for H2O2 photosynthesis with oxygen and alkaline water. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47023-y
    54. Shaohui Guo, Xuchuan Cao, Jie Su, Jing Cui, Baichao Zhang, Chao Suo, Xiaochuan Duan, Xuanhua Li, Bingqing Wei, Xian-Ming Zhang. Plasmonic honeycomb-like structures with Bernoulli effect and pre-activation effect for enhanced photocatalytic hydrogen production from waste water. Chemical Engineering Journal 2024, 500 , 157335. https://doi.org/10.1016/j.cej.2024.157335
    55. Wei Li, Guocheng Liao, Wen Duan, Fanfan Gao, Yusen Wang, Rongxia Cui, Xuechuan Wang, Chuanyi Wang. Synergistically electronic interacted PVDF/CdS/TiO2 organic-inorganic photocatalytic membrane for multi-field driven panel wastewater purification. Applied Catalysis B: Environment and Energy 2024, 354 , 124108. https://doi.org/10.1016/j.apcatb.2024.124108
    56. Yitong Zhang, Cheng Cheng, Yifan Wu, Oleg V. Prezhdo, Run Long. Enhancement of hole capture and water dissociation on rutile TiO 2 (110) by intermolecular hydrogen bonding: time-domain ab initio study. Journal of Materials Chemistry A 2024, 12 (38) , 26178-26187. https://doi.org/10.1039/D4TA04750H
    57. Bing Zhou, Yawen Tong, Yancai Yao, Weixing Zhang, Guangming Zhan, Qian Zheng, Wei Hou, Xiang-Kui Gu, Lizhi Zhang. Reversed I 1 Cu 4 single-atom sites for superior neutral ammonia electrosynthesis with nitrate. Proceedings of the National Academy of Sciences 2024, 121 (37) https://doi.org/10.1073/pnas.2405236121
    58. Min Zhou, Haozhi Wang, Rong Liu, Zheyang Liu, Xinyan Xiao, Weilin Li, Chao Gao, Zhou Lu, Zhifeng Jiang, Weidong Shi, Yujie Xiong. Construction of Frustrated Lewis Pairs in Poly(heptazine Imide) Nanosheets via Hydrogen Bonds for Boosting CO 2 Photoreduction. Angewandte Chemie 2024, 136 (36) https://doi.org/10.1002/ange.202407468
    59. Min Zhou, Haozhi Wang, Rong Liu, Zheyang Liu, Xinyan Xiao, Weilin Li, Chao Gao, Zhou Lu, Zhifeng Jiang, Weidong Shi, Yujie Xiong. Construction of Frustrated Lewis Pairs in Poly(heptazine Imide) Nanosheets via Hydrogen Bonds for Boosting CO 2 Photoreduction. Angewandte Chemie International Edition 2024, 63 (36) https://doi.org/10.1002/anie.202407468
    60. Huige Chen, Zhenhua Li, Chao Zhou, Run Shi, Tierui Zhang. Triphase photocatalytic water-gas-shift reaction for hydrogen production with enhanced interfacial diffusion at gas–liquid–solid interfaces. Industrial Chemistry & Materials 2024, 2 (3) , 432-440. https://doi.org/10.1039/D3IM00135K
    61. Xiang Li, Wangchuan Zhu, Yanqun Zhang, Yueyue Zhao, Danjun Wang, Yanzhong Zhen, Feng Fu, Chunming Yang. Rational design of local microenvironment for electrocatalytic water splitting. Inorganic Chemistry Frontiers 2024, 11 (14) , 4080-4106. https://doi.org/10.1039/D4QI00854E
    62. Peijiao Chen, Zhijun Li, Pengze Wang, Yuxin Yao, Tianwei Dou, Yang Qu, Liqiang Jing. Synergistic effect of atomically dispersed Cu species and Ti-defects for boosting photocatalytic CO 2 reduction over hierarchical TiO 2. Nanoscale 2024, 16 (22) , 10727-10736. https://doi.org/10.1039/D4NR01229A
    63. Debarshi Banerjee, Khatereh Azizi, Colin K. Egan, Edward Danquah Donkor, Cesare Malosso, Solana Di Pino, Gonzalo Díaz Mirón, Martina Stella, Giulia Sormani, Germaine Neza Hozana, Marta Monti, Uriel N. Morzan, Alex Rodriguez, Giuseppe Cassone, Asja Jelic, Damian Scherlis, Ali Hassanali. Aqueous solution chemistry in silico and the role of data-driven approaches. Chemical Physics Reviews 2024, 5 (2) https://doi.org/10.1063/5.0207567
    64. Die Cong, Jikai Sun, Yuwei Pan, Xu Fang, Li Yang, Wei Zhou, Tie Yu, Zhen Li, Chengcheng Liu, Wei‐Qiao Deng. Hydrogen‐Bond‐Network Breakdown Boosts Selective CO 2 Photoreduction by Suppressing H 2 Evolution. Angewandte Chemie 2024, 136 (21) https://doi.org/10.1002/ange.202316991
    65. Die Cong, Jikai Sun, Yuwei Pan, Xu Fang, Li Yang, Wei Zhou, Tie Yu, Zhen Li, Chengcheng Liu, Wei‐Qiao Deng. Hydrogen‐Bond‐Network Breakdown Boosts Selective CO 2 Photoreduction by Suppressing H 2 Evolution. Angewandte Chemie International Edition 2024, 63 (21) https://doi.org/10.1002/anie.202316991
    66. Shicheng Zhu, Ruoou Yang, Huang Jing Wei Li, Sirui Huang, Haozhi Wang, Youwen Liu, Huiqiao Li, Tianyou Zhai. Reconstructing Hydrogen‐Bond Network for Efficient Acidic Oxygen Evolution. Angewandte Chemie 2024, 136 (17) https://doi.org/10.1002/ange.202319462
    67. Shicheng Zhu, Ruoou Yang, Huang Jing Wei Li, Sirui Huang, Haozhi Wang, Youwen Liu, Huiqiao Li, Tianyou Zhai. Reconstructing Hydrogen‐Bond Network for Efficient Acidic Oxygen Evolution. Angewandte Chemie International Edition 2024, 63 (17) https://doi.org/10.1002/anie.202319462
    68. Xiaowen Ruan, Shijie Li, Chengxiang Huang, Weitao Zheng, Xiaoqiang Cui, Sai Kishore Ravi. Catalyzing Artificial Photosynthesis with TiO 2 Heterostructures and Hybrids: Emerging Trends in a Classical yet Contemporary Photocatalyst. Advanced Materials 2024, 36 (17) https://doi.org/10.1002/adma.202305285
    69. Sikang Xue, Hao Tang, Min Shen, Xiaocong Liang, Xiaoyan Li, Wandong Xing, Can Yang, Zhiyang Yu. Establishing Multiple‐Order Built‐In Electric Fields Within Heterojunctions to Achieve Photocarrier Spatial Separation. Advanced Materials 2024, 36 (16) https://doi.org/10.1002/adma.202311937
    70. Yixiong Wu, Yanqi Xu, Cunjun Li, Hai Wang, Xinyu Wang, Aimiao Qin, Haiqing Qin, Linjiang Wang. Three-dimension TiO2@NiFe-layered double hydroxide core-shell heterostructures for enhanced photocatalytic phenol hydroxylation. Optical Materials 2024, 150 , 115296. https://doi.org/10.1016/j.optmat.2024.115296
    71. Ching-Hsu Yang, Yi-Sheng Chen, Ssu-Ting Lin, Jue-Lin Chen, Chuan-Sheng Hung, Hong-Ping Cheng, Chien-Chieh Hu, Chin-Chi Cheng, Hsiang Chen, Ming-Hsien Li. Air/water vapor control with lithium chloride/polyvinyl alcohol/sulfone composite films. Surface and Coatings Technology 2024, 482 , 130739. https://doi.org/10.1016/j.surfcoat.2024.130739
    72. Haotian Guan, Yijia Liu, Xinmeng Hu, Jiazhen Wu, Tian‐Nan Ye, Yangfan Lu, Hideo Hosono, Qian Li, Fusheng Pan. Dipole Coupling Accelerated H 2 O Dissociation by Magnesium‐Based Intermetallic Catalysts. Angewandte Chemie 2024, 136 (11) https://doi.org/10.1002/ange.202400119
    73. Haotian Guan, Yijia Liu, Xinmeng Hu, Jiazhen Wu, Tian‐Nan Ye, Yangfan Lu, Hideo Hosono, Qian Li, Fusheng Pan. Dipole Coupling Accelerated H 2 O Dissociation by Magnesium‐Based Intermetallic Catalysts. Angewandte Chemie International Edition 2024, 63 (11) https://doi.org/10.1002/anie.202400119
    74. Kaiqiang Zhang, Yang Ge, Qianchuan Yu, Pengbo Zhang, Yuge Feng, Zuoxiu Tie, Jing Ma, Zhong Jin. Self-stratified aqueous biphasic Zn–I and Zn–Br batteries enabled by spontaneous phase separation and halogen extraction effects of ionic liquids. Energy Storage Materials 2024, 67 , 103296. https://doi.org/10.1016/j.ensm.2024.103296
    75. Ellen H. G. Backus, Saman Hosseinpour, Charusheela Ramanan, Shumei Sun, Simon J. Schlegel, Moritz Zelenka, Xiaoyu Jia, Maximilian Gebhard, Anjana Devi, Hai I. Wang, Mischa Bonn. Ultraschnelle oberflächenspezifische Spektroskopie von Wasser an einem photoangeregten TiO 2 ‐Modell‐Photokatalysator zur Wasserspaltung. Angewandte Chemie 2024, 136 (8) https://doi.org/10.1002/ange.202312123
    76. Ellen H. G. Backus, Saman Hosseinpour, Charusheela Ramanan, Shumei Sun, Simon J. Schlegel, Moritz Zelenka, Xiaoyu Jia, Maximilian Gebhard, Anjana Devi, Hai I. Wang, Mischa Bonn. Ultrafast Surface‐Specific Spectroscopy of Water at a Photoexcited TiO 2 Model Water‐Splitting Photocatalyst. Angewandte Chemie International Edition 2024, 63 (8) https://doi.org/10.1002/anie.202312123
    77. Khadijeh Pournemati, Aziz Habibi-Yangjeh, Alireza Khataee. Integration of TiO2 QDs with brown TiO2: S-scheme photocatalysts with boosted activity for simulated sunlight-driven N2 fixation without hole quencher. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 682 , 132867. https://doi.org/10.1016/j.colsurfa.2023.132867
    78. Mengyao Fu, Shan Yu, Yunqian Zhong, Yijiang Chen, Chao Duan, Heng Guo, Ying Zhou. S and N codoped graphene quantum dots decorated on (001)TiO2 to boost surface reaction for photocatalytic hydrogen production. Results in Surfaces and Interfaces 2024, 14 , 100181. https://doi.org/10.1016/j.rsurfi.2024.100181
    79. Vesna Ribić, Vanja Jordan, Sandra Drev, Janez Kovač, Goran Dražić, Aleksander Rečnik. Mnemonic Rutile–Rutile Interfaces Triggering Spontaneous Dissociation of Water. Advanced Materials 2024, 36 (4) https://doi.org/10.1002/adma.202308027
    80. Ruimin Wang, Binli Wang, Abubakar Sadiq Abdullahi, Hongjun Fan. Understanding the prototype catalyst TiO 2 surface with the help of density functional theory calculation. WIREs Computational Molecular Science 2024, 14 (1) https://doi.org/10.1002/wcms.1686
    81. Qiqi Zhang, Zhen Wang, Yuhang Song, Jun Fan, Tao Sun, Enzhou Liu. S-scheme regulated Ni2P-NiS/twinned Mn0.5Cd0.5S hetero-homojunctions for efficient photocatalytic H2 evolution. Journal of Materials Science & Technology 2024, 169 , 148-157. https://doi.org/10.1016/j.jmst.2023.05.066
    82. Yiyang Li, Hui Zhou, Songhua Cai, Dharmalingam Prabhakaran, Wentian Niu, Alexander Large, Georg Held, Robert A. Taylor, Xin-Ping Wu, Shik Chi Edman Tsang. Electrolyte-assisted polarization leading to enhanced charge separation and solar-to-hydrogen conversion efficiency of seawater splitting. Nature Catalysis 2024, 7 (1) , 77-88. https://doi.org/10.1038/s41929-023-01069-1
    83. Xiaohui Yang, Dan Liu, Shiyu Lu, Siyu Xiang, Han Zhang, Qian Yang, Yongjiang Di, Yilong Ma, Rong Wang. New pentlandite-like oxide semiconductors IrIn 6 XYO 8 (X = Ga, In; Y = Ge, Sn, Ti) as potential candidates for photocatalytic water splitting under visible-light irradiation. Journal of Materials Chemistry C 2023, 11 (47) , 16818-16827. https://doi.org/10.1039/D3TC03118G
    84. Zhiyuan Deng, Yinying Shu, Meiying Gong, Jundie Hu, Jiafu Qu, Xiaogang Yang. Chemical Kinetics of Serial Processes for Photogenerated Charges at Semiconductor Surface: A Classical Theoretical Calculation. Catalysis Letters 2023, 153 (12) , 3750-3760. https://doi.org/10.1007/s10562-022-04267-x
    85. Zenglong Xu, Huiyan Xu, Jinfeng Sun, Jieqiang Wang, Degang Zhao, Bingqiang Cao, Xiutong Wang, Shuhua Yang. Electrolyte Strategies Toward Optimizing Zn Anode for Zinc-Ion Batteries. Transactions of Tianjin University 2023, 29 (6) , 407-431. https://doi.org/10.1007/s12209-023-00373-y
    86. Liping Zhang, Teng Li, Xingchao Dai, Jian Zhao, Ce Liu, Dongcheng He, Kang Zhao, Peiqing Zhao, Xinjiang Cui. Water Activation Triggered by Cu−Co Double‐Atom Catalyst for Silane Oxidation. Angewandte Chemie 2023, 135 (47) https://doi.org/10.1002/ange.202313343
    87. Liping Zhang, Teng Li, Xingchao Dai, Jian Zhao, Ce Liu, Dongcheng He, Kang Zhao, Peiqing Zhao, Xinjiang Cui. Water Activation Triggered by Cu−Co Double‐Atom Catalyst for Silane Oxidation. Angewandte Chemie International Edition 2023, 62 (47) https://doi.org/10.1002/anie.202313343
    88. Wenrui Cao, Chun Hu, Peng Zhang, Ting Qiu, Shuguang Wang, Guohe Huang, Lai Lyu. Salinity-mediated water self-purification via bond network distorting of H 2 O molecules on DRC-surface. Proceedings of the National Academy of Sciences 2023, 120 (45) https://doi.org/10.1073/pnas.2311920120
    89. Nanxing Gao, Dongchen Han, Tongtong Yang, Qinglei Meng, Xian Wang, Changpeng Liu, Junjie Ge, Wei Xing. Hydrogen-bonded network in interfacial water confer the catalysts with high formic acid decomposition performance. Applied Catalysis B: Environmental 2023, 336 , 122913. https://doi.org/10.1016/j.apcatb.2023.122913
    90. Haoyng Ding, Dingchen Zha, Shunyu Han, Nanzhe Jiang. Design strategy for photocatalytic hydrogen evolution reaction of TiO2: A review. Journal of the Taiwan Institute of Chemical Engineers 2023, 151 , 105135. https://doi.org/10.1016/j.jtice.2023.105135
    91. He Zhou, Heng Zhang, Shiling Yuan. Comparison of H2O Adsorption and Dissociation Behaviors on Rutile (110) and Anatase (101) Surfaces Based on ReaxFF Molecular Dynamics Simulation. Molecules 2023, 28 (19) , 6823. https://doi.org/10.3390/molecules28196823
    92. Christopher R. O’Connor, Marcos F. Calegari Andrade, Annabella Selloni, Greg A. Kimmel. Elucidating the water–anatase TiO2(101) interface structure using infrared signatures and molecular dynamics. The Journal of Chemical Physics 2023, 159 (10) https://doi.org/10.1063/5.0161895
    93. Mian Azmat, Abdul Majid, Mohammad Alkhedher, Sajjad Haider, Muhammad Saeed Akhtar. A first-principles study on two-dimensional tetragonal samarium nitride as a novel photocatalyst for hydrogen production. International Journal of Hydrogen Energy 2023, 48 (79) , 30732-30740. https://doi.org/10.1016/j.ijhydene.2023.04.248
    94. Boru Xiong, Qiaoling Kang, Mengfei Su, Feng Gao, Qingyi Lu. A high-performance self-supported multifunctional NF@Pt electrocatalyst for overall water splitting and rechargeable zinc-air battery. Journal of Power Sources 2023, 579 , 233262. https://doi.org/10.1016/j.jpowsour.2023.233262
    95. Rubén D. Parra. Hydrogen-Bond-Driven Peptide Nanotube Formation: A DFT Study. Molecules 2023, 28 (17) , 6217. https://doi.org/10.3390/molecules28176217
    96. Xiang Xie, Peng Ge, Ruiting Xue, Hongfei Lv, Wenhua Xue, Enzhou Liu. Enhanced photocatalytic H2 evolution and anti-photocorrosion of sulfide photocatalyst by improving surface reaction: A review. International Journal of Hydrogen Energy 2023, 48 (63) , 24264-24284. https://doi.org/10.1016/j.ijhydene.2023.03.193
    97. Shuai Li, Zhiqiang Wang, Yanying Chen, Qing Zou, Qianqian Zou, Long Wang, Yanxi Zhu, Lijuan Wang. Preparation of chitosan/retinoic acid @ nanocapsules/TiO 2 self-cleaning one-dimensional photonic crystals and the study of the visual detection of acute promyelocytic leukemia. RSC Advances 2023, 13 (27) , 18363-18370. https://doi.org/10.1039/D3RA02224B
    98. Dongsheng Zhang, Meijiao Wang, Guosong Wei, Renjie Li, Ning Wang, Xiaolong Yang, Zhuo Li, Yan Zhang, Yanhua Peng. High visible light responsive ZnIn2S4/TiO2-x induced by oxygen defects to boost photocatalytic hydrogen evolution. Applied Surface Science 2023, 622 , 156839. https://doi.org/10.1016/j.apsusc.2023.156839
    99. Heru Suryanto, Fredy Kurniawan, Daimon Syukri, Joseph Selvi Binoj, Purnama Dini Hari, Uun Yanuhar. Properties of bacterial cellulose acetate nanocomposite with TiO2 nanoparticle and graphene reinforcement. International Journal of Biological Macromolecules 2023, 235 , 123705. https://doi.org/10.1016/j.ijbiomac.2023.123705
    100. Michael Wagstaffe, Adrian Dominguez-Castro, Lukas Wenthaus, Steffen Palutke, Dmytro Kutnyakhov, Michael Heber, Federico Pressacco, Siarhei Dziarzhytski, Helena Gleißner, Verena Kristin Gupta, Harald Redlin, Adriel Dominguez, Thomas Frauenheim, Angel Rubio, Andreas Stierle, Heshmat Noei. Photoinduced Dynamics at the Water / TiO 2 ( 101 ) Interface. Physical Review Letters 2023, 130 (10) https://doi.org/10.1103/PhysRevLett.130.108001
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2022, 144, 30, 13565–13573
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.2c03690
    Published July 19, 2022
    Copyright © 2022 American Chemical Society

    Article Views

    9228

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.