ACS Publications. Most Trusted. Most Cited. Most Read
Largely Pseudocapacitive Two-Dimensional Conjugated Metal–Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis(dithiolene) Linkages
My Activity

Figure 1Loading Img
    Article

    Largely Pseudocapacitive Two-Dimensional Conjugated Metal–Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis(dithiolene) Linkages
    Click to copy article linkArticle link copied!

    • Panpan Zhang
      Panpan Zhang
      State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      More by Panpan Zhang
    • Mingchao Wang*
      Mingchao Wang
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      *Email: [email protected]
    • Yannan Liu
      Yannan Liu
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
      More by Yannan Liu
    • Yubin Fu
      Yubin Fu
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
      More by Yubin Fu
    • Mingming Gao
      Mingming Gao
      State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
      More by Mingming Gao
    • Gang Wang
      Gang Wang
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
      More by Gang Wang
    • Faxing Wang
      Faxing Wang
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      More by Faxing Wang
    • Zhiyong Wang
      Zhiyong Wang
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
      More by Zhiyong Wang
    • Guangbo Chen
      Guangbo Chen
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      More by Guangbo Chen
    • Sheng Yang
      Sheng Yang
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
      More by Sheng Yang
    • Youwen Liu
      Youwen Liu
      State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
      More by Youwen Liu
    • Renhao Dong
      Renhao Dong
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
      More by Renhao Dong
    • Minghao Yu*
      Minghao Yu
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      *Email: [email protected]
      More by Minghao Yu
    • Xing Lu
      Xing Lu
      State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, China
      More by Xing Lu
    • Xinliang Feng*
      Xinliang Feng
      Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstr. 4, 01062 Dresden, Germany
      Max Planck Institute of Microstructure Physics, D-06120 Halle (Saale), Germany
      *Email: [email protected]
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2023, 145, 11, 6247–6256
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.2c12684
    Published March 9, 2023
    Copyright © 2023 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Although two-dimensional conjugated metal–organic frameworks (2D c-MOFs) provide an ideal platform for precise tailoring of capacitive electrode materials, high-capacitance 2D c-MOFs for non-aqueous supercapacitors remain to be further explored. Herein, we report a novel phthalocyanine-based nickel-bis(dithiolene) (NiS4)-linked 2D c-MOF (denoted as Ni2[CuPcS8]) with outstanding pseudocapacitive properties in 1 M TEABF4/acetonitrile. Each NiS4 linkage is disclosed to reversibly accommodate two electrons, conferring the Ni2[CuPcS8] electrode a two-step Faradic reaction with a record-high specific capacitance among the reported 2D c-MOFs in non-aqueous electrolytes (312 F g–1) and remarkable cycling stability (93.5% after 10,000 cycles). Multiple analyses unveil that the unique electron-storage capability of Ni2[CuPcS8] originates from its localized lowest unoccupied molecular orbital (LUMO) over the nickel-bis(dithiolene) linkage, which allows the efficient delocalization of the injected electrons throughout the conjugated linkage units without inducing apparent bonding stress. The Ni2[CuPcS8] anode is used to demonstrate an asymmetric supercapacitor device that delivers a high operating voltage of 2.3 V, a maximum energy density of 57.4 Wh kg–1, and ultralong stability over 5000 cycles.

    Copyright © 2023 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.2c12684.

    • Experimental methods, PXRD patterns, SEM images, XPS spectra, FT-IR spectra, XANES spectra, EXAFS spectra, HR-TEM images, electrochemical performance of Ni2[CuPcS8], Ni2[CuPc(NH)8], and Ni2[CuPcO8] electrodes, and performance comparison (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 57 publications.

    1. Sayantani Banerjee, Nidhi Awasthi, Arya Roychowdhury, Deepannita Samanta, Pragya Arora, Nityananda Dutta, Apparao Draksharapu, Eugenio Garribba, Sankar Prasad Rath. Electron Shuttling in High-Valent Heterobimetallic NiFe-Porphyrin Dimers: Stabilization of Ni(III) and Fe-Phenoxyl Radicals. Inorganic Chemistry 2025, 64 (11) , 5431-5441. https://doi.org/10.1021/acs.inorgchem.4c05206
    2. Yuwei Zhang, Munendra Pal Singh, Li Bian, Tian Cao, Weiwei Xiong, Qiang Ju, Zhenlan Fang. Enhancing the Pseudocapacitive Energy Storage of Coordination Polymers by Artificially Constructed Defective Sites Anchoring Redox-Active Species. Inorganic Chemistry 2024, 63 (50) , 23926-23938. https://doi.org/10.1021/acs.inorgchem.4c04288
    3. Rakesh Deka, Kamal Prakash, Shaikh M. Mobin. Two-Dimensional Porphyrin-Based Covalent Organic Frameworks/g-C3N4 Composites as High-Performance Supercapacitor. ACS Applied Materials & Interfaces 2024, 16 (49) , 68487-68497. https://doi.org/10.1021/acsami.4c17272
    4. Yixiu Xu, Chenyu Yang, Yi Man, Xinwen Dou, Xin Xiao, Qiang Xu, Qiang Ju, Qinghua Liu, Zhenlan Fang. Defect-Triggered Reversible Phase Transformation for Boosting Electrochemical Performance of Coordination Polymers. Chemistry of Materials 2024, 36 (21) , 10583-10594. https://doi.org/10.1021/acs.chemmater.4c01957
    5. Hongbo Tai, Wenyu Ding, Xuan Zhang, Kaicheng Liang, Yang Rong, Zhiliang Liu. Upgrading Structural Conjugation in Three-Dimensional Ni-Based Metal–Organic Frameworks for Promoting Electrical Conductivity and Specific Capacitance. Inorganic Chemistry 2024, 63 (39) , 18083-18091. https://doi.org/10.1021/acs.inorgchem.4c02829
    6. Satya Prakash Suman, Gopi M. R. Dontireddy, Tianyang Chen, Jiande Wang, Jin-Hu Dou, Harish Banda. Enhanced Redox Storage and Diverse Intercalation in Layered Metal Organic Frameworks with a Staggered Stacking Mode. ACS Energy Letters 2024, 9 (4) , 1572-1580. https://doi.org/10.1021/acsenergylett.4c00544
    7. Xi Su, Zhiye Zhong, Xiaoli Yan, Yunpeng Xu, Ting Zhang, Yanhang Ma, Long Chen. De Novo Design and Facile Synthesis of Highly Crystalline 2D Conductive Metal–Organic Frameworks: A “Rotor-Stator” Strategy. Journal of the American Chemical Society 2024, 146 (13) , 9036-9044. https://doi.org/10.1021/jacs.3c13985
    8. Si-Wen Ke, Junjie Xin, Lingyu Tang, Lei Gao, Guanqun Cai, Mengning Ding, Shuai Yuan, Junliang Sun, Jing-Lin Zuo. Atomic-Resolution Crystal Structure of a Redox-Active Covalent Organic Framework with Ni–bis(dithiolene) Units. ACS Materials Letters 2024, 6 (3) , 921-927. https://doi.org/10.1021/acsmaterialslett.4c00078
    9. Jintong Li, Cunyuan Pei, Song Yang, Dongmei Zhang, Bing Sun, Zexiang Shen, Shibing Ni. N-Doped Carbon Nanonecklaces with Encapsulated BiOCl Nanoparticles as High-Rate Anodes for Lithium-Ion Batteries. Langmuir 2024, 40 (1) , 906-914. https://doi.org/10.1021/acs.langmuir.3c03052
    10. Jing Guo, Lihua Wu, Yu-Xin Ye, Fang Zhu, Jianqiao Xu, Gangfeng Ouyang. Two-Dimensional Conductive Metal–Organic Framework for Small-Molecule Sensing in Aqueous Solution. Analytical Chemistry 2023, 95 (36) , 13412-13416. https://doi.org/10.1021/acs.analchem.3c02417
    11. Juan Chu, Zhaoli Liu, Jie Yu, Heng-Guo Wang, Fengchao Cui, Guangshan Zhu. Electronic band structure engineering of π-d conjugated metal-organic framework for sodium organic batteries. Nature Communications 2025, 16 (1) https://doi.org/10.1038/s41467-025-58759-6
    12. Tian Sun, Zhenxiang Wang, Liang Zeng, Guang Feng. Identifying MOFs for electrochemical energy storage via density functional theory and machine learning. npj Computational Materials 2025, 11 (1) https://doi.org/10.1038/s41524-025-01590-w
    13. Somayeh Jafari, Mohammad Dashti Najafi, Ali Ehsani, Hanieh Pourjafar, Zahra Zahedi, Masoud Jamal Yousefi. Ternary layer MOF-on-MOF (Bi-V-Bi) embolized on graphene oxide as advanced and most efficient electrode materials in supercapacitors application. Journal of Energy Storage 2025, 122 , 116684. https://doi.org/10.1016/j.est.2025.116684
    14. . A Journey from Molecular Phthalocyanines to Polymeric Materials. 2025, 1-53. https://doi.org/10.1002/9783527840106.ch1
    15. . Applications of Phthalocyanine‐Based Polymeric Materials for Energy Storage. 2025, 313-363. https://doi.org/10.1002/9783527840106.ch8
    16. Yuanyuan Liu, Yong Yan, Xiujie Wang, Zhi Yang, Xinhua Li. Volumetric performance and energy-storage mechanism of high-density Ni-based coordination polymer electrodes for hybrid capacitors. Chemical Engineering Journal 2025, 509 , 161555. https://doi.org/10.1016/j.cej.2025.161555
    17. Menghan Liu, Hui Xu, Yuanhai Bao, Yong Chen. Stable carbon-organic electrode via micropore confining and π-π stacking for asymmetrical supercapacitor. Journal of Energy Storage 2025, 116 , 116110. https://doi.org/10.1016/j.est.2025.116110
    18. Lu Guan, Liangliang Guo, Haiyuan Yao, Jun Cai, Xuewei Dong, Ruonan Wang, Zhihua Zhai, Xuan Chen, Xiuzhi Wei, Dajin Li, Xingtong Liu, Shanshan Ji, Fanxiao Meng. Redox Additive Electrolytes for Supercapacitors: A Mini-Review on Recent Developments and Future Directions. Molecules 2025, 30 (8) , 1764. https://doi.org/10.3390/molecules30081764
    19. Xiao Li, Xi Su, Tan Su, Long Chen, Zhongmin Su. Two-dimensional conjugated metal–organic frameworks for electrochemical energy conversion and storage. Chemical Science 2025, 16 (13) , 5353-5368. https://doi.org/10.1039/D5SC00463B
    20. Gopi M. R. Dontireddy, Satya Prakash Suman, Jose L. Merino-Gardea, Ahad Hussain Javed, Jiande Wang, Tianyang Chen, Stavroula Kampouri, Harish Banda. Continuous and reversible tuning of inter-layer spacings in two-dimensional conductive metal organic frameworks. Journal of Materials Chemistry A 2025, 13 (12) , 8734-8741. https://doi.org/10.1039/D4TA08063G
    21. Guang Zhang, Long Chen. Two‐Dimensional Conductive Metal‐Organic Frameworks: Promising Materials for Advanced Energy Storage. ChemPhysChem 2025, 10 https://doi.org/10.1002/cphc.202400769
    22. Yongwang Lu, Xin Pang, Minzhang Li, Man Liang, Wei Wang, Qinyu He, Afzalshoh Qahramon Zarifzoda, Fuming Chen. In‐Situ Preparation of Iron(II)‐phthalocyanine@multi‐Walled‐CNTs Nanocomposite for Quasi‐Solid‐State Flexible Symmetric Supercapacitors with Long Cycling Life. ChemSusChem 2025, 18 (5) https://doi.org/10.1002/cssc.202401940
    23. Ahmad Bagheri, Sebastiano Bellani, Hossein Beydaghi, Zhiyong Wang, Ahiud Morag, Marilena I. Zappia, Jaya‐Kumar Panda, Samaneh Vaez, Valentina Mastronardi, Agnese Gamberini, Sanjay Balkrishna Thorat, Matteo Abruzzese, Lea Pasquale, Renhao Dong, Minghao Yu, Xinliang Feng, Francesco Bonaccorso. Coexistence of Redox‐Active Metal and Ligand Sites in Copper‐Based Two‐Dimensional Conjugated Metal–Organic Frameworks as Active Materials for Battery‐Supercapacitor Hybrid Systems. ChemSusChem 2025, 18 (4) https://doi.org/10.1002/cssc.202401454
    24. Hongren Rong, Zhiwei Liu, Gexiang Gao, Lixin Su, Xiaojuan Chen, Hao Huang, Wenlong Liu, Qi Liu. Realizing higher-performance supercapacitor using three-dimensional cadmium-based coordination polymer. Journal of Alloys and Compounds 2025, 1010 , 177894. https://doi.org/10.1016/j.jallcom.2024.177894
    25. Yuhan Li, Gang Liu, Xinmei Liu, Hongfei Chen, Zhitao Yang, Jingzhou Zhang, Mingyang Wu, Limin Dong. Synthesis of tablet-like BiOCl as an anode material for lithium-ion batteries by room-temperature liquid-phase co-deposition. Journal of Alloys and Compounds 2025, 1010 , 178284. https://doi.org/10.1016/j.jallcom.2024.178284
    26. Wentao Liu, Guoqiang Yuan, Shu Jiang, Yuxin Shi, Huan Pang. Two‐Dimensional (2D) Conductive Metal‐Organic Framework Thin Films: The Preparation and Applications in Electrochemistry.. Chemistry – A European Journal 2024, 30 (70) https://doi.org/10.1002/chem.202402747
    27. Xinwen Dou, Mingyue Liu, Tian Cao, Chan Wang, Yingjie Zhang, Yuhang Jia, Qiang Ju, Zhenlan Fang. Exploring the optimal post-treatment strategy for boosting the electrochemical performances of a new bimetal–organic framework-based supercapacitor. Inorganic Chemistry Frontiers 2024, 11 (24) , 8797-8812. https://doi.org/10.1039/D4QI02314E
    28. Vishwakarma Ravikumar Ramlal, Kinjal B. Patel, Savan K. Raj, Divesh N. Srivastava, Amal Kumar Mandal. Conjugated Coordination Nanosheets with Molecular Rotors for Pseudocapacitors: Nanoarchitectonics and Enhanced Performance. Chemistry – A European Journal 2024, 30 (67) https://doi.org/10.1002/chem.202402852
    29. Hu Shi, Mengyao Ma, Yue Sun, Miaomiao Cui, Aniu Qian. Surface ‒OH Termination‐Reduced Ti 3 C 2 T x Pseudo‐capacitors with Reinforced Ionic Liquid Accessibility to Achieve High Energy Density. Advanced Functional Materials 2024, 34 (51) https://doi.org/10.1002/adfm.202410006
    30. Siwen Li, Bo Jiang, Gen Liu, Chunyan Shi, Hongbin Yu, Yingzi Lin. A new attempt to remove toluene using nickel–iron bimetallic particle electrode reactor. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-60956-0
    31. Kun Fan, Linnan Guan, Yuan Gu, Shantang Liu, Chengliang Wang. Conjugated coordination polymers as multifunctional platform for electrochemical energy storage. Coordination Chemistry Reviews 2024, 519 , 216098. https://doi.org/10.1016/j.ccr.2024.216098
    32. Yanzhou Peng, Shikuan Geng, Xiaoli Cai, Fuxin Wang, Keye Xu, Shi Chen, Dezhou Zheng, Xihong Lu. Bimetallic NiSe2-CoSe2 heterogeneous with enhanced capacity for aqueous alkaline zinc-based batteries. Journal of Alloys and Compounds 2024, 1004 , 175870. https://doi.org/10.1016/j.jallcom.2024.175870
    33. Dilip Pandey, Mayank K. Singh, Shivendu Mishra, Dhirendra K. Rai, Abhinav Raghuvanshi. A 2D layered semiconducting (LCu 3 I 3 ) n coordination polymer for energy storage through dual ion intercalation. Journal of Materials Chemistry A 2024, 12 (40) , 27355-27363. https://doi.org/10.1039/D4TA04301D
    34. Xiao‐Feng Qiu, Jia‐Run Huang, Can Yu, Xiao‐Ming Chen, Pei‐Qin Liao. Highly Efficient Electrosynthesis of Urea from CO 2 and Nitrate by a Metal–Organic Framework with Dual Active Sites. Angewandte Chemie 2024, 136 (42) https://doi.org/10.1002/ange.202410625
    35. Seung‐Jae Shin, Jamie W. Gittins, Chloe J. Balhatchet, Aron Walsh, Alexander C. Forse. Metal–Organic Framework Supercapacitors: Challenges and Opportunities. Advanced Functional Materials 2024, 34 (43) https://doi.org/10.1002/adfm.202308497
    36. Zhen Ding, Bo Wang, Naien Shi, Fei Shi, Linghai Xie, Yu Lai, Ying Wei, Lihong He, Min Han, Wei Huang. Eu-viologen based bimetal–organic frameworks nanosheets with Mn atoms anchored on Eu-µ-O skeletons as high-performance negative electrode for flexible asymmetric supercapacitors. Chemical Engineering Journal 2024, 497 , 154814. https://doi.org/10.1016/j.cej.2024.154814
    37. You-Kang Duan, Ai-Jun Jiao, Zhi-Wei Li, Shi-Chun Zhang, Tong Su, Zhen-Hai Fu. Carbon-nitrogen matrix encapsulated CoSn alloy anode with pseudocapacitive properties for advanced lithium-ion capacitors. Journal of Power Sources 2024, 617 , 235146. https://doi.org/10.1016/j.jpowsour.2024.235146
    38. Xiao‐Feng Qiu, Jia‐Run Huang, Can Yu, Xiao‐Ming Chen, Pei‐Qin Liao. Highly Efficient Electrosynthesis of Urea from CO 2 and Nitrate by a Metal–Organic Framework with Dual Active Sites. Angewandte Chemie International Edition 2024, https://doi.org/10.1002/anie.202410625
    39. Sureka Kanthasamy, Mohanapriya Subramani, Shankar Ramasamy, Selvaraju Thangavelu. Unveiling the structure-property relationships of bimetallic nickel molybdenum metal organic framework for pseudocapacitor electrode materials: A combined approach of experimental and theoretical study. Chemical Engineering Journal 2024, 495 , 153691. https://doi.org/10.1016/j.cej.2024.153691
    40. Yiwen Yang, Xiaoman Yao, Zhe Xuan, Xuanxu Chen, Yuluan Zhang, Taoping Huang, Mingjin Shi, Yifa Chen, Ya-Qian Lan. Porous crystalline conjugated macrocyclic materials and their energy storage applications. Materials Horizons 2024, 11 (16) , 3747-3763. https://doi.org/10.1039/D4MH00313F
    41. Qian Liu, Zengqi Guo, Zhiwei Xu, Cong Wang, Wai‐Yeung Wong. Conjugated cobalt‐based metal complex nanosheet for fabricating high‐performance supercapacitor electrode. EcoMat 2024, 6 (8) https://doi.org/10.1002/eom2.12480
    42. Song Chen, Lai‐Hon Chung, Shaoru Chen, Zhixin Jiang, Ning Li, Jieying Hu, Wei‐Ming Liao, Jun He. Efficient Lead Removal by Assembly of Bio‐Derived Ellagate Framework, Which Enables Electrocatalytic Reduction of CO 2 to Formate. Small 2024, 20 (34) https://doi.org/10.1002/smll.202400978
    43. Hao Zhong, Zhixin Jiang, Jieying Hu, Lai-Hon Chung, Jun He. 2D metal–organic frameworks bearing butterfly-shaped metal-bis(dithiolene) linkers from dithiol-functionalized benzenedicarboxylic acid. Chemical Communications 2024, 60 (59) , 7578-7581. https://doi.org/10.1039/D4CC02282C
    44. Hong Tu, Ying Xu, Shun‐shun Chen, Ya Wang, Sheng‐xin Guo, Jian Wu. Screening of Ultra‐Efficient Visible Light Catalysts via Material Modification to Activate Electron Polarization Inside the Material. Advanced Energy and Sustainability Research 2024, 44 https://doi.org/10.1002/aesr.202400175
    45. Gopi M. R. Dontireddy, Satya Prakash Suman, Jose L. Merino-Gardea, Tianyang Chen, Jin-Hu Dou, Harish Banda. Arresting dissolution of two-dimensional metal–organic frameworks enables long life in electrochemical devices. Chemical Science 2024, 15 (27) , 10416-10424. https://doi.org/10.1039/D4SC02699C
    46. Maha Adel, Reda S. Salama, Mina Shawky Adly, Amr Awad Ibrahim, Awad I. Ahmed. Enhanced electrochemical performance of the electrodeposited nickel sulfide on ZIF-67@RGO composite for supercapacitor applications. Journal of Alloys and Compounds 2024, 991 , 174539. https://doi.org/10.1016/j.jallcom.2024.174539
    47. Ying Huang, Mingming Gao, Yubin Fu, Junke Li, Faxing Wang, Sheng Yang, Mingchao Wang, Zhengfang Qian, Xing Lu, Panpan Zhang, Renheng Wang. Hierarchical porous carbon nanofibers embedded with one-dimensional conjugated metal−organic framework anodes for ammonium-ion hybrid supercapacitors. Energy Storage Materials 2024, 70 , 103522. https://doi.org/10.1016/j.ensm.2024.103522
    48. C. Wang, S. Wei, Q. Zhu, X.B. Yang, B. Zhou, Z.Q. Duan, Z.X. Xie, Y.M. Hu. Petaloid CuS nanocrystalline combined with nitrogen self-doped porous carbon as hybrid electrodes for supercapacitors. Journal of Energy Storage 2024, 91 , 112021. https://doi.org/10.1016/j.est.2024.112021
    49. Ramya Ramkumar, Ganesh Dhakal, Tensangmu Lama Tamang, Sanghyeon Yu, Pitchaimani Veerakumar, Jae-Jin Shim, Woo Kyoung Kim. Reverse-engineered borohydride hydrolysis: Vacancy-rich cobalt aerogel nanowafers as high-efficiency electrode materials for supercapacitor applications. Journal of Energy Storage 2024, 86 , 111338. https://doi.org/10.1016/j.est.2024.111338
    50. Alice Y. Su, Petru Apostol, Jiande Wang, Alexandru Vlad, Mircea Dincă. Electrochemical Capacitance Traces with Interlayer Spacing in Two‐dimensional Conductive Metal–Organic Frameworks. Angewandte Chemie 2024, 136 (18) https://doi.org/10.1002/ange.202402526
    51. Alice Y. Su, Petru Apostol, Jiande Wang, Alexandru Vlad, Mircea Dincă. Electrochemical Capacitance Traces with Interlayer Spacing in Two‐dimensional Conductive Metal–Organic Frameworks. Angewandte Chemie International Edition 2024, 63 (18) https://doi.org/10.1002/anie.202402526
    52. Yuanhai Bao, Hui Xu, Yuanqiang Zhu, Menghan Liu, Maocheng Liu, Yong Chen. Pore regulation and surface modification collaboratively enhance biomass porous carbon anchoring azure A for stable supercapacitor electrode. Industrial Crops and Products 2024, 210 , 118176. https://doi.org/10.1016/j.indcrop.2024.118176
    53. Rongmei Zhu, Limei Liu, Guangxun Zhang, Yi Zhang, Yuxuan Jiang, Huan Pang. Advances in electrochemistry of intrinsic conductive metal-organic frameworks and their composites: Mechanisms, synthesis and applications. Nano Energy 2024, 122 , 109333. https://doi.org/10.1016/j.nanoen.2024.109333
    54. Yuntong Sun, Wenjun Fan, Yinghao Li, Nicole L. D. Sui, Zhouhao Zhu, Yingtang Zhou, Jong‐Min Lee. Tuning Coordination Structures of Zn Sites Through Symmetry‐Breaking Accelerates Electrocatalysis. Advanced Materials 2024, 36 (4) https://doi.org/10.1002/adma.202306687
    55. Yan Jiang, Chen Yang, Yuanyuan Yu, Yulin Zhou, Zhoutai Shang, Shengchang Zhang, Pengqing Liu, Jiadeng Zhu, Mengjin Jiang. Aromatic polyaroxydiazole pseudocapacitive anode materials with tunable electrochemical performance through side group engineering. Journal of Materials Chemistry A 2023, 12 (1) , 364-374. https://doi.org/10.1039/D3TA06374G
    56. Xiaoju Wang, Xinxin Hang, Guangxun Zhang, Yang An, Bei Liu, Huan Pang. Metal Ion‐controlled Growth of Different Metal‐Organic Framework Micro/nanostructures for Enhanced Supercapacitor Performance. Chemistry – An Asian Journal 2023, 18 (23) https://doi.org/10.1002/asia.202300859
    57. Xinxin Hang, Bei Liu, Guoqiang Yuan, Xiaoju Wang, Yang An, Huan Pang. Facile synthesis of 2D bimetallic MOF micro/nanostructures for enhanced supercapacitor. Materials Today Chemistry 2023, 34 , 101754. https://doi.org/10.1016/j.mtchem.2023.101754

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2023, 145, 11, 6247–6256
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.2c12684
    Published March 9, 2023
    Copyright © 2023 American Chemical Society

    Article Views

    5813

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.