ACS Publications. Most Trusted. Most Cited. Most Read
Hydroxyl-Bonded Ru on Metallic TiN Surface Catalyzing CO2 Reduction with H2O by Infrared Light
My Activity

Figure 1Loading Img
    Article

    Hydroxyl-Bonded Ru on Metallic TiN Surface Catalyzing CO2 Reduction with H2O by Infrared Light
    Click to copy article linkArticle link copied!

    • Bo Su
      Bo Su
      State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
      More by Bo Su
    • Yuehua Kong
      Yuehua Kong
      State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
      More by Yuehua Kong
    • Sibo Wang*
      Sibo Wang
      State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
      *Email: [email protected]
      More by Sibo Wang
    • Shouwei Zuo
      Shouwei Zuo
      KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
      More by Shouwei Zuo
    • Wei Lin
      Wei Lin
      State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
      More by Wei Lin
    • Yuanxing Fang
      Yuanxing Fang
      State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
    • Yidong Hou
      Yidong Hou
      State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
      More by Yidong Hou
    • Guigang Zhang
      Guigang Zhang
      State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
    • Huabin Zhang
      Huabin Zhang
      KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
      More by Huabin Zhang
    • Xinchen Wang*
      Xinchen Wang
      State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
      *Email: [email protected]
      More by Xinchen Wang
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2023, 145, 50, 27415–27423
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.3c08311
    Published December 11, 2023
    Copyright © 2023 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Synchronized conversion of CO2 and H2O into hydrocarbons and oxygen via infrared-ignited photocatalysis remains a challenge. Herein, the hydroxyl-coordinated single-site Ru is anchored precisely on the metallic TiN surface by a NaBH4/NaOH reforming method to construct an infrared-responsive HO-Ru/TiN photocatalyst. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (ac-HAADF-STEM) and X-ray absorption spectroscopy (XAS) confirm the atomic distribution of the Ru species. XAS and density functional theory (DFT) calculations unveil the formation of surface HO-RuN5–Ti Lewis pair sites, which achieves efficient CO2 polarization/activation via dual coordination with the C and O atoms of CO2 on HO-Ru/TiN. Also, implanting the Ru species on the TiN surface powerfully boosts the separation and transfer of photoinduced charges. Under infrared irradiation, the HO-Ru/TiN catalyst shows a superior CO2-to-CO transformation activity coupled with H2O oxidation to release O2, and the CO2 reduction rate can further be promoted by about 3-fold under simulated sunlight. With the key reaction intermediates determined by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and predicted by DFT simulations, a possible photoredox mechanism of the CO2 reduction system is proposed.

    Copyright © 2023 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.3c08311.

    • Experimental details; more FESEM/TEM images; XRD, EDX, and PL spectra; and transient photocurrent response (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 147 publications.

    1. Zengrong Li, Peng Wang, Chengzhi Ren, Linyi Wu, Yangtao Yao, Shuxian Zhong, Hongjun Lin, Leihong Zhao, Yijing Gao, Song Bai. Modulating the Selectivity of CO2 Photoreduction by Regulating the Location of PtCu in a UiO-66@ZnIn2S4 Core–Shell Nanoreactor. ACS Catalysis 2025, 15 (2) , 828-840. https://doi.org/10.1021/acscatal.4c05717
    2. Xinqing Gao, Xiangya Zhang, Guangze Lv, Linlin Zhang, Zhen Zhang, Cheng Li, Xiaodong Zhang, Jianjun Liao. Photothermal Catalytic Conversion of CO2 to CO over Z-Scheme Co9S8@W18O49 Nanotubular Heterostructures. ACS Applied Nano Materials 2025, 8 (2) , 1255-1265. https://doi.org/10.1021/acsanm.4c06362
    3. Honglei Shao, Mingyu Heng, Jing Guo, Ruiyi Yang, Handong Zhang, Jinchen Fan, Guisheng Li, Yingchun Miao, Shuning Xiao. 3D Interwoven SiC/g-C3N4 Structure for Superior Charge Separation and CO2 Photoreduction Performance. Langmuir 2025, 41 (1) , 1115-1125. https://doi.org/10.1021/acs.langmuir.4c04436
    4. Kang-Le Xie, Li-Ping Wu, Ya-Qing Liao, Jun-Jie Hu, Kang-Qiang Lu, He-Rui Wen, Jin-Rong Huo. Highly Stable Lanthanide-Organic Frameworks Based on {Ln6O8} Clusters with Photocatalytic Reduction of CO2 to CO. Inorganic Chemistry 2025, 64 (1) , 638-645. https://doi.org/10.1021/acs.inorgchem.4c03799
    5. Qifan Wu, Yaqi Liu, Yichen Liu, Zuozheng Xu, Guicheng Luo, Guangqing Liu, Yun Shan, Shuyi Wu, Lizhe Liu, Zhimin Liu. Reverse Electron Transfer-Induced SnS2 Phase Transition for Efficient Photocatalytic CO2–C2H6 Conversion. ACS Sustainable Chemistry & Engineering 2025, 13 (1) , 232-240. https://doi.org/10.1021/acssuschemeng.4c06819
    6. Yadong Wu, Lijuan Sun, Shahid Khan, Haopeng Jiang, Muhammad Adnan Qaiser, Han Li, Weikang Wang, Lele Wang, Qinqin Liu. Metallic TiN Nanoparticle Cocatalyst with Hydrogen-Induced Nitrogen Vacancies for Plasmon-Enhanced Full Solar-Spectrum-Driven H2 Production. ACS Applied Nano Materials 2025, Article ASAP.
    7. Baorong Xu, Shicheng Luo, Weibo Hua, Hang Xiao, Ben Chong, Guocheng Yan, He Li, Honghui Ou, Bo Lin, Guidong Yang. Constructing Atomic Tungsten-Based Solid Frustrated-Lewis-Pair Sites with d-p Interactions for Selective CO2 Photoreduction. Journal of the American Chemical Society 2025, 147 (1) , 200-210. https://doi.org/10.1021/jacs.4c08953
    8. Chen Liao, Zhizhong He, Feng Wang, Ya Liu, Liejin Guo. Anti-Site Defect-Induced Cascaded Sub-Band Transition in CuInS2 Enables Infrared Light-Driven CO2 Reduction. ACS Nano 2024, 18 (52) , 35480-35489. https://doi.org/10.1021/acsnano.4c12832
    9. Fan Fu, Yongxin Liu, Mingliang Liu, Zhengguang Li, Wanying Zhong, Yaqin Li, Kaixiu Li, Jun Wang, Yongchao Huang, Yiming Li, Wei Liu, Yi Zhang, Kaisong Xiang, Hui Liu, Pingshan Wang, Die Liu. Non-noble Metal Single-Molecule Photocatalysts for the Overall Photosynthesis of Hydrogen Peroxide. Journal of the American Chemical Society 2024, Article ASAP.
    10. Wenjin Dong, Chuanjun Wang, Yutai Zou, Wenshuo Wang, Jian Liu. NAD(P)H-Inspired CO2 Reduction Based on Organohydrides. ACS Applied Materials & Interfaces 2024, 16 (49) , 67073-67086. https://doi.org/10.1021/acsami.4c01101
    11. Yan-Xi Tan, Xiang Zhang, Yaobing Wang, Jiannian Yao. Molecular Assembly of Functional Motifs for Artificial Photosynthesis. Accounts of Materials Research 2024, 5 (11) , 1377-1387. https://doi.org/10.1021/accountsmr.4c00215
    12. Hui-Feng Wang, Hong Yuan, Si-Zhan Feng, Bao-Xia Dong, Di-Chang Zhong. Incorporation of a Binuclear Cobalt Complex into MOFs for Photocatalytic CO2 Reduction with H2O as an Electron Donor. Inorganic Chemistry 2024, 63 (46) , 22033-22039. https://doi.org/10.1021/acs.inorgchem.4c03423
    13. Wenyao Cheng, Lele Wang, Hongxin Lao, Yingcong Wei, Jing Xu, Bo Weng. Unraveling the Plasmonic Effect of Au in Promoting Photocatalytic H2 Generation and Organic Synthesis. ACS Sustainable Chemistry & Engineering 2024, 12 (46) , 17026-17034. https://doi.org/10.1021/acssuschemeng.4c07440
    14. Lei Li, Hanghao Ying, Panzhe Qiao, Wenxiu Liu, Shu Shang, Wei Shao, Hui Wang, Xiaodong Zhang, Yi Xie. Symmetry-Broken Steered Delocalization State in a Single-Atom Photocatalyst. Nano Letters 2024, 24 (45) , 14412-14419. https://doi.org/10.1021/acs.nanolett.4c04304
    15. Qi Qi, Wenjing Shen, Ming Cai, Junxi Cai, Bo Hu, Donglai Han, Xu Tang, Zhi Zhu, Pengwei Huo. Construction of Cu-Modified g-C3N4 Nanosheets for Photoinduced CO2 Reduction to CO and Selectivity Mechanism Insight. ACS Applied Nano Materials 2024, 7 (21) , 24788-24797. https://doi.org/10.1021/acsanm.4c04669
    16. Zheying Guo, Bin Shen, Zhiqiang Jiang, Ningkun Wu, Yujing You. Effective Near-Infrared Light-Driven Photocatalytic Reduction of CO2 by Dual-Site Doped Carbon Nitrides. Industrial & Engineering Chemistry Research 2024, 63 (44) , 18931-18939. https://doi.org/10.1021/acs.iecr.4c02725
    17. Renzhi Xiong, Yiting Sun, Jingmei Li, Keqin Chen, Fangde Liu, Yanhe Xiao, Baochang Cheng, Shuijin Lei. MgCr2O4/MgIn2S4 Spinel/Spinel S-Scheme Heterojunction: A Robust Catalyst for Photothermal-Assisted Photocatalytic CO2 Reduction. Inorganic Chemistry 2024, 63 (41) , 19309-19321. https://doi.org/10.1021/acs.inorgchem.4c03044
    18. Jing Li, Yu Xia, Zhiting Zhang, Xiaolong Zhao, Lei Wang, Jingwei Huang, Houde She, Xinheng Li, Qizhao Wang. Regulating the Layer Stacking Configuration of CTF-TiO2 Heterostructure for Improving the Photocatalytic CO2 Reduction. Inorganic Chemistry 2024, 63 (41) , 19344-19354. https://doi.org/10.1021/acs.inorgchem.4c03191
    19. Sibun Kumar Pradhan, Ranjit Bariki, Swagat Kumar Nayak, Saumyaranjan Panda, Nikhil Kumar Das, Braja Gopal Mishra. Facile Synthesis of Oxygen-Deficient CeVO4/Bi/Bi2MoO6 Ternary Heterostructures with Bi-Mediated Switching from Type-I to Z-Scheme Mechanism for O2 and N2 Photoreductions. Industrial & Engineering Chemistry Research 2024, 63 (40) , 17193-17206. https://doi.org/10.1021/acs.iecr.4c02472
    20. Yafei Zheng, Sichun Ling, Yujing Lv, Ying Wang, Ke Tang, Zhengxin Ding, Jinlin Long. Enhanced Adsorption Mediates Efficient CO2 Reduction over a Ru/TiO2–x Schottky Heterojunction. Energy & Fuels 2024, 38 (19) , 18909-18917. https://doi.org/10.1021/acs.energyfuels.4c03598
    21. Jun-Lin Li, Ze-Xiang Li, Yu Wei, Jun Wang, Wei-Ya Huang, Jia-Lin Zhang, Kai Yang, Kang-Qiang Lu. ZnIn2S4 Nanosheet Arrays on Co9S8 Hollow Nanotubes for the Photoredox Coupling of Benzyl Alcohol Oxidation with H2 Evolution. ACS Applied Nano Materials 2024, 7 (17) , 20849-20857. https://doi.org/10.1021/acsanm.4c03804
    22. Xu Chuan Cao, Bai Chao Zhang, Jing Cui, Chao Suo, Xiao Chuan Duan, Shao Hui Guo, Xian-Ming Zhang. Photocatalyst Au@Ni-MOFs with Different Plasmonic Coverages for Improved Hydrogen Evolution from Water. Langmuir 2024, 40 (35) , 18695-18705. https://doi.org/10.1021/acs.langmuir.4c02335
    23. Huiyu Liu, Chenyu Du, Jianping Sheng, Fengyi Zhong, Ye He, Fengying Zhang, Ying Zhou, Yanjuan Sun, Fan Dong. Strong Dipole Moments from Ferrocene Methanol Clusters Boost Exciton Dissociation in Quantum-Confined Perovskite for CO2 Photoreduction. ACS Nano 2024, 18 (35) , 24558-24568. https://doi.org/10.1021/acsnano.4c09197
    24. Lina Li, Gaopeng Liu, Jintao Dong, Yi Zhang, Shengqun Cao, Keke Wang, Bin Wang, Yuanbin She, Jiexiang Xia, Huaming Li. In Situ Construction of CuTCPP/Bi4O5Br2 Hybrids for Improved Photocatalytic CO2 and Cr(VI) Reduction. Inorganic Chemistry 2024, 63 (21) , 9753-9762. https://doi.org/10.1021/acs.inorgchem.3c04535
    25. Yuan-Sheng Cheng, Xiao-Wan Xiong, Xue-Feng Cao, Min Ling, Yuwen Cheng, Fang-Hui Wu, Qiyan Xu, Xian-Wen Wei. Construction of Dual-Active Sites by Interfacing with Polyhydroxy Fullerene on Nickel Hydroxide Surfaces to Promote CO2 Deep Photoreduction to CH4. ACS Applied Materials & Interfaces 2024, 16 (19) , 24525-24533. https://doi.org/10.1021/acsami.4c01323
    26. Xujing Ji, Jiayang Zhang, Na Li, Lijing Qiu, Guoqing Zhang, Xinping Duan, Ruixin Wang. Accelerated “Electron Converter” Characteristics of NiCo-LDH for a CdS-Carbide Photocatalytic System with a Dual Heterointerface. ACS Sustainable Chemistry & Engineering 2024, 12 (19) , 7421-7433. https://doi.org/10.1021/acssuschemeng.4c00778
    27. Celia M. Rueda-Navarro, Zahraa Abou Khalil, Arianna Melillo, Belén Ferrer, Raúl Montero, Asier Longarte, Marco Daturi, Ignacio Vayá, Mohamad El-Roz, Virginia Martínez-Martínez, Herme G. Baldoví, Sergio Navalón. Solar Gas-Phase CO2 Hydrogenation by Multifunctional UiO-66 Photocatalysts. ACS Catalysis 2024, 14 (9) , 6470-6487. https://doi.org/10.1021/acscatal.4c00266
    28. Shiyang Liu, Yike Huang, Nengchao Luo, Jian Zhang, Botao Qiao, Feng Wang. Water-Mediated Photocatalytic Coproduction of Diesel Fuel Additives and Hydrogen from Dimethyl Ether. ACS Catalysis 2024, 14 (9) , 6807-6815. https://doi.org/10.1021/acscatal.4c01132
    29. Fei Rao, Qi-Wen Chen, Lujun Zhu, Siwen Gong, Siyan Wang, Xianjin Shi, Yu Huang, Yanmin Jia, Hongbing Lu, Xiaoyang Huang, Gangqiang Zhu. Modularization of Regional Electronic Structure over Defect-Rich CeO2 Rods for Enhancing Photogenerated Charge Transfer and CO2 Activation. Nano Letters 2024, 24 (15) , 4602-4609. https://doi.org/10.1021/acs.nanolett.4c00731
    30. Qinyuan Hu, Mengqian Li, Juncheng Zhu, Zhixing Zhang, Dongpo He, Kai Zheng, Yang Wu, Minghui Fan, Shan Zhu, Wensheng Yan, Jun Hu, Junfa Zhu, Qingxia Chen, Xingchen Jiao, Yi Xie. Nitrogen Doping-Roused Synergistic Active Sites in Perovskite Enabling Highly Selective CO2 Photoreduction into CH4. Nano Letters 2024, 24 (15) , 4610-4617. https://doi.org/10.1021/acs.nanolett.4c00748
    31. Shaohong Zang, Xiaorong Cai, Yixian Zang, Fei Jing, Youwei Lu, Shuting Tang, Feng Lin, Liuye Mo. ZnIn2S4 Heterojunctions Constructed with In-MOF Precursor for Photocatalytic Hydrogen Evolution without Cocatalysts. Inorganic Chemistry 2024, 63 (14) , 6546-6554. https://doi.org/10.1021/acs.inorgchem.4c00645
    32. Feng Tao, Wenwen Zhou, Zuyi Li, Xuekai Jiang, Lianke Wang, Zhipeng Yu, Jie Zhang, Hongping Zhou. Regulating Donor–Acceptor Interactions within 2-Methylpyridine-Mediated Vinylene-Linked Covalent–Organic Frameworks for Enhanced Photocatalysis. ACS Materials Letters 2024, 6 (4) , 1120-1129. https://doi.org/10.1021/acsmaterialslett.3c01610
    33. Hongtao Dang, Bin Guan, Junyan Chen, Zeren Ma, Yujun Chen, Jinhe Zhang, Zelong Guo, Lei Chen, Jingqiu Hu, Chao Yi, Shunyu Yao, Zhen Huang. Research Status, Challenges, and Future Prospects of Carbon Dioxide Reduction Technology. Energy & Fuels 2024, 38 (6) , 4836-4880. https://doi.org/10.1021/acs.energyfuels.3c04591
    34. Changming Zhang, Guomin Xu, Xiaochao Zhang, XiuShuai Guan, Wensheng Wu, Jinbo Xue, Caimei Fan. Assisting Bi2Sn2O7 nanoparticles with nitrogen-doped porous carbon spheres as bifunctional support for highly-efficient photocatalytic CO2 reduction. Separation and Purification Technology 2025, 361 , 131439. https://doi.org/10.1016/j.seppur.2025.131439
    35. Qiming Huang, Chaochuang Yin, Yizhu Lei, Yanyan Fang, Hu Wang, Hong Wu, Hongchao Luo, Yane Xu, Yangang Wang, Yingju Miao, Huibian Wang. Potassium-promoted high-entropy Mg-Al spinel with active lattice oxygen and improved hydrothermal stability for catalytic combustion of lean methane. Separation and Purification Technology 2025, 359 , 130672. https://doi.org/10.1016/j.seppur.2024.130672
    36. Zhao-Lei Liu, Yan-Fei Mu, Xi-Rui Li, You-Xiang Feng, Min Zhang, Tong-Bu Lu. Constructing strong built-in electric field in lead-free halide-perovskite-based heterojunction to boost charge separation for efficient CO2 photoreduction. Applied Catalysis B: Environment and Energy 2025, 366 , 125012. https://doi.org/10.1016/j.apcatb.2024.125012
    37. Fu-Yu Liu, Hung-Lin Chen, Kang-Yu Hsiao, Yong-Ming Dai, Chiing-Chang Chen, I-Chia Chen. Unveiling photochemical CO2 reduction processes on PbBiO2I/GO surfaces: Insights from in-situ Raman spectroscopy. Applied Catalysis B: Environment and Energy 2025, 364 , 124844. https://doi.org/10.1016/j.apcatb.2024.124844
    38. Lina Li, Gaopeng Liu, Shengqun Cao, Jintao Dong, Bin Wang, Yuanbin She, Jiexiang Xia, Huaming Li. Targeting active sites nickel-porphyrin over BiOBr nanosheets with excellent charge separation for accelerated photoreduction reactions. Applied Catalysis B: Environment and Energy 2025, 365 , 124904. https://doi.org/10.1016/j.apcatb.2024.124904
    39. Huarui Han, Liguang Tang, Kai Wei, Songbai Zhang, Xiaoyi Ma, Changchang Ma, Sheng Feng. Restructuring surface frustrated Lewis pairs of MgAl-LDH through isomorphous Co doping for accelerating photocatalytic CO2 reduction. Separation and Purification Technology 2025, 356 , 129800. https://doi.org/10.1016/j.seppur.2024.129800
    40. Tianxu Zeng, Hongbin He, Qisong Shi, Kailong Gao, Yanan Hu, Peigen Ding, Liuna Zhang, Xiaoming Gao. The interface electric field accelerated charge transfer kinetics of 1D/0D TiO2/Bi2Sn2O7 Z-scheme heterojunction with close contact interface significantly improves photothermal catalytic N2 reduction. Separation and Purification Technology 2025, 355 , 129661. https://doi.org/10.1016/j.seppur.2024.129661
    41. Kai Wang, Chuang Liu, Jingping Li, Qiang Cheng, Bin Liu, Jun Li. Near-infrared-responsive sea-urchin-like Ag6Si2O7/Bi19Br3S27 S-scheme heterojunction for efficient CO2 photoreduction. Applied Catalysis B: Environment and Energy 2025, 361 , 124560. https://doi.org/10.1016/j.apcatb.2024.124560
    42. Junyan Wu, Lina Zhao, Xu Gao, Yuxin Li. Multiscale structural regulation of Two-Dimensional materials for photocatalytic reduction of CO2. Progress in Materials Science 2025, 148 , 101386. https://doi.org/10.1016/j.pmatsci.2024.101386
    43. Ziying Lyu, Liang Chen, Jianheng Yin, Tenghu Wu, Kun Zhao, Shigang Shen, Wenjing Wang, Lei Ge. Fabricating built-in electric field in fully enclosed carbon nitride/Fe-based MIL heterojunction for efficient CO2 photoreduction. Separation and Purification Technology 2025, 354 , 129431. https://doi.org/10.1016/j.seppur.2024.129431
    44. Xinming Liang, Shan Hu, Fuhong Bi, Zixin Liu, Huilin Hu, Jinhua Ye, Defa Wang. Ag Nanoparticles‐Modified FeVO 4 Composite for Efficient Photocatalytic CO 2 Reduction. European Journal of Inorganic Chemistry 2025, 119 https://doi.org/10.1002/ejic.202400698
    45. Yi‐Nan Zheng, Xiao‐Li Song, Shu‐Yan Wang, Li‐Guo Gao. Bi 2 S 3 /Eu‐Bi 12 O 17 CL 2 Nanosheets for Photocatalytic Reduction of CO 2 to CO. Applied Organometallic Chemistry 2025, 39 (1) https://doi.org/10.1002/aoc.7938
    46. You-Xiang Shao, Yuan-Zhong Li, Xue-Qi Lian, Xiao-Ting Che, Qian-Yi Li, Yu-Fa Feng, Hui-Ze Wang, Jin-Yun Liao, Quan-Bing Liu, Hao Li. Methanolysis of ammonia borane catalyzed by NiO–CuO heterostructured nanosheets: cooperation of visible light and oxygen vacancy. Rare Metals 2025, 44 (1) , 389-403. https://doi.org/10.1007/s12598-024-02949-6
    47. Xinrui Dai, Juping Zhang, Hua Wang, Xing Zhu. Redox oxidative dehydrogenation of ethylbenzene over potassium-promoted MnCr2O4 at moderate temperature. Chemical Engineering Journal 2025, 503 , 158334. https://doi.org/10.1016/j.cej.2024.158334
    48. Fengyi Yang, Pengye Zhang, Jiafu Qu, Xiaogang Yang, Yahui Cai, Chang Ming Li, Jundie Hu. Highly efficient photoenzymatic CO2 reduction dominated by 2D/2D MXene/C3N5 heterostructured artificial photosynthesis platform. Journal of Colloid and Interface Science 2025, 678 , 1121-1131. https://doi.org/10.1016/j.jcis.2024.08.149
    49. Deng Long, Xinglin Yu, Wentao Li, Sihan Ma. One bismuth three benefits: an overview of bismuth-based photocatalysts for energy conversion, environmental treatment and biomedical applications. Materials Advances 2025, 66 https://doi.org/10.1039/D4MA00493K
    50. Zhentao Hu, Lei Huang, Bojing Sun, Dongfang Hou, Xiu-qing Qiao, Meidi Wang, Huijuan Ma, Dong-Sheng Li. Synergetic effects of surface plasmon resonance and structure defects in a ZnCdS 2 /NiMoO 4 @Cu Z-scheme heterojunction for enhanced photocatalytic CO 2 reduction to CH 4. Inorganic Chemistry Frontiers 2025, 425 https://doi.org/10.1039/D4QI02332C
    51. Wenpeng Li, Akio Hirako, Shuji Sekimori, Rhauane Almeida Galvão, Mamiko Nakabayashi, Faze Wang, Takashi Hisatomi, Kazunari Domen. Solar hydrogen production via a Z-scheme water splitting system based solely on perovskite-type tantalum oxynitrides. Journal of Materials Chemistry A 2025, 43 https://doi.org/10.1039/D4TA07592G
    52. Lu Ding, Zhiliang Jin. Design of a photocatalyst combining graphdiyne–Cu/NiCrO 3 with Cu as an interfacial charge-transfer bridge and investigation of its photocatalytic hydrogen evolution performance. Journal of Materials Chemistry C 2025, 565 https://doi.org/10.1039/D4TC03677H
    53. Lingxuan Hu, Yan Zhang, Qian Lin, Fengying Cao, Weihao Mo, Shuxian Zhong, Hongjun Lin, Liyan Xie, Leihong Zhao, Song Bai. Unraveling the Ni-Co synergy in bifunctional hydroxide cocatalysts for better cooperation of CO2 reduction and H2O oxidation in 2D S-scheme photosynthetic systems. Chinese Journal of Catalysis 2025, 68 , 311-325. https://doi.org/10.1016/S1872-2067(24)60174-9
    54. Xiang-Yu Lu, Peng Wang, Zhao-Feng Qiu, Wei-Yin Sun. Cu-MOF composited with facet-engineered bimetallic alloys for inducing photocatalytic conversion of CO2 to C2H4. Chemical Communications 2025, https://doi.org/10.1039/D4CC04659E
    55. Zhen Zhu, Yu‐Cheng Zhang, Ren‐Jang Wu, Wei‐Yi Lin. Novel Cu 2 O / Bi 2 WO 6 composite for the photoreduction of CO 2 to fuel. Journal of the Chinese Chemical Society 2025, 72 (1) , 27-36. https://doi.org/10.1002/jccs.202400274
    56. Xiaoyan Huang, Yizheng Chen, Xiangjing Xie, Ting Song. Covalent Organic Frameworks with Tunable Bridge Positions for Photocatalytic CO 2 Reduction to Propylene Under Visible Light Illumination. Small 2024, 6 https://doi.org/10.1002/smll.202408817
    57. Yanrui Li, Linda Wang, Bozhan Li, Liangqing Zhang, Xiaolin Zhu, Xiang Gao. Constructing a nickel complex/crystalline carbon nitride hybrid with a built-in electric field for boosting CO 2 photoreduction. Nanoscale 2024, 17 (1) , 407-417. https://doi.org/10.1039/D4NR03586K
    58. Qing Tong, Yu Tang, Weixin Zou, Yu‐Xin Ye, Lin Dong, Gangfeng Ouyang. Simultaneous Photocatalytic CO 2 Reduction and H 2 O Oxidation Under Non‐Sacrificial Ambient Conditions. Chemistry – A European Journal 2024, 30 (71) https://doi.org/10.1002/chem.202402629
    59. Chengyang Feng, Miao Hu, Shouwei Zuo, Jun Luo, Pedro Castaño, Yuanfu Ren, Magnus Rueping, Huabin Zhang. Ru‐O V Site‐Mediated Product Selectivity Switch for Overall Photocatalytic CO 2 Reduction. Advanced Materials 2024, 458 https://doi.org/10.1002/adma.202411813
    60. Andrés Rodríguez‐Camargo, Kenichi Endo, Bettina V. Lotsch. Celebrating Ten Years of Covalent Organic Frameworks for Solar Energy Conversion: Past, Present and Future. Angewandte Chemie 2024, 136 (49) https://doi.org/10.1002/ange.202413096
    61. Andrés Rodríguez‐Camargo, Kenichi Endo, Bettina V. Lotsch. Celebrating Ten Years of Covalent Organic Frameworks for Solar Energy Conversion: Past, Present and Future. Angewandte Chemie International Edition 2024, 63 (49) https://doi.org/10.1002/anie.202413096
    62. Joel Jie Foo, Zi‐Jing Chiah, Sue‐Faye Ng, Wee‐Jun Ong. Strategic facet engineering of bismuth‐based photocatalysts for the applications in solar‐to‐chemical conversion. InfoScience 2024, 1 (1) https://doi.org/10.1002/inc2.12023
    63. Wenpeng Li, Yajie Chen, Jiajia Zhang, Fanze Zeng, Jinyu Bao, Lu Liu, Guohui Tian. Cocatalyst Embedded Ce‐BDC‐CeO 2 S‐Scheme Heterojunction Hollowed‐Out Octahedrons With Rich Defects for Efficient CO 2 Photoreduction. Small 2024, 20 (49) https://doi.org/10.1002/smll.202406487
    64. He Cui, Xiaoqian Wu, Shunli Li, Jiabo Wang, Ruoxue Wang, Yi Zhao, Kai Ge, YiDong Hu, Boxiong Shen, Yongfang Yang. Tannic Acid Selective Modulation Defects to Enhance the Photocatalytic CO 2 Reduction Activity of Layered Double Hydroxides. Small 2024, 20 (52) https://doi.org/10.1002/smll.202407221
    65. Bingzhu Li, Xiaohua Ma, Minjun Lei, Tian Wang, Zhiliang Jin. Graphdiyne‐Based Nickel–Cobalt Bimetallic Sulfide Cocatalyst for Efficient Photocatalytic Hydrogen Evolution. Solar RRL 2024, 8 (23) https://doi.org/10.1002/solr.202400600
    66. Xuedong Jing, Xiaoyun Mi, Wei Lu, Na Lu, Shiwen Du, Guodong Wang, Zhenyi Zhang. Edge effect-enhanced CO2 adsorption and photo-reduction over g-C3N4 nanosheet. Chinese Journal of Catalysis 2024, 67 , 112-123. https://doi.org/10.1016/S1872-2067(24)60141-5
    67. Yao CHEN, Chaoqiu CHEN, Wentao HAO, Wenlong WANG, Kun XIONG, Yong QIN. Size regulation of Pt cocatalysts and its effect on the performance of photocatalytic CO2 transformation to CH4. Journal of Fuel Chemistry and Technology 2024, 52 (12) , 1798-1809. https://doi.org/10.1016/S1872-5813(24)60472-X
    68. Akang Chen, Xinyuan Li, Mengyao Su, Yuemei Li, Baoyuan Xu, Tailei Hou, Changtao Xiao, Shuang Yu, Ruiwen Shao, Jia Liu, Weiqian Zhao, Yin Song, Leining Zhang, Jiatao Zhang. Topotactic cation exchange induced non-epitaxial atomic-organized interface in plasmonic metal-semiconductor hetero-films for efficient photoelectrochemical hydrogen evolution. Applied Catalysis B: Environment and Energy 2024, 358 , 124344. https://doi.org/10.1016/j.apcatb.2024.124344
    69. Yuxuan Zhang, Yubo Zhang, Han Wu, Yanyan Wang, Quan Gu. Tandem dual-heterojunctions in Au/ZnGa2O4/ZnO for promoted photocatalytic nonoxidative coupling of methane. Applied Catalysis B: Environment and Energy 2024, 358 , 124427. https://doi.org/10.1016/j.apcatb.2024.124427
    70. Kangwang Wang, Longfu Li, Peifeng Yu, Nannan Tang, Lingyong Zeng, Kuan Li, Chao Zhang, Rui Chen, Zaichen Xiang, Huichao Wang, Yongqing Cai, Kai Yan, Huixia Luo. Revealing the nontrivial topological surface states of catalysts for effective photochemical carbon dioxide conversion. Applied Catalysis B: Environment and Energy 2024, 358 , 124428. https://doi.org/10.1016/j.apcatb.2024.124428
    71. Cheng-Cheng Jiao, Guang-Xing Dong, Ke Su, You-Xiang Feng, Min Zhang, Tong-Bu Lu. The construction of InVO4/BiVO4 heterojunction via cation-exchange for efficient and highly selective CO2 photoreduction to methanol. Chinese Chemical Letters 2024, 3 , 110752. https://doi.org/10.1016/j.cclet.2024.110752
    72. Xianyu Deng, Jianjun Zhang, Kezhen Qi, Guijie Liang, Feiyan Xu, Jiaguo Yu. Ultrafast electron transfer at the In2O3/Nb2O5 S-scheme interface for CO2 photoreduction. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-49004-7
    73. Yunjie Zou, Chengliang Mao, Mingkai Xu, Chao Xing, Ruizhao Wang, Geoffrey A. Ozin, Lan Ling. Surface frustrated Lewis pairs in titanium nitride enable gas phase heterogeneous CO2 photocatalysis. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-54951-2
    74. Jingyi Wu, Wei Wang, Xudan Chen, Qiquan Luo, Changzeng Yan, Zhen Jiao, Yuehui Li. Boosted Efficiency of Fe 2 O 3 for Photocatalytic CO 2 Reduction via Engineering Fe−O−Ti Bonding. Advanced Science 2024, https://doi.org/10.1002/advs.202409002
    75. Jing Wu, Pingping Wang, Yuzhe Fu, Yi Shen, Bin Wang, Feng Hu, Mengkai Zuo, Wei Huang, Dayu Wu. Substituent Modulated Electronic Properties of Cu(I) Active Site in Metal–Organic Halides for Boosting Hydrogen Evolution Reaction †. Chinese Journal of Chemistry 2024, 42 (22) , 2845-2852. https://doi.org/10.1002/cjoc.202400514
    76. Morigejile Liu, Guangmei Jiang, Zaiwang Zhao, Ying Shi, Siqin Zhao. Construction of oxygen-rich vacancies and heterojunctions coupled with different morphologies of CeO 2 /mesoporous TiO 2 framework structures for efficient photocatalytic CO 2 reduction performance. Dalton Transactions 2024, 53 (44) , 17963-17975. https://doi.org/10.1039/D4DT02014F
    77. Shaoquan Li, Zixian Li, Jianing Yue, Huijuan Wang, Yujun Wang, Wenli Su, Geoffrey I. N. Waterhouse, Lihong Liu, Wenkai Zhang, Yufei Zhao. Photocatalytic CO 2 Reduction by Near‐Infrared‐Light (1200 nm) Irradiation and a Ruthenium‐Intercalated NiAl‐Layered Double Hydroxide. Angewandte Chemie 2024, 136 (45) https://doi.org/10.1002/ange.202407638
    78. Shaoquan Li, Zixian Li, Jianing Yue, Huijuan Wang, Yujun Wang, Wenli Su, Geoffrey I. N. Waterhouse, Lihong Liu, Wenkai Zhang, Yufei Zhao. Photocatalytic CO 2 Reduction by Near‐Infrared‐Light (1200 nm) Irradiation and a Ruthenium‐Intercalated NiAl‐Layered Double Hydroxide. Angewandte Chemie International Edition 2024, 63 (45) https://doi.org/10.1002/anie.202407638
    79. Qiang Wang, Li Li, Rongrong Liu, Ping Wang, Yapeng Wang, Jun Liang. An Efficient Strategy for Tailoring Interfacial Charge Transfer Pathway on Semiconductor Photocatalysts: A Case of (BiFeO 3 ) x (SrTiO 3 ) 1− x /Mn 3 O 4. Advanced Functional Materials 2024, 34 (48) https://doi.org/10.1002/adfm.202408420
    80. Yuchen Han, Yue Han, Yuye Yan, Yingxia Zong, Ruiyang Zhao, Jishu Han, Lei Wang. Construction of hollow NiTiO3/CuCo2S4 double-shell nanospheres for efficient photocatalytic hydrogen evolution. Chemical Engineering Journal 2024, 500 , 156864. https://doi.org/10.1016/j.cej.2024.156864
    81. Yuanyuan Zhang, Shiye Lou, You Yin, Xing Lv, Hao Yu, Chendong Zhuge, Lina Zhang, Lili Liu, DongEn Zhang, Linxing Shi. “One stone two birds”—Solar energy driven CO2 reduction and seawater desalination coupling reactions using floatable and recyclable integrated system. Chemical Engineering Journal 2024, 500 , 157185. https://doi.org/10.1016/j.cej.2024.157185
    82. Jiaming Li, Yuan Li, Dmitry Selishchev, Gaoke Zhang. Near-infrared responsive photocatalysts for environmental remediation and energy conversion: A review. Chemosphere 2024, 367 , 143599. https://doi.org/10.1016/j.chemosphere.2024.143599
    83. Beyza Nur Günaydın, Ali Osman Çetinkaya, Milad Torabfam, Atacan Tütüncüoğlu, Cemre Irmak Kayalan, Mustafa Kemal Bayazıt, Meral Yüce, Hasan Kurt. Plasmonic group IVB transition metal nitrides: Fabrication methods and applications in biosensing, photovoltaics and photocatalysis. Advances in Colloid and Interface Science 2024, 333 , 103298. https://doi.org/10.1016/j.cis.2024.103298
    84. Ran Yang, Xiangli Shi, Qianjin Ye, Qin Li, Qiong Zhang, Di Li, Deli Jiang. Molybdenum diselenide/polymeric carbon nitride dual-homojunction photocatalyst with multi-step charge transfer for efficient catalytic carbon dioxide reduction. Journal of Colloid and Interface Science 2024, 673 , 985-996. https://doi.org/10.1016/j.jcis.2024.06.050
    85. Jiani Qin, Yanli Dong, Xiaojuan Lai, Bo Su, Bao Pan, Chuanyi Wang, Sibo Wang. Oxygen vacancy-rich CoMoO4/Carbon nitride S-scheme heterojunction for boosted photocatalytic H2 production: Microstructure regulation and charge transfer mechanism. Journal of Materials Science & Technology 2024, 198 , 176-185. https://doi.org/10.1016/j.jmst.2024.02.032
    86. Muhammad Salman Nasir, Bowen Sheng, Ying Zhao, Haotian Ye, Jun Song, Jinglin Li, Ping Wang, Tao Wang, Xinqiang Wang, Zhen Huang, Baowen Zhou. An integrated photocatalytic redox architecture for simultaneous overall conversion of CO2 and H2O toward CH4 and H2O2. Science Bulletin 2024, 8 https://doi.org/10.1016/j.scib.2024.11.021
    87. Le Liao, Guanshun Xie, Changqiang Yu, Zhaohui Huang, Senlin Zhang, Tongzheng Zhang, Xiuqiang Xie, Nan Zhang. Active site-exposed Bi 2 WO 6 @BiOCl heterostructures for photocatalytic hydrogenation of nitroaromatic compounds. Nanoscale 2024, 16 (42) , 19704-19714. https://doi.org/10.1039/D4NR03346A
    88. Dandan Zheng, Yahan Wu, Xintuo Yang, Sibo Wang, Yuanxing Fang. Developing Polymeric Carbon Nitrides for Photocatalytic H 2 O 2 Production. ChemSusChem 2024, 17 (20) https://doi.org/10.1002/cssc.202400528
    89. Wei Wu, Zhaocen Dong, Mantao Chen, Waner Li, An Liao, Qing Liu, Yachao Zhang, Zhixin Zhou, Chao Zeng, Xuezhong Gong, Chunhui Dai. Metal–Salen‐Incorporated conjugated microporous polymers as robust artificial leaves for solar‐driven reduction of atmospheric CO 2 with H 2 O. Carbon Energy 2024, 13 https://doi.org/10.1002/cey2.646
    90. Yuan Tang, Zhong-Fei Xu, Yan Sun, Chunyang Wang, Yuchen Guo, Weichang Hao, Xin Tan, Jinhua Ye, Tao Yu. Simultaneous and efficient utilization of photogenerated electrons and holes: a case of single-atom Pd-anchored CdS twins. Energy & Environmental Science 2024, 17 (20) , 7882-7894. https://doi.org/10.1039/D4EE03092C
    91. Chenxi Tang, Tengfei Bao, Shuming Li, Xuejing Li, Heng Rao, Ping She, Jun‐sheng Qin. Rapid Charge Transfer Endowed by Hollow‐structured Z‐Scheme Heterojunction for Coupling Benzylamine Oxidation With CO 2 Reduction. Advanced Functional Materials 2024, 573 https://doi.org/10.1002/adfm.202415280
    92. Qing Chen, Jia-Le Li, Qiao-Ling Mo, Fang-Xing Xiao. Photocarrier relay modulating solar CO2-to-syngas conversion. Chemical Engineering Journal 2024, 497 , 154584. https://doi.org/10.1016/j.cej.2024.154584
    93. Xu Kong, Kai Wang, Hai Yu, Zhiliang Jin. Construction of Z-scheme heterojunction interfacial charge transfer pathways in ZnIn 2 S 4 @NENU-5 for photocatalytic hydrogen evolution. Nanoscale 2024, 16 (37) , 17505-17518. https://doi.org/10.1039/D4NR02587C
    94. Bangli Feng, Qian Wang, Peng Liu, Zibo Yuan, Danxuan Pan, Mingfu Ye, Kejing Shen, Zhifeng Xin. Z-scheme heterojunction enhanced photocatalytic performance for CO 2 reduction to CH 4. Nanoscale 2024, 16 (37) , 17616-17623. https://doi.org/10.1039/D4NR02897J
    95. Yaoling Pan, Zhenyu Bao, Chen Wang, Zhengyu Wang, Penghui Xu, Xinwen Bai, Xiaowei Shi, Huajun Zheng, Hong‐En Wang, Lingxia Zheng. Electrochemical Hydrogenation of Quinoline Enabled by Cu 0 ‐Cu + Dual Sites Coupled with Efficient Biomass Valorization in Aqueous Solution. Advanced Functional Materials 2024, 10 https://doi.org/10.1002/adfm.202414120
    96. Chen-Yo Tsai, Wei-Hsuan Chang, Ming-Yen Lu, Lih-Juann Chen. Advances in the heterostructures for enhanced hydrogen production efficiency: a comprehensive review. Nanoscale 2024, 16 (35) , 16376-16403. https://doi.org/10.1039/D4NR01837K
    97. Min Zhou, Haozhi Wang, Rong Liu, Zheyang Liu, Xinyan Xiao, Weilin Li, Chao Gao, Zhou Lu, Zhifeng Jiang, Weidong Shi, Yujie Xiong. Construction of Frustrated Lewis Pairs in Poly(heptazine Imide) Nanosheets via Hydrogen Bonds for Boosting CO 2 Photoreduction. Angewandte Chemie 2024, 136 (36) https://doi.org/10.1002/ange.202407468
    98. Min Zhou, Haozhi Wang, Rong Liu, Zheyang Liu, Xinyan Xiao, Weilin Li, Chao Gao, Zhou Lu, Zhifeng Jiang, Weidong Shi, Yujie Xiong. Construction of Frustrated Lewis Pairs in Poly(heptazine Imide) Nanosheets via Hydrogen Bonds for Boosting CO 2 Photoreduction. Angewandte Chemie International Edition 2024, 63 (36) https://doi.org/10.1002/anie.202407468
    99. Haiting Lin, Anyi Chen, Tianren Liu, Wensheng Zhang, Xinyv Du, Junjie Feng, Jiajun Zeng, Yingying Fan, Dongxue Han, Li Niu. Synergistically Photocatalytic Conversion of Two Greenhouse Gases to Liquid‐Phase Oxygenates under Anaerobic Conditions. Solar RRL 2024, 8 (18) https://doi.org/10.1002/solr.202400522
    100. Jiaojiao Fang, Chengyang Zhu, Lincan Fang, Yukai Chen, Huiling Hu, Yan Wu, Qingqing Chen, Junjie Mao. Efficient charge relay steering in Pd nanoparticles coupled with the heterojunction for boosting CO2 photoreduction to C2H6. Science China Materials 2024, 67 (9) , 2949-2956. https://doi.org/10.1007/s40843-024-2995-0
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2023, 145, 50, 27415–27423
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.3c08311
    Published December 11, 2023
    Copyright © 2023 American Chemical Society

    Article Views

    7764

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.