ACS Publications. Most Trusted. Most Cited. Most Read
Tetramerization of BEB-Doped Phenalenyls to Obtain (BE)8-[16]Annulenes (E = N, O)
My Activity

Figure 1Loading Img
    Article

    Tetramerization of BEB-Doped Phenalenyls to Obtain (BE)8-[16]Annulenes (E = N, O)
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2024, 146, 17, 12100–12112
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.4c02163
    Published April 18, 2024
    Copyright © 2024 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Two (BE)8-[16]annulenes were prepared and fully characterized by experimental and quantum-chemical means (1, E = N; 2, E = O). The 1,8-naphthalenediyl-bridged diborane(6) 3 served as their common starting material, which was treated with [Al(NH3)6]Cl3 to form 1 (91% yield) or with 1,8-naphthalenediboronic acid anhydride to form 2 (93% yield). As a result, the heteroannulenes 1 and 2 are supported by four aromatic “clamps” and may also be viewed as NH- or O-bridged cyclic tetramers of BNB- or BOB-doped phenalenyls. X-ray crystallography on mono-, di-, and tetraadducts 2·thf, 2·py2, and 2·py4 showed that 2 is an oligotopic Lewis acid (thf/py: tetrahydrofuran/pyridine donor). The applicability of 2 also as a Lewis basic ligand in coordination chemistry was demonstrated by the synthesis of the mononuclear Ag+ complex [Ag(py)2(2·py4)]+ and the dinuclear Pb2+ complex 6. During the assembly of 6, the rearrangement of 2 led to the formation of two (BO)9-macrocycles linked by two BOB-phenalenyls to form a nanometer-sized cage with four negatively charged, tetracoordinated B atoms. Both 1 and 2 show several redox waves in the cathodic regions of the cyclic voltammograms. An in-depth assessment of the consequences of electron injection on the aromaticity of 1 and 2 was achieved by electronic structure calculations. 1 and 2 are proposed to exhibit aromatic switching capabilities in the [16]annulene motif.

    Copyright © 2024 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c02163..

    • Experimental and computational details, as well as characterization data (PDF)

    Accession Codes

    CCDC 23273732327381 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing [email protected], or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.; Fax: +44 1223 336033.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2024, 146, 17, 12100–12112
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.4c02163
    Published April 18, 2024
    Copyright © 2024 American Chemical Society

    Article Views

    2794

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.