ACS Publications. Most Trusted. Most Cited. Most Read
Transient Covalency in Molten Uranium(III) Chloride
My Activity

Figure 1Loading Img
  • Open Access
Communication

Transient Covalency in Molten Uranium(III) Chloride
Click to copy article linkArticle link copied!

Open PDFSupporting Information (1)

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2024, 146, 31, 21220–21224
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.4c05765
Published July 23, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Uranium is arguably the most essential element in the actinide series, serving as a crucial component of nuclear fuels. While U is recognized for engaging the 5f orbitals in chemical bonds under normal conditions, little is known about its coordination chemistry and the nature of bonding interactions at extreme conditions of high temperature. Here we report experimental and computational evidence for the shrinkage of the average U–ligand distance in UCl3 upon the solid-to-molten phase transition, leading to the formation of a significant fraction of short, transient U–Cl bonds with the enhanced involvement of U 5f valence orbitals. These findings reveal that extreme temperatures create an unusual heterogeneous bonding environment around U(III) with distinct inner- and outer-coordination subshells.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society

The complex nature of chemical interactions, electronic structure, and redox properties of actinides presents deep challenges in science. (1−5) Although prior studies in the solid state and aqueous solutions emphasize the importance of f electrons in actinide bonding, (6−10) the interactions of actinides in the ionic environment at high temperatures are underresearched. (11,12) This information is exceptionally challenging to obtain due to radioactivity and the extreme conditions of such experiments. In particular, understanding the chemistry of the molten uranium trichloride (UCl3) is crucial for the development of next-generation liquid nuclear fuel and handling radioactive waste. (13) Yet, over the collection of previous experimental and computational works, (14−17) there is still no clear consensus on the bond lengths and coordination structure of molten UCl3. The first structural studies using X-ray diffraction (XRD) at 1200 K coupled with classical molecular dynamics simulations showed that a fully ionic model failed to adequately describe the local UCl3 structure, and a better agreement was achieved by incorporating a degree of covalency into the U–Cl bond. (14) Indeed, under normal conditions, uranium is known to provide its outermost 5f and 6d orbitals for mixing with ligand orbitals to afford some degree of covalency to the primarily ionic interactions. (9,18−21) Thus, from fundamental and practical points of view, it is essential to study how the structure and bonding in UCl3 (Figure 1A) change upon melting.

Figure 1

Figure 1. (A) Local structure of solid UCl3 and (B) the Fourier transform magnitude, |χ(r)|, of UCl3 L3-edge EXAFS, k3χ. The spectrum is not phase-shift adjusted. (C) Neutron pair distribution functions, G(r), measured for solid (blue line) and molten (red line) UCl3, along with (D) the RMC fit for molten UCl3 (dashed line) and decomposition of G(r) into the U–Cl (pink), Cl–Cl (green), and U–U (yellow) ion pair correlations.

Toward this goal, we performed neutron scattering experiments and advanced ab initio molecular dynamics (AIMD) analyses to address the outstanding fundamental question of how the U–Cl bonding characteristics are affected by the extreme conditions of high temperature. Our results reveal the shrinkage of U–Cl bond lengths upon melting, leading to the formation of a highly heterogeneous coordination shell around U(III) ions. The AIMD and chemical bonding analyses in conjunction with the simulated Raman spectrum of molten UCl3 point to the presence of a large fraction of short transient U–Cl bonding interactions, which are spectroscopically active and exhibit a higher participation of U 5f orbitals than in the solid state.

According to single-crystal XRD, solid UCl3 adopts a tricapped trigonal prismatic configuration, where each U(III) center is surrounded by nine Cl atoms. Figure 1B shows our synchrotron extended X-ray absorption fine structure (EXAFS) spectroscopy results for the UCl3 sample, which was synthesized and handled under an inert atmosphere. The purity was confirmed by XRD, melting point measurements, and inductively coupled plasma optical emission spectrometry (Figures S1–S3, Table S1). Fitting the experimental EXAFS spectrum (Figure 1B, Figure S4) with a single U–Cl scattering path results in an average U–Cl distance of 2.909(9) Å (Debye–Waller factor, σ2 = 0.0079(11) Å2), consistent with the single-crystal XRD data (Table S2).

To study both local and extended structures, neutron scattering measurements were carried out on UCl3 powder that was contained in a quartz tube (Figure S5). The measured scattering intensities provide neutron structure factors, S(Q) (Figure S6), which were Fourier transformed to obtain pair distribution functions (PDFs), G(r), that are related to the probability of finding ion pairs with a given separation distance r. Figure 1C demonstrates significant changes in the PDF as UCl3 transitions from a solid (298 K) to a molten (1173 K) state. Broadening of G(r) features is observed upon heating with the complete loss of crystalline symmetries and long-range order correlations in the salt above the melting point (Figure 1C).

Based on the relative neutron weighting factors (Figure S7) and the UCl3 crystal structure, the first peak in G(r) is primarily dominated by the short-range U–Cl correlations, whereas the second peak is attributed to the Cl–Cl interactions. The features beyond 4 Å originate from the longer-range atom pair correlations. Interestingly, the first peak at 2.92 Å for solid UCl3 shifts toward a shorter distance upon melting, in direct contrast to thermal expansion expectations. This is likely associated with a decrease in the average coordination numbers on melting, often leading to shorter nearest-neighbor bond lengths. (22,23) We note, however, that the intrinsically broad features in G(r) at 1173 K, associated with the liquid state, make quantitative interpretation of scattering results difficult. Thus, reverse Monte Carlo (RMC) modeling was performed to reproduce the experimental PDF of molten UCl3 and determine partial U–Cl, Cl–Cl, and U–U PDFs (Figure 1D). Our results show that U–Cl average bond length indeed shrinks on heating to the value of 2.78(1) Å in the molten state. A similar behavior was recently reported for molten tin at 530–1323 K, where the fraction of fluctuating short Sn–Sn covalent bonds unexpectedly increased, leading to a shift of the first peak in the PDF to a shorter distance at higher temperatures. (24)

To gain more insights into the observed U–Cl bond contraction phenomenon, we performed AIMD simulations. The theoretical S(Q) and G(r) were generated directly from the 60 ps AIMD trajectory and show very good agreement with the experimental data (Figures S6 and S8), validating our model. Key structural parameters align well with those determined by the PDF measurements and RMC fit, as can be judged from the analyses of radial distribution functions, g(r) (Figure S8). Figure 2A shows that the AIMD-predicted U–Cl bond length is 2.78 Å, shorter than the U–Cl bond length in the solid state (rSolid) and in good agreement with the RMC results. The actual boundary of the first Cl coordination shell around U(III) in the melt is where g(r) reaches the first minimum (r = r in Figure 2A). Within this first coordination shell, we define short U–Cl contacts in the inner subshell, for which r < rSolid, and long U–Cl interactions (rSolid < r < r) in the outer subshell. As one may see in Figure 2B, at any point of time, the former (∼55%) dominates the first coordination sphere, explaining the overall shrinkage of the average U–Cl bond seen in our PDF experiments. Interestingly, while these subshells are well preserved over time, the U(III) coordination number (CN) can rapidly deviate from its most-probable value of ∼7.5 (Figure S9), due to the high thermal energy.

Figure 2

Figure 2. (A) U–Cl radial distribution function, g(r), highlighting the shorter U–Cl distance in the melt compared to the bond length (rSolid) in the solid state. r represents the boundary of the first coordination shell. (B) Time-dependent population of the inner (blue) and outer (teal) subshells. (C) Projection of the electron localization function for a snapshot from the UCl3 AIMD trajectory. (D) Selected short U–Cl σ-type dative bond NBO and its composition for the representative U(III) cluster in the melt.

The nature of the U–Cl chemical bonds in the two subshells was rigorously examined using quantum chemical methods, based on electron localization function, (25) natural bond orbital (NBO), (26) and quantum theory of atoms in molecules (QTAIM) (27) analyses. Figure 2C shows that, in the inner subshell, the lone pairs of the chlorides are pointing toward U(III) with somewhat enhanced electron localization in the middle of the two atoms. In contrast, they lack directionality without being noticeably deformed in the outer subshell. This indicates the increased U participation in the short U–Cl bonds, whereas the longer U–Cl interactions are more of an ionic nature. The NBO analysis in Figure 2D for the representative cluster confirms the enhanced bonding in the inner subshell as a consequence of the high-temperature-induced shrinkage of the first coordination sphere around U(III), enabling better overlap of the Cl lone pairs with the U(III) acceptor orbitals. Although the U–Cl NBOs are strongly polarized toward Cl, our results point to the increased U(III) contribution and 5f orbital involvement in the inner subshell bonding at high temperatures as compared to the solid state (Table S3). Additionally, the enhanced bonding can be assessed employing Wiberg bond indices and QTAIM characteristics (Table S4), all showing the same trend of increased electron density sharing in the inner subshell U–Cl bonds of molten uranium trichloride. Furthermore, the projected density of states analysis shows that the overlap between U 5f and Cl 3p orbitals is stronger for the short U–Cl contacts as compared to the outer subshell interactions (Figure S10). This is consistent with our cluster model calculations and further confirms the presence of a slight orbital overlap between U and Cl, specifically at shorter distances. Thus, we anticipate that the role of the 5f valence orbitals of uranium in molten systems can be further explored using the Cl K-edge, (8) U M4,5-edge high-energy-resolution X-ray absorption near edge structure and 3d4f resonant inelastic X-ray scattering spectroscopies (28−30) in the future studies.

To gain insights into the dynamics of the U–Cl interactions dictating the stability of the two subshells, we determined the survival probability correlation function, (31) C(t), of the U-bound Cl for a range of cutoff distances, rC, corresponding to different boundaries of the subshells. Figure 3A shows that C(t) exhibits underdamped oscillations until ∼200 fs for the short U–Cl interactions (rC < rSolid). However, this feature is absent for the longer U–Cl contacts (rSolid < rC < r). The long-time behavior of all C(t)’s is the same as can be seen from the parallel exponential curves. Thus, a Cl ion spends ∼200 fs in the inner subshell before transitioning to the outer subshell, with the overall residence time in the first coordination sphere of ∼20 ps (obtained from the exponential fit to the long-time decay of the C(t) curve). This rather short lifetime of the U–Cl bonds at 1173 K points to their transient nature.

Figure 3

Figure 3. (A) Survival probability correlation functions, C(t), for a Cl bound U(III) plotted for various binding cutoff distances, rC, which are Fourier-transformed to obtain (B) FT-C(ω) spectra and compared with (C) simulated Raman spectra (parallel and perpendicular polarizations).

The important feature of covalent interactions is their directionality, usually giving rise to absorption bands in the infrared or Raman spectra. (9) Our attempts to obtain experimental Raman results for the molten UCl3 were unsuccessful, due to the strong self-absorption by the sample. (32) Nevertheless, to investigate whether the dynamic, metastable coordination environment of molten UCl3, especially the transient inner subshell, is spectroscopically resolvable, we computed Raman spectra from the AIMD trajectory using the Berry phase formalism. (33) This method has previously shown very good reproducibility of the experimental data for various molten salt systems. (33,34) Additionally, we obtained the Fourier-transformed spectra of C(t), FT-C(ω), for comparison. As depicted in Figure 3B and C, there is a striking match between FT-C(ω) for the inner subshell and the Raman spectrum with the parallel polarization. Both exhibit a well-resolved symmetric U–Cl stretch vibrational band at 200–250 cm–1 accompanied by a less noticeable high-frequency band at ∼350 cm–1. In contrast, FT-C(ω) for the outer subshell does not show any peaks. This is expected since the underdamped U–Cl oscillations are only present for the inner subshell, and thereby, only the short U–Cl contacts contribute to the distinct band. For the extended U–Cl bonds, their influence on the Raman spectra is analogous to the effect of the weakly complexing ions (e.g., alkali metal ions in molten salts), predominantly increasing the spectral intensity at the lower energy end without clearly differentiating into its own band. Thus, despite the transient nature, the inner subshell bonds are distinguishable from the outer subshell interactions and resolvable with vibrational spectroscopy.

Even the subtle yet important presence of 5f orbital covalency is frequently invoked to comprehend and rationalize the structure, reactivity, and spectroscopic properties of heavy element compounds. (35−42) Recently, it has been demonstrated that high pressure can be utilized to modify the structure and bonding in actinide complexes. (43,44) Our discovery of short transient bonds in molten UCl3, which show enhanced U 5f orbital participation and likely contributing to the highly heterogeneous coordination shell around U(III), illustrates that high temperature can also impact the fundamental characteristics of actinide compounds, including bond distances, coordination number, and local dynamics. (45) These findings are expected to improve our fundamental understanding and prediction of the structurally diverse and dynamic coordination chemistry and speciation exhibited by actinides in molten phases. (11,12)

Data Availability

Click to copy section linkSection link copied!

Data sets for this article are made available within 30 days of the official acceptance date of this article by the journal in the Zenodo repository under the Digital Object Identifier (DOI): 10.5281/zenodo.12668490.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c05765.

  • Synthesis and characterization of UCl3 and additional experimental and computational details, including neutron scattering measurements, chemical bonding, density of states, and coordination number analyses (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
  • Authors
    • Dmitry S. Maltsev - Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesDepartment of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
    • Darren M. Driscoll - Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesOrcidhttps://orcid.org/0000-0001-8859-8016
    • Yuanpeng Zhang - Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesOrcidhttps://orcid.org/0000-0003-4224-3361
    • Joerg C. Neuefeind - Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    • Benjamin Reinhart - Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
    • Can Agca - Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesOrcidhttps://orcid.org/0000-0003-1427-7812
    • Debmalya Ray - Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    • Phillip W. Halstenberg - Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesDepartment of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United StatesOrcidhttps://orcid.org/0000-0002-6030-4503
    • Mina Aziziha - Mechanical Engineering Department, University of South Carolina, Columbia, South Carolina 29208, United StatesOrcidhttps://orcid.org/0000-0003-4001-6413
    • Juliano Schorne-Pinto - Mechanical Engineering Department, University of South Carolina, Columbia, South Carolina 29208, United StatesOrcidhttps://orcid.org/0000-0003-4208-4815
    • Theodore M. Besmann - Mechanical Engineering Department, University of South Carolina, Columbia, South Carolina 29208, United States
    • Sheng Dai - Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United StatesDepartment of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United StatesOrcidhttps://orcid.org/0000-0002-8046-3931
  • Notes
    The authors declare no competing financial interest.

    This manuscript has been authored by UT-Battelle, LLC under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Acknowledgments

Click to copy section linkSection link copied!

This work was supported as part of the Molten Salts in Extreme Environments (MSEE) Energy Frontier Research Center, funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences. Work at Oak Ridge National Laboratory was supported by DOE contract DE-AC05-00OR22725. M.A., J.S.-P., and T.M.B. are supported by the U.S. DOE Office of Nuclear Energy, Nuclear Energy University Programs under award DE-NE0008985 and the Molten Salt Reactor Program. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. A portion of this research used resources of the Advanced Photon Source at beamline 12-BM, operated by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory and the National Energy Research Scientific Computing Center (NERSC), which are supported by the Office of Science of the U.S. DOE under Contract Nos. DE-AC05-00OR22725 and DE-AC02-05CH11231, respectively. A.S.I., S.R., and V.S.B. thank Dr. Margulis and Dr. Emerson for initial discussions.

References

Click to copy section linkSection link copied!

This article references 45 other publications.

  1. 1
    Seaborg, G. T.; Katz, J. J. The Actinide Elements; McGraw-Hill: 1954.
  2. 2
    Burns, C. J. Bridging a Gap in Actinide Chemistry. Science 2005, 309 (5742), 18231824,  DOI: 10.1126/science.1118701
  3. 3
    Pyykkö, P. Relativistic Effects in Chemistry: More Common Than You Thought. Annu. Rev. Phys. Chem. 2012, 63 (1), 4564,  DOI: 10.1146/annurev-physchem-032511-143755
  4. 4
    Kovács, A.; Konings, R. J. M.; Gibson, J. K.; Infante, I.; Gagliardi, L. Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides. Chem. Rev. 2015, 115 (4), 17251759,  DOI: 10.1021/cr500426s
  5. 5
    Albrecht-Schmitt, T. E. Actinide Chemistry at the Extreme. Inorg. Chem. 2019, 58 (3), 17211723,  DOI: 10.1021/acs.inorgchem.8b03603
  6. 6
    Neidig, M. L.; Clark, D. L.; Martin, R. L. Covalency in f-Element Complexes. Coord. Chem. Rev. 2013, 257, 394406,  DOI: 10.1016/j.ccr.2012.04.029
  7. 7
    Kelley, M. P.; Su, J.; Urban, M.; Luckey, M.; Batista, E. R.; Yang, P.; Shafer, J. C. On the Origin of Covalent Bonding in Heavy Actinides. J. Am. Chem. Soc. 2017, 139 (29), 99019908,  DOI: 10.1021/jacs.7b03251
  8. 8
    Cross, J. N.; Su, J.; Batista, E. R.; Cary, S. K.; Evans, W. J.; Kozimor, S. A.; Mocko, V.; Scott, B. L.; Stein, B. W.; Windorff, C. J. Covalency in Americium(III) Hexachloride. J. Am. Chem. Soc. 2017, 139 (25), 86678677,  DOI: 10.1021/jacs.7b03755
  9. 9
    Pace, K. A.; Klepov, V. V.; Berseneva, A. A.; zur Loye, H.-C. Covalency in Actinide Compounds. Chemistry – A European Journal 2021, 27 (19), 58355841,  DOI: 10.1002/chem.202004632
  10. 10
    Galley, S. S.; Pattenaude, S. A.; Gaggioli, C. A.; Qiao, Y.; Sperling, J. M.; Zeller, M.; Pakhira, S.; Mendoza-Cortes, J. L.; Schelter, E. J.; Albrecht-Schmitt, T. E. Synthesis and Characterization of Tris-chelate Complexes for Understanding f-Orbital Bonding in Later Actinides. J. Am. Chem. Soc. 2019, 141 (6), 23562366,  DOI: 10.1021/jacs.8b10251
  11. 11
    Jiang, S.; Liu, Y.; Wang, L.; Chai, Z.; Shi, W.-Q. The Coordination Chemistry of f-Block Elements in Molten Salts. Chemistry – A European Journal 2022, 28 (60), e202201145  DOI: 10.1002/chem.202201145
  12. 12
    Smith, A. L. Structure-property Relationships in Actinide Containing Molten Salts – A Review: Understanding and Modelling the Chemistry of Nuclear Fuel Salts. J. Mol. Liq. 2022, 360, 119426  DOI: 10.1016/j.molliq.2022.119426
  13. 13
    Hombourger, B.; Křepel, J.; Pautz, A. Breed-and-burn Fuel Cycle in Molten Salt Reactors. EPJ. Nuclear Sciences & Technologies 2019, 5, 15,  DOI: 10.1051/epjn/2019026
  14. 14
    Okamoto, Y.; Kobayashi, F.; Ogawa, T. Structure and Dynamic Properties of Molten Uranium Trichloride. J. Alloys Compd. 1998, 271–273, 355358,  DOI: 10.1016/S0925-8388(98)00087-5
  15. 15
    Okamoto, Y.; Madden, P. A.; Minato, K. X-ray Diffraction and Molecular Dynamics Simulation Studies of Molten Uranium Chloride. J. Nucl. Mater. 2005, 344 (1–3), 109114,  DOI: 10.1016/j.jnucmat.2005.04.026
  16. 16
    Adya, A. K.; Matsuura, H.; Takagi, R.; Rycerz, L.; Gaune-Escard, M. Structural and Thermodynamic Properties of Molten UCl3 and UCl3-MCl (M = Li, Na, K, and Cs) Systems. ECS Proceedings 1999, 1999–41 (1), 341,  DOI: 10.1149/199941.0341PV
  17. 17
    Neilson, G. W.; Adya, A. K.; Ansell, S. 8 Neutron and X-ray Diffraction Studies on Complex Liquids. Annual Reports Section “C” (Physical Chemistry) 2002, 98 (0), 271322,  DOI: 10.1039/b111168j
  18. 18
    Yu, X.; Sergentu, D.-C.; Feng, R.; Autschbach, J. Covalency of Trivalent Actinide Ions with Different Donor Ligands: Do Density Functional and Multiconfigurational Wavefunction Calculations Corroborate the Observed “Breaks”?. Inorg. Chem. 2021, 60 (23), 1774417757,  DOI: 10.1021/acs.inorgchem.1c02374
  19. 19
    Butorin, S. M.; Modin, A.; Vegelius, J. R.; Kvashnina, K. O.; Shuh, D. K. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy. J. Phys. Chem. C 2016, 120 (51), 2939729404,  DOI: 10.1021/acs.jpcc.6b09335
  20. 20
    Amidani, L.; Retegan, M.; Volkova, A.; Popa, K.; Martin, P. M.; Kvashnina, K. O. Probing the Local Coordination of Hexavalent Uranium and the Splitting of 5f Orbitals Induced by Chemical Bonding. Inorg. Chem. 2021, 60 (21), 1628616293,  DOI: 10.1021/acs.inorgchem.1c02107
  21. 21
    Dai, S.; Toth, L. M.; Del Cul, G. D.; Metcalf, D. H. Near-IR absorption transition of 3H4 to 3F2 for UCl62– complex in M2ZrCl6 host crystals (M = K+, Rb+, and Cs+): an experimental and theoretical study. Chem. Phys. 1995, 200 (3), 271279,  DOI: 10.1016/0301-0104(95)00228-6
  22. 22
    Angell, C. A.; Gruen, D. M. Short-Range Order in Fused Salts. I. Coordination States of Nickel(II) in Molten Zinc Chloride-Potassium Chloride Mixtures1. J. Phys. Chem. 1966, 70 (5), 16011609,  DOI: 10.1021/j100877a045
  23. 23
    Roy, S.; Sharma, S.; Karunaratne, W. V.; Wu, F.; Gakhar, R.; Maltsev, D. S.; Halstenberg, P.; Abeykoon, M.; Gill, S. K.; Zhang, Y. X-Ray Scattering Reveals Ion Clustering of Dilute Chromium Species in Molten Chloride Medium. Chemical Science 2021, 12 (23), 80268035,  DOI: 10.1039/D1SC01224J
  24. 24
    Xu, L.; Wang, Z.; Chen, J.; Chen, S.; Yang, W.; Ren, Y.; Zuo, X.; Zeng, J.; Wu, Q.; Sheng, H. Folded Network and Structural Transition in Molten Tin. Nat. Commun. 2022, 13 (1), 126,  DOI: 10.1038/s41467-021-27742-2
  25. 25
    Silvi, B.; Savin, A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. Nature 1994, 371 (6499), 683686,  DOI: 10.1038/371683a0
  26. 26
    Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural Bond Orbital Methods. WIREs Computational Molecular Science 2012, 2 (1), 142,  DOI: 10.1002/wcms.51
  27. 27
    Bader, R. F. W. Atoms in Molecules. Acc. Chem. Res. 1985, 18 (1), 915,  DOI: 10.1021/ar00109a003
  28. 28
    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 2017, 8 (1), 16053  DOI: 10.1038/ncomms16053
  29. 29
    Vitova, T.; Kvashnina, K. O.; Nocton, G.; Sukharina, G.; Denecke, M. A.; Butorin, S. M.; Mazzanti, M.; Caciuffo, R.; Soldatov, A.; Behrends, T. High energy resolution x-ray absorption spectroscopy study of uranium in varying valence states. Phys. Rev. B 2010, 82 (23), 235118  DOI: 10.1103/PhysRevB.82.235118
  30. 30
    Kvashnina, K.; Silva, C.; Amidani, L.; Retegan, M.; Bazarkina, E.; Weiss, S.; Graubner, T.; Kraus, F. On the origin of low-valent uranium oxidation state; Research Square Platform LLC: 2024.
  31. 31
    Luzar, A.; Chandler, D. Hydrogen-Bond Kinetics in Liquid Water. Nature 1996, 379 (6560), 5557,  DOI: 10.1038/379055a0
  32. 32
    Strzelecki, A. C.; Wang, G.; Hickam, S. M.; Parker, S. S.; Batrice, R.; Jackson, J. M.; Conroy, N. A.; Mitchell, J. N.; Andersson, D. A.; Monreal, M. J. In Situ High-Temperature Raman Spectroscopy of UCl3: A Combined Experimental and Theoretical Study. Inorg. Chem. 2023, 62 (45), 1872418731,  DOI: 10.1021/acs.inorgchem.3c03139
  33. 33
    Roy, S.; Brehm, M.; Sharma, S.; Wu, F.; Maltsev, D. S.; Halstenberg, P.; Gallington, L. C.; Mahurin, S. M.; Dai, S.; Ivanov, A. S. Unraveling Local Structure of Molten Salts via X-ray Scattering, Raman Spectroscopy, and Ab Initio Molecular Dynamics. J. Phys. Chem. B 2021, 125 (22), 59715982,  DOI: 10.1021/acs.jpcb.1c03786
  34. 34
    Emerson, M. S.; Sharma, S.; Roy, S.; Bryantsev, V. S.; Ivanov, A. S.; Gakhar, R.; Woods, M. E.; Gallington, L. C.; Dai, S.; Maltsev, D. S. Complete Description of the LaCl3–NaCl Melt Structure and the Concept of a Spacer Salt That Causes Structural Heterogeneity. J. Am. Chem. Soc. 2022, 144 (47), 2175121762,  DOI: 10.1021/jacs.2c09987
  35. 35
    Cantat, T.; Graves, C. R.; Jantunen, K. C.; Burns, C. J.; Scott, B. L.; Schelter, E. J.; Morris, D. E.; Hay, P. J.; Kiplinger, J. L. Evidence for the Involvement of 5f Orbitals in the Bonding and Reactivity of Organometallic Actinide Compounds: Thorium(IV) and Uranium(IV) Bis(hydrazonato) Complexes. J. Am. Chem. Soc. 2008, 130 (51), 1753717551,  DOI: 10.1021/ja8067287
  36. 36
    Yang, P.; Warnke, I.; Martin, R. L.; Hay, P. J. Theoretical Studies of the sp2 versus sp3 C–H Bond Activation Chemistry of 2-Picoline by (C5Me5)2An(CH3)2 Complexes (An = Th, U). Organometallics 2008, 27 (7), 13841392,  DOI: 10.1021/om700927n
  37. 37
    Su, J.; Batista, E. R.; Boland, K. S.; Bone, S. E.; Bradley, J. A.; Cary, S. K.; Clark, D. L.; Conradson, S. D.; Ditter, A. S.; Kaltsoyannis, N. Energy-Degeneracy-Driven Covalency in Actinide Bonding. J. Am. Chem. Soc. 2018, 140 (51), 1797717984,  DOI: 10.1021/jacs.8b09436
  38. 38
    Formanuik, A.; Ariciu, A.-M.; Ortu, F.; Beekmeyer, R.; Kerridge, A.; Tuna, F.; McInnes, E. J. L.; Mills, D. P. Actinide Covalency Measured by Pulsed Electron Paramagnetic Resonance Spectroscopy. Nat. Chem. 2017, 9 (6), 578583,  DOI: 10.1038/nchem.2692
  39. 39
    Smiles, D. E.; Wu, G.; Hrobárik, P.; Hayton, T. W. Use of 77Se and 125Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3]– (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners. J. Am. Chem. Soc. 2016, 138 (3), 814825,  DOI: 10.1021/jacs.5b07767
  40. 40
    Kaltsoyannis, N. Does Covalency Increase or Decrease across the Actinide Series? Implications for Minor Actinide Partitioning. Inorg. Chem. 2013, 52 (7), 34073413,  DOI: 10.1021/ic3006025
  41. 41
    Kerridge, A. Quantification of f-Element Covalency Through Analysis of the Electron Density: Insights from Simulation. Chem. Commun. 2017, 53 (50), 66856695,  DOI: 10.1039/C7CC00962C
  42. 42
    Berryman, V. E. J.; Whalley, Z. J.; Shephard, J. J.; Ochiai, T.; Price, A. N.; Arnold, P. L.; Parsons, S.; Kaltsoyannis, N. Computational Analysis of M–O Covalency in M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, U). Dalton Transactions 2019, 48 (9), 29392947,  DOI: 10.1039/C8DT05094E
  43. 43
    Sperling, J. M.; Warzecha, E. J.; Celis-Barros, C.; Sergentu, D.-C.; Wang, X.; Klamm, B. E.; Windorff, C. J.; Gaiser, A. N.; White, F. D.; Beery, D. A. Compression of Curium Pyrrolidine-Dithiocarbamate Enhances Covalency. Nature 2020, 583 (7816), 396399,  DOI: 10.1038/s41586-020-2479-2
  44. 44
    Shephard, J. J.; Berryman, V. E. J.; Ochiai, T.; Walter, O.; Price, A. N.; Warren, M. R.; Arnold, P. L.; Kaltsoyannis, N.; Parsons, S. Covalent Bond Shortening and Distortion Induced by Pressurization of Thorium, Uranium, and Neptunium Tetrakis Aryloxides. Nat. Commun. 2022, 13 (1), 5923,  DOI: 10.1038/s41467-022-33459-7
  45. 45
    Shinohara, Y.; Ivanov, A. S.; Maltsev, D.; Granroth, G. E.; Abernathy, D. L.; Dai, S.; Egami, T. Real-Space Local Dynamics of Molten Inorganic Salts Using Van Hove Correlation Function. J. Phys. Chem. Lett. 2022, 13 (25), 59565962,  DOI: 10.1021/acs.jpclett.2c01230

Cited By

Click to copy section linkSection link copied!

This article is cited by 1 publications.

  1. Jun-Bo Lu, Yang-Yang Zhang, Jian-Biao Liu, Jun Li. Norm-Conserving 5f-in-Core Pseudopotentials and Gaussian Basis Sets Optimized for Tri- and Tetra-Valent Actinides (An = Pa–Lr). Journal of Chemical Theory and Computation 2025, 21 (1) , 170-182. https://doi.org/10.1021/acs.jctc.4c01189

Journal of the American Chemical Society

Cite this: J. Am. Chem. Soc. 2024, 146, 31, 21220–21224
Click to copy citationCitation copied!
https://doi.org/10.1021/jacs.4c05765
Published July 23, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

3877

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (A) Local structure of solid UCl3 and (B) the Fourier transform magnitude, |χ(r)|, of UCl3 L3-edge EXAFS, k3χ. The spectrum is not phase-shift adjusted. (C) Neutron pair distribution functions, G(r), measured for solid (blue line) and molten (red line) UCl3, along with (D) the RMC fit for molten UCl3 (dashed line) and decomposition of G(r) into the U–Cl (pink), Cl–Cl (green), and U–U (yellow) ion pair correlations.

    Figure 2

    Figure 2. (A) U–Cl radial distribution function, g(r), highlighting the shorter U–Cl distance in the melt compared to the bond length (rSolid) in the solid state. r represents the boundary of the first coordination shell. (B) Time-dependent population of the inner (blue) and outer (teal) subshells. (C) Projection of the electron localization function for a snapshot from the UCl3 AIMD trajectory. (D) Selected short U–Cl σ-type dative bond NBO and its composition for the representative U(III) cluster in the melt.

    Figure 3

    Figure 3. (A) Survival probability correlation functions, C(t), for a Cl bound U(III) plotted for various binding cutoff distances, rC, which are Fourier-transformed to obtain (B) FT-C(ω) spectra and compared with (C) simulated Raman spectra (parallel and perpendicular polarizations).

  • References


    This article references 45 other publications.

    1. 1
      Seaborg, G. T.; Katz, J. J. The Actinide Elements; McGraw-Hill: 1954.
    2. 2
      Burns, C. J. Bridging a Gap in Actinide Chemistry. Science 2005, 309 (5742), 18231824,  DOI: 10.1126/science.1118701
    3. 3
      Pyykkö, P. Relativistic Effects in Chemistry: More Common Than You Thought. Annu. Rev. Phys. Chem. 2012, 63 (1), 4564,  DOI: 10.1146/annurev-physchem-032511-143755
    4. 4
      Kovács, A.; Konings, R. J. M.; Gibson, J. K.; Infante, I.; Gagliardi, L. Quantum Chemical Calculations and Experimental Investigations of Molecular Actinide Oxides. Chem. Rev. 2015, 115 (4), 17251759,  DOI: 10.1021/cr500426s
    5. 5
      Albrecht-Schmitt, T. E. Actinide Chemistry at the Extreme. Inorg. Chem. 2019, 58 (3), 17211723,  DOI: 10.1021/acs.inorgchem.8b03603
    6. 6
      Neidig, M. L.; Clark, D. L.; Martin, R. L. Covalency in f-Element Complexes. Coord. Chem. Rev. 2013, 257, 394406,  DOI: 10.1016/j.ccr.2012.04.029
    7. 7
      Kelley, M. P.; Su, J.; Urban, M.; Luckey, M.; Batista, E. R.; Yang, P.; Shafer, J. C. On the Origin of Covalent Bonding in Heavy Actinides. J. Am. Chem. Soc. 2017, 139 (29), 99019908,  DOI: 10.1021/jacs.7b03251
    8. 8
      Cross, J. N.; Su, J.; Batista, E. R.; Cary, S. K.; Evans, W. J.; Kozimor, S. A.; Mocko, V.; Scott, B. L.; Stein, B. W.; Windorff, C. J. Covalency in Americium(III) Hexachloride. J. Am. Chem. Soc. 2017, 139 (25), 86678677,  DOI: 10.1021/jacs.7b03755
    9. 9
      Pace, K. A.; Klepov, V. V.; Berseneva, A. A.; zur Loye, H.-C. Covalency in Actinide Compounds. Chemistry – A European Journal 2021, 27 (19), 58355841,  DOI: 10.1002/chem.202004632
    10. 10
      Galley, S. S.; Pattenaude, S. A.; Gaggioli, C. A.; Qiao, Y.; Sperling, J. M.; Zeller, M.; Pakhira, S.; Mendoza-Cortes, J. L.; Schelter, E. J.; Albrecht-Schmitt, T. E. Synthesis and Characterization of Tris-chelate Complexes for Understanding f-Orbital Bonding in Later Actinides. J. Am. Chem. Soc. 2019, 141 (6), 23562366,  DOI: 10.1021/jacs.8b10251
    11. 11
      Jiang, S.; Liu, Y.; Wang, L.; Chai, Z.; Shi, W.-Q. The Coordination Chemistry of f-Block Elements in Molten Salts. Chemistry – A European Journal 2022, 28 (60), e202201145  DOI: 10.1002/chem.202201145
    12. 12
      Smith, A. L. Structure-property Relationships in Actinide Containing Molten Salts – A Review: Understanding and Modelling the Chemistry of Nuclear Fuel Salts. J. Mol. Liq. 2022, 360, 119426  DOI: 10.1016/j.molliq.2022.119426
    13. 13
      Hombourger, B.; Křepel, J.; Pautz, A. Breed-and-burn Fuel Cycle in Molten Salt Reactors. EPJ. Nuclear Sciences & Technologies 2019, 5, 15,  DOI: 10.1051/epjn/2019026
    14. 14
      Okamoto, Y.; Kobayashi, F.; Ogawa, T. Structure and Dynamic Properties of Molten Uranium Trichloride. J. Alloys Compd. 1998, 271–273, 355358,  DOI: 10.1016/S0925-8388(98)00087-5
    15. 15
      Okamoto, Y.; Madden, P. A.; Minato, K. X-ray Diffraction and Molecular Dynamics Simulation Studies of Molten Uranium Chloride. J. Nucl. Mater. 2005, 344 (1–3), 109114,  DOI: 10.1016/j.jnucmat.2005.04.026
    16. 16
      Adya, A. K.; Matsuura, H.; Takagi, R.; Rycerz, L.; Gaune-Escard, M. Structural and Thermodynamic Properties of Molten UCl3 and UCl3-MCl (M = Li, Na, K, and Cs) Systems. ECS Proceedings 1999, 1999–41 (1), 341,  DOI: 10.1149/199941.0341PV
    17. 17
      Neilson, G. W.; Adya, A. K.; Ansell, S. 8 Neutron and X-ray Diffraction Studies on Complex Liquids. Annual Reports Section “C” (Physical Chemistry) 2002, 98 (0), 271322,  DOI: 10.1039/b111168j
    18. 18
      Yu, X.; Sergentu, D.-C.; Feng, R.; Autschbach, J. Covalency of Trivalent Actinide Ions with Different Donor Ligands: Do Density Functional and Multiconfigurational Wavefunction Calculations Corroborate the Observed “Breaks”?. Inorg. Chem. 2021, 60 (23), 1774417757,  DOI: 10.1021/acs.inorgchem.1c02374
    19. 19
      Butorin, S. M.; Modin, A.; Vegelius, J. R.; Kvashnina, K. O.; Shuh, D. K. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy. J. Phys. Chem. C 2016, 120 (51), 2939729404,  DOI: 10.1021/acs.jpcc.6b09335
    20. 20
      Amidani, L.; Retegan, M.; Volkova, A.; Popa, K.; Martin, P. M.; Kvashnina, K. O. Probing the Local Coordination of Hexavalent Uranium and the Splitting of 5f Orbitals Induced by Chemical Bonding. Inorg. Chem. 2021, 60 (21), 1628616293,  DOI: 10.1021/acs.inorgchem.1c02107
    21. 21
      Dai, S.; Toth, L. M.; Del Cul, G. D.; Metcalf, D. H. Near-IR absorption transition of 3H4 to 3F2 for UCl62– complex in M2ZrCl6 host crystals (M = K+, Rb+, and Cs+): an experimental and theoretical study. Chem. Phys. 1995, 200 (3), 271279,  DOI: 10.1016/0301-0104(95)00228-6
    22. 22
      Angell, C. A.; Gruen, D. M. Short-Range Order in Fused Salts. I. Coordination States of Nickel(II) in Molten Zinc Chloride-Potassium Chloride Mixtures1. J. Phys. Chem. 1966, 70 (5), 16011609,  DOI: 10.1021/j100877a045
    23. 23
      Roy, S.; Sharma, S.; Karunaratne, W. V.; Wu, F.; Gakhar, R.; Maltsev, D. S.; Halstenberg, P.; Abeykoon, M.; Gill, S. K.; Zhang, Y. X-Ray Scattering Reveals Ion Clustering of Dilute Chromium Species in Molten Chloride Medium. Chemical Science 2021, 12 (23), 80268035,  DOI: 10.1039/D1SC01224J
    24. 24
      Xu, L.; Wang, Z.; Chen, J.; Chen, S.; Yang, W.; Ren, Y.; Zuo, X.; Zeng, J.; Wu, Q.; Sheng, H. Folded Network and Structural Transition in Molten Tin. Nat. Commun. 2022, 13 (1), 126,  DOI: 10.1038/s41467-021-27742-2
    25. 25
      Silvi, B.; Savin, A. Classification of Chemical Bonds Based on Topological Analysis of Electron Localization Functions. Nature 1994, 371 (6499), 683686,  DOI: 10.1038/371683a0
    26. 26
      Glendening, E. D.; Landis, C. R.; Weinhold, F. Natural Bond Orbital Methods. WIREs Computational Molecular Science 2012, 2 (1), 142,  DOI: 10.1002/wcms.51
    27. 27
      Bader, R. F. W. Atoms in Molecules. Acc. Chem. Res. 1985, 18 (1), 915,  DOI: 10.1021/ar00109a003
    28. 28
      Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M. The role of the 5f valence orbitals of early actinides in chemical bonding. Nat. Commun. 2017, 8 (1), 16053  DOI: 10.1038/ncomms16053
    29. 29
      Vitova, T.; Kvashnina, K. O.; Nocton, G.; Sukharina, G.; Denecke, M. A.; Butorin, S. M.; Mazzanti, M.; Caciuffo, R.; Soldatov, A.; Behrends, T. High energy resolution x-ray absorption spectroscopy study of uranium in varying valence states. Phys. Rev. B 2010, 82 (23), 235118  DOI: 10.1103/PhysRevB.82.235118
    30. 30
      Kvashnina, K.; Silva, C.; Amidani, L.; Retegan, M.; Bazarkina, E.; Weiss, S.; Graubner, T.; Kraus, F. On the origin of low-valent uranium oxidation state; Research Square Platform LLC: 2024.
    31. 31
      Luzar, A.; Chandler, D. Hydrogen-Bond Kinetics in Liquid Water. Nature 1996, 379 (6560), 5557,  DOI: 10.1038/379055a0
    32. 32
      Strzelecki, A. C.; Wang, G.; Hickam, S. M.; Parker, S. S.; Batrice, R.; Jackson, J. M.; Conroy, N. A.; Mitchell, J. N.; Andersson, D. A.; Monreal, M. J. In Situ High-Temperature Raman Spectroscopy of UCl3: A Combined Experimental and Theoretical Study. Inorg. Chem. 2023, 62 (45), 1872418731,  DOI: 10.1021/acs.inorgchem.3c03139
    33. 33
      Roy, S.; Brehm, M.; Sharma, S.; Wu, F.; Maltsev, D. S.; Halstenberg, P.; Gallington, L. C.; Mahurin, S. M.; Dai, S.; Ivanov, A. S. Unraveling Local Structure of Molten Salts via X-ray Scattering, Raman Spectroscopy, and Ab Initio Molecular Dynamics. J. Phys. Chem. B 2021, 125 (22), 59715982,  DOI: 10.1021/acs.jpcb.1c03786
    34. 34
      Emerson, M. S.; Sharma, S.; Roy, S.; Bryantsev, V. S.; Ivanov, A. S.; Gakhar, R.; Woods, M. E.; Gallington, L. C.; Dai, S.; Maltsev, D. S. Complete Description of the LaCl3–NaCl Melt Structure and the Concept of a Spacer Salt That Causes Structural Heterogeneity. J. Am. Chem. Soc. 2022, 144 (47), 2175121762,  DOI: 10.1021/jacs.2c09987
    35. 35
      Cantat, T.; Graves, C. R.; Jantunen, K. C.; Burns, C. J.; Scott, B. L.; Schelter, E. J.; Morris, D. E.; Hay, P. J.; Kiplinger, J. L. Evidence for the Involvement of 5f Orbitals in the Bonding and Reactivity of Organometallic Actinide Compounds: Thorium(IV) and Uranium(IV) Bis(hydrazonato) Complexes. J. Am. Chem. Soc. 2008, 130 (51), 1753717551,  DOI: 10.1021/ja8067287
    36. 36
      Yang, P.; Warnke, I.; Martin, R. L.; Hay, P. J. Theoretical Studies of the sp2 versus sp3 C–H Bond Activation Chemistry of 2-Picoline by (C5Me5)2An(CH3)2 Complexes (An = Th, U). Organometallics 2008, 27 (7), 13841392,  DOI: 10.1021/om700927n
    37. 37
      Su, J.; Batista, E. R.; Boland, K. S.; Bone, S. E.; Bradley, J. A.; Cary, S. K.; Clark, D. L.; Conradson, S. D.; Ditter, A. S.; Kaltsoyannis, N. Energy-Degeneracy-Driven Covalency in Actinide Bonding. J. Am. Chem. Soc. 2018, 140 (51), 1797717984,  DOI: 10.1021/jacs.8b09436
    38. 38
      Formanuik, A.; Ariciu, A.-M.; Ortu, F.; Beekmeyer, R.; Kerridge, A.; Tuna, F.; McInnes, E. J. L.; Mills, D. P. Actinide Covalency Measured by Pulsed Electron Paramagnetic Resonance Spectroscopy. Nat. Chem. 2017, 9 (6), 578583,  DOI: 10.1038/nchem.2692
    39. 39
      Smiles, D. E.; Wu, G.; Hrobárik, P.; Hayton, T. W. Use of 77Se and 125Te NMR Spectroscopy to Probe Covalency of the Actinide-Chalcogen Bonding in [Th(En){N(SiMe3)2}3]– (E = Se, Te; n = 1, 2) and Their Oxo-Uranium(VI) Congeners. J. Am. Chem. Soc. 2016, 138 (3), 814825,  DOI: 10.1021/jacs.5b07767
    40. 40
      Kaltsoyannis, N. Does Covalency Increase or Decrease across the Actinide Series? Implications for Minor Actinide Partitioning. Inorg. Chem. 2013, 52 (7), 34073413,  DOI: 10.1021/ic3006025
    41. 41
      Kerridge, A. Quantification of f-Element Covalency Through Analysis of the Electron Density: Insights from Simulation. Chem. Commun. 2017, 53 (50), 66856695,  DOI: 10.1039/C7CC00962C
    42. 42
      Berryman, V. E. J.; Whalley, Z. J.; Shephard, J. J.; Ochiai, T.; Price, A. N.; Arnold, P. L.; Parsons, S.; Kaltsoyannis, N. Computational Analysis of M–O Covalency in M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, U). Dalton Transactions 2019, 48 (9), 29392947,  DOI: 10.1039/C8DT05094E
    43. 43
      Sperling, J. M.; Warzecha, E. J.; Celis-Barros, C.; Sergentu, D.-C.; Wang, X.; Klamm, B. E.; Windorff, C. J.; Gaiser, A. N.; White, F. D.; Beery, D. A. Compression of Curium Pyrrolidine-Dithiocarbamate Enhances Covalency. Nature 2020, 583 (7816), 396399,  DOI: 10.1038/s41586-020-2479-2
    44. 44
      Shephard, J. J.; Berryman, V. E. J.; Ochiai, T.; Walter, O.; Price, A. N.; Warren, M. R.; Arnold, P. L.; Kaltsoyannis, N.; Parsons, S. Covalent Bond Shortening and Distortion Induced by Pressurization of Thorium, Uranium, and Neptunium Tetrakis Aryloxides. Nat. Commun. 2022, 13 (1), 5923,  DOI: 10.1038/s41467-022-33459-7
    45. 45
      Shinohara, Y.; Ivanov, A. S.; Maltsev, D.; Granroth, G. E.; Abernathy, D. L.; Dai, S.; Egami, T. Real-Space Local Dynamics of Molten Inorganic Salts Using Van Hove Correlation Function. J. Phys. Chem. Lett. 2022, 13 (25), 59565962,  DOI: 10.1021/acs.jpclett.2c01230
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c05765.

    • Synthesis and characterization of UCl3 and additional experimental and computational details, including neutron scattering measurements, chemical bonding, density of states, and coordination number analyses (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.