ACS Publications. Most Trusted. Most Cited. Most Read
Mixed Ionic and Electronic Conductivity in a Tetrathiafulvalene-Phosphonate Metal–Organic Framework
My Activity
    Communication

    Mixed Ionic and Electronic Conductivity in a Tetrathiafulvalene-Phosphonate Metal–Organic Framework
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2025, 147, 1, 63–68
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.4c13792
    Published December 19, 2024
    Copyright © 2024 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Mixed ionic-electronic conductors have great potential as materials for energy storage applications. However, despite their promising properties, only a handful of metal–organic frameworks (MOFs) provide efficient pathways for both ion and electron transport. This work reports a proton–electron dual-conductive MOF based on tetrathiafulvalene(TTF)-phosphonate linkers and lanthanum ions. The formation of regular, partially oxidized TTF stacks with short S···S interactions facilitates electron transport via a hopping mechanism, reporting a room-temperature conductivity of 7.2 × 10–6 S cm–1. Additionally, the material exhibits a proton conductivity of 4.9 × 10–5 S cm–1 at 95% relative humidity conditions due to the presence of free −POH groups, enabling efficient proton transport pathways. These results demonstrate the potential of integrating electroactive building blocks along with phosphonate groups toward the development of mixed ionic-electronic conductors.

    Copyright © 2024 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.4c13792.

    • General methods and materials, synthesis and characterization of H8TTFTP and TTFTP-La MOF, electrical and proton conductivity measurements, theoretical calculations. (PDF)

    Accession Codes

    Deposition Number 2383921 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via the joint Cambridge Crystallographic Data Centre (CCDC) and Fachinformationszentrum Karlsruhe Access Structures service.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2025, 147, 1, 63–68
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.4c13792
    Published December 19, 2024
    Copyright © 2024 American Chemical Society

    Article Views

    2084

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.