ACS Publications. Most Trusted. Most Cited. Most Read
Direct Detection of a Triplet Vinylnitrene, 1,4-Naphthoquinone-2-ylnitrene, in Solution and Cryogenic Matrices
My Activity

Figure 1Loading Img
    Article

    Direct Detection of a Triplet Vinylnitrene, 1,4-Naphthoquinone-2-ylnitrene, in Solution and Cryogenic Matrices
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, United States
    Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
    § School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 12, 4207–4214
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b00998
    Published March 11, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The photolysis of 2-azido-1,4-naphthoquinone (1) in argon matrices at 8 K results in the corresponding triplet vinylnitrene 32, which was detected directly by IR spectroscopy. Vinylnitrene 32 is stable in argon matrices but forms 2-cyanoindane-1,3-dione (3) upon further irradiation. Similarly, the irradiation of azide 1 in 2-methyltetrahydrofuran (MTHF) matrices at 5 K resulted in the ESR spectrum of vinylnitrene 32, which is stable up to at least 100 K. The zero-field splitting parameters for nitrene 32, D/hc = 0.7292 cm–1 and E/hc = 0.0048 cm–1, verify that it has significant 1,3-biradical character. Vinylnitrene 32max ∼ 460 nm, τ = 22 μs) is also observed directly in solution at ambient temperature with laser flash photolysis of 1. Density functional theory (DFT) calculations support the characterization of vinylnitrene 32 and the proposed mechanism for its formation. Because vinylnitrene 32 is relatively stable, it has potential use as a building-block for high-spin assemblies.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    1H NMR and IR spectra of 1; graph showing the correlation of D with the natural spin densities ρ for several nitrenes; Cartesian coordinates and energies of 15; difference IR spectra in Ar matrices. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 32 publications.

    1. Kelley S. McKissic, Mrinal Chakraborty, Dmitrii Govorov, Mayukh Majumder, DeAnte F. Judkins, Rajkumar Merugu, H. Dushanee M. Sriyarathne, Anushree Das, W. Dinindu Mendis, Jan-Simon von Glasenapp, Rainer Herges, Christopher M. Hadad, James Mack, Manabu Abe, Anna D. Gudmundsdottir. Influence of Curvature on the Physical Properties and Reactivity of Triplet Corannulene Nitrene. Journal of the American Chemical Society 2024, 146 (51) , 35064-35076. https://doi.org/10.1021/jacs.4c07846
    2. Weiyu Qian, Peter R. Schreiner, Artur Mardyukov. Preparation and Photochemistry of Parent Triplet Vinylarsinidene. Journal of the American Chemical Society 2024, 146 (1) , 930-935. https://doi.org/10.1021/jacs.3c11432
    3. Bei Wang, Hong Xu, Fu-Yu Li, Ji-Yu Wang. Copper(I)-Mediated Divergent Synthesis of Pyrroquinone Derivatives and 2-Halo-3-amino-1,4-quinones. The Journal of Organic Chemistry 2023, 88 (13) , 8316-8328. https://doi.org/10.1021/acs.joc.3c00325
    4. Igor Reva, A. J. Lopes Jesus, Cláudio M. Nunes, José P. L. Roque, Rui Fausto. UV-Induced Photochemistry of 1,3-Benzoxazole, 2-Isocyanophenol, and 2-Cyanophenol Isolated in Low-Temperature Ar Matrixes. The Journal of Organic Chemistry 2021, 86 (9) , 6126-6137. https://doi.org/10.1021/acs.joc.0c02970
    5. Dylan J. Shields, Durga Prasad Karothu, Karthik Sambath, Ranaweera A. A. Upul Ranaweera, Stefan Schramm, Alexander Duncan, Benjamin Duncan, Jeanette A. Krause, Anna D. Gudmundsdottir, Panče Naumov. Cracking under Internal Pressure: Photodynamic Behavior of Vinyl Azide Crystals through N2 Release. Journal of the American Chemical Society 2020, 142 (43) , 18565-18575. https://doi.org/10.1021/jacs.0c07830
    6. Dylan J. Shields, Sujan K. Sarkar, H. Dushanee M. Sriyarathne, Jocelyn R. Brown, Curt Wentrup, Manabu Abe, Anna D. Gudmundsdottir. Transforming Triplet Vinylnitrene into Triplet Alkylnitrene at Cryogenic Temperatures. Organic Letters 2019, 21 (18) , 7194-7198. https://doi.org/10.1021/acs.orglett.9b01950
    7. DeVonna M. Gatlin, William L. Karney, Manabu Abe, Bruce S. Ault, Anna D. Gudmundsdottir. Formation and Reactivity of Triplet Vinylnitrenes as a Function of Ring Size. The Journal of Organic Chemistry 2019, 84 (14) , 9215-9225. https://doi.org/10.1021/acs.joc.9b01191
    8. Ruijuan Feng, Yan Lu, Guohai Deng, Jian Xu, Zhuang Wu, Hongmin Li, Qian Liu, Norito Kadowaki, Manabu Abe, and Xiaoqing Zeng . Magnetically Bistable Nitrenes: Matrix Isolation of Furoylnitrenes in Both Singlet and Triplet States and Triplet 3-Furylnitrene. Journal of the American Chemical Society 2018, 140 (1) , 10-13. https://doi.org/10.1021/jacs.7b08957
    9. Huabin Wan, Jian Xu, Qian Liu, Hongmin Li, Yan Lu, Manabu Abe, and Xiaoqing Zeng . Contrasting Photolytic and Thermal Decomposition of Phenyl Azidoformate: The Curtius Rearrangement Versus Intramolecular C–H Amination. The Journal of Physical Chemistry A 2017, 121 (45) , 8604-8613. https://doi.org/10.1021/acs.jpca.7b07969
    10. Didier Bégué, Hugo Santos-Silva, Alain Dargelos, and Curt Wentrup . Imidoylnitrenes R′C(═NR)–N, Nitrile Imines, 1H-Diazirines, and Carbodiimides: Interconversions and Rearrangements, Structures, and Energies at DFT and CASPT2 Levels of Theory. The Journal of Physical Chemistry A 2017, 121 (43) , 8227-8235. https://doi.org/10.1021/acs.jpca.7b08445
    11. Sandip Mondal, Suvendu Maity, and Prasanta Ghosh . A Redox-Active Cascade Precursor: Isolation of a Zwitterionic Triphenylphosphonio–Hydrazyl Radical and an Indazolo–Indazole Derivative. Inorganic Chemistry 2017, 56 (15) , 8878-8888. https://doi.org/10.1021/acs.inorgchem.7b00818
    12. Tim S. Chung, Anoklase J.-L. Ayitou, Jin H. Park, Vanessa M. Breslin, and Miguel A. Garcia-Garibay . Photochemistry and Transmission Pump–Probe Spectroscopy of 2-Azidobiphenyls in Aqueous Nanocrystalline Suspensions: Simplified Kinetics in Crystalline Solids. The Journal of Physical Chemistry Letters 2017, 8 (8) , 1845-1850. https://doi.org/10.1021/acs.jpclett.7b00499
    13. Curt Wentrup . Flash Vacuum Pyrolysis of Azides, Triazoles, and Tetrazoles. Chemical Reviews 2017, 117 (5) , 4562-4623. https://doi.org/10.1021/acs.chemrev.6b00738
    14. Sujan K. Sarkar, Onyinye Osisioma, William L. Karney, Manabu Abe, and Anna D. Gudmundsdottir . Using Molecular Architecture to Control the Reactivity of a Triplet Vinylnitrene. Journal of the American Chemical Society 2016, 138 (45) , 14905-14914. https://doi.org/10.1021/jacs.6b05746
    15. W.Dinindu Mendis, Abdelqader M. Jamhawi, Rajkumar Merugu, Dmitrii Govorov, Katrin H. Vilinsky, Bakar Alomari, Bruce S. Ault, A.Jean-Luc Ayitou, Anna D. Gudmundsdottir. Photoreactivity of 1-azidostyrene and 3-phenyl-2H-azirine in acetonitrile and cryogenic matrices. Journal of Photochemistry and Photobiology A: Chemistry 2025, 467 , 116427. https://doi.org/10.1016/j.jphotochem.2025.116427
    16. Sidhartha Malo, Supriyo Santra, Jayanta Saha, Debashree Ghosh, Indrajit Das. External photocatalyst-free photocycloaddition between triplet vinylnitrenes with 1,3-biradical character and activated olefins under 420 nm LEDs. Chemical Communications 2024, 60 (86) , 12545-12548. https://doi.org/10.1039/D4CC03484H
    17. Bo Lu, Xiaoqing Zeng. Phosphinidenes: Fundamental Properties and Reactivity. Chemistry – A European Journal 2024, 30 (15) https://doi.org/10.1002/chem.202303283
    18. Jian Li, Meng-Kai Liu, Quan-Song Li, Ze-Sheng Li. Theoretical study on the photochemistry of furoylazides: Curtius rearrangement and subsequent reactions. Physical Chemistry Chemical Physics 2020, 22 (48) , 28317-28324. https://doi.org/10.1039/D0CP05539E
    19. Anuvab Das, Gerard Pierre Van Trieste, David C. Powers. Crystallography of Reactive Intermediates. Comments on Inorganic Chemistry 2020, 40 (3) , 116-158. https://doi.org/10.1080/02603594.2020.1747054
    20. Upasana Banerjee, William L. Karney, Bruce S. Ault, Anna D. Gudmundsdottir. Photolysis of 5-Azido-3-Phenylisoxazole at Cryogenic Temperature: Formation and Direct Detection of a Nitrosoalkene. Molecules 2020, 25 (3) , 543. https://doi.org/10.3390/molecules25030543
    21. Upasana Banerjee, Kosala Thenna‐Hewa, Anna D. Gudmundsdottir. Triplet vinylnitrenes. 2019, 1-37. https://doi.org/10.1002/9780470682531.pat0925
    22. Cláudio M. Nunes, Sandra M.V. Pinto, Igor Reva, Mário T.S. Rosado, Rui Fausto. Photochemistry of matrix-isolated 3-chloro-1,2-benzisoxazole: Generation and characterization of 2-cyanophenoxyl radical and other reactive intermediates. Journal of Molecular Structure 2018, 1172 , 33-41. https://doi.org/10.1016/j.molstruc.2017.11.009
    23. Onyinye Osisioma, Mrinal Chakraborty, Bruce S. Ault, Anna D. Gudmundsdottir. Wavelength-dependent photochemistry of 2-azidovinylbenzene and 2-phenyl-2H-azirine. Journal of Molecular Structure 2018, 1172 , 94-101. https://doi.org/10.1016/j.molstruc.2018.04.042
    24. Curt Wentrup. Carbene und Nitrene: Aktuelle Entwicklungen in der Grundlagenchemie. Angewandte Chemie 2018, 130 (36) , 11680-11693. https://doi.org/10.1002/ange.201804863
    25. Curt Wentrup. Carbenes and Nitrenes: Recent Developments in Fundamental Chemistry. Angewandte Chemie International Edition 2018, 57 (36) , 11508-11521. https://doi.org/10.1002/anie.201804863
    26. Dapeng Yang, Guang Yang, Jinfeng Zhao, Nahong Song, Rui Zheng, Yusheng Wang. Solvent controlling excited state proton transfer reaction in quinoline/isoquinoline‐pyrazole isomer QP‐I: A theoretical study. Journal of Physical Organic Chemistry 2018, 31 (1) https://doi.org/10.1002/poc.3729
    27. H. Dushanee M. Sriyarathne, Sujan K. Sarkar, Sayaka Hatano, Manabu Abe, Anna D. Gudmundsdottir. Photolysis of 3,5‐diphenylisoxazole in argon matrices. Journal of Physical Organic Chemistry 2017, 30 (4) https://doi.org/10.1002/poc.3638
    28. Geethika K. Weragoda, Anushree Das, Sujan K. Sarkar, H. Dushanee M. Sriyarathne, Xiaoming Zhang, Bruce S. Ault, Anna D. Gudmundsdottir. Singlet Photoreactivity of 3-Methyl-2-phenyl-2H-azirine. Australian Journal of Chemistry 2017, 70 (4) , 413. https://doi.org/10.1071/CH16604
    29. Cláudio M. Nunes, Sandra M. V. Pinto, Igor Reva, Rui Fausto. On the Photochemistry of 1,2‐Benzisoxazole: Capture of Elusive Spiro‐2 H ‐azirine and Ketenimine Intermediates. European Journal of Organic Chemistry 2016, 2016 (24) , 4152-4158. https://doi.org/10.1002/ejoc.201600668
    30. Zhuang Wu, Dingqing Li, Hongmin Li, Bifeng Zhu, Hailong Sun, Joseph S. Francisco, Xiaoqing Zeng. Gas‐Phase Generation and Decomposition of a Sulfinylnitrene into the Iminyl Radical OSN. Angewandte Chemie 2016, 128 (4) , 1529-1532. https://doi.org/10.1002/ange.201510105
    31. Zhuang Wu, Dingqing Li, Hongmin Li, Bifeng Zhu, Hailong Sun, Joseph S. Francisco, Xiaoqing Zeng. Gas‐Phase Generation and Decomposition of a Sulfinylnitrene into the Iminyl Radical OSN. Angewandte Chemie International Edition 2016, 55 (4) , 1507-1510. https://doi.org/10.1002/anie.201510105
    32. Jun Cao. Photoinduced reactions of both 2-formyl-2 H -azirine and isoxazole: A theoretical study based on electronic structure calculations and nonadiabatic dynamics simulations. The Journal of Chemical Physics 2015, 142 (24) https://doi.org/10.1063/1.4922742

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 12, 4207–4214
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b00998
    Published March 11, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    3147

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.