Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Mono-Oxidation of Bidentate Bis-phosphines in Catalyst Activation: Kinetic and Mechanistic Studies of a Pd/Xantphos-Catalyzed C–H Functionalization
My Activity

Figure 1Loading Img
    Article

    Mono-Oxidation of Bidentate Bis-phosphines in Catalyst Activation: Kinetic and Mechanistic Studies of a Pd/Xantphos-Catalyzed C–H Functionalization
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States;
    Chemical Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
    Other Access OptionsSupporting Information (1)

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 41, 13272–13281
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b01913
    Published September 29, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Kinetic, spectroscopic, crystallographic, and computational studies probing a Pd-catalyzed C–H arylation reaction reveal that mono-oxidation of the bis-phosphine ligand is critical for the formation of the active catalyst. The bis-phosphine mono-oxide is shown to be a hemilabile, bidentate ligand for palladium. Isolation of the oxidative addition adduct, with structural elucidation by X-ray analysis, showed that the mono-oxide was catalytically competent, giving the same reaction rate in the productive reaction as the Pd(II)/xantphos precursor. A dual role for the carboxylate base in both catalyst activation and reaction turnover was demonstrated, along with the inhibiting effect of excess phosphine ligand. The generality of the role of phosphine mono-oxide complexes in Pd-catalyzed coupling processes is discussed.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b01913.

    • Full experimental details, spectroscopic data, X-ray data, supplementary experiments (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 105 publications.

    1. Qingxue Ma, Fengdong Wang, Pengfei Zhang, Guoshuai Li, Yang Li, Xiaohua Xu, Zhong Jin. Pd(0)/Xantphos-Catalyzed Benzylic C(sp3)–O Arylation of Benzyl Heteroaryl Ethers: Reduction of Pd(II) to Pd(0) by Xantphos. The Journal of Organic Chemistry 2024, 89 (18) , 13703-13708. https://doi.org/10.1021/acs.joc.4c00966
    2. Derek M. Dalton, Juno Castillo Siu, Marcelino Varona-Ortiz, C. Gregory Sowell, Francis Gosselin. Development of a Robust Pd-Catalyzed C–S Coupling for the Synthesis of Janus Kinase Inhibitor GDC-9918. Organic Process Research & Development 2024, Article ASAP.
    3. Isabelle Cai, Thomas C. Malig, Kenji L. Kurita, Joshua S. Derasp, Lauren E. Sirois, Jason E. Hein. Investigating the Origin of Epimerization Attenuation during Pd-Catalyzed Cross-Coupling Reactions. ACS Catalysis 2024, 14 (16) , 12331-12341. https://doi.org/10.1021/acscatal.4c03401
    4. Hongzhi Yang, Jingyang Zhang, Sen Zhang, Zhengwen Xue, Shengkun Hu, Yi Chen, Yefeng Tang. Chiral Bisphosphine-Catalyzed Asymmetric Staudinger/aza-Wittig Reaction: An Enantioselective Desymmetrizing Approach to Crinine-Type Amaryllidaceae Alkaloids. Journal of the American Chemical Society 2024, 146 (20) , 14136-14148. https://doi.org/10.1021/jacs.4c02755
    5. Jing Xue, Yu-Shan Zhang, Zhen Huan, Hai-Tian Luo, Likun Dong, Jin-Dong Yang, Jin-Pei Cheng. Phosphonium-Catalyzed Monoreduction of Bisphosphine Dioxides: Origin of Selectivity and Synthetic Applications. Journal of the American Chemical Society 2024, 146 (13) , 9335-9346. https://doi.org/10.1021/jacs.4c01361
    6. Nahiane Pipaón Fernández, Odhran Cruise, Sarah E. F. Easton, Justin M. Kaplan, John L. Woodard, Damian P. Hruszkewycz, David C. Leitch. Direct Heterocycle C–H Alkenylation via Dual Catalysis Using a Palladacycle Precatalyst: Multifactor Optimization and Scope Exploration Enabled by High-Throughput Experimentation. The Journal of Organic Chemistry 2024, Article ASAP.
    7. Yining Ji, Douglas A. L. Otte, Rebecca T. Ruck. A Continuing Career in Physical Organic Chemistry: Donna G. Blackmond. ACS Catalysis 2024, 14 (1) , 395-405. https://doi.org/10.1021/acscatal.3c04565
    8. Quan V. Vo, Nguyen Thi Hoa, Matthew Flavel, Nguyen Minh Thong, Houssem Boulebd, Pham Cam Nam, Duong Tuan Quang, Adam Mechler. A Comprehensive Study of the Radical Scavenging Activity of Rosmarinic Acid. The Journal of Organic Chemistry 2023, 88 (24) , 17237-17248. https://doi.org/10.1021/acs.joc.3c02093
    9. Marius D. R. Lutz, Sven Roediger, Miguel A. Rivero-Crespo, Bill Morandi. Mechanistic Investigation of the Rhodium-Catalyzed Transfer Hydroarylation Reaction Involving Reversible C–C Bond Activation. Journal of the American Chemical Society 2023, 145 (49) , 26657-26666. https://doi.org/10.1021/jacs.3c07780
    10. Maxwell J. Moore, Pengjin Qin, Naoto Yamasaki, Xianhuang Zeng, D. Jamin Keith, Sunna Jung, Takumi Fukazawa, Katherine Graham-O’Regan, Zhi-Chen Wu, Shreyosree Chatterjee, Dale L. Boger. Tetrachlorovancomycin: Total Synthesis of a Designed Glycopeptide Antibiotic of Reduced Synthetic Complexity. Journal of the American Chemical Society 2023, 145 (38) , 21132-21141. https://doi.org/10.1021/jacs.3c08358
    11. Jordan Rio, Haosheng Liang, Marie-Eve L. Perrin, Luca A. Perego, Laurence Grimaud, Pierre-Adrien Payard. We Already Know Everything about Oxidative Addition to Pd(0): Do We?. ACS Catalysis 2023, 13 (17) , 11399-11421. https://doi.org/10.1021/acscatal.3c01943
    12. Paul J. Chirik, Keary M. Engle, Eric M. Simmons, Steven R. Wisniewski. Collaboration as a Key to Advance Capabilities for Earth-Abundant Metal Catalysis. Organic Process Research & Development 2023, 27 (7) , 1160-1184. https://doi.org/10.1021/acs.oprd.3c00025
    13. Adrian Doggett, Michael Hay, Shane McKenna, Eric M. Saurer, Sarah Steinhardt, Yichen Tan, Christopher R. Wilbert, Steven R. Wisniewski. Development of a Chromane-Forming Heck Reaction: Bisphosphine Mono-Oxide Mediated Regioselectivity Perturbed by Solvent-Based Peroxide Formation. Organic Process Research & Development 2023, 27 (6) , 1129-1135. https://doi.org/10.1021/acs.oprd.3c00105
    14. Vittorio Farina. How to Develop Organometallic Catalytic Reactions in the Pharmaceutical Industry. Organic Process Research & Development 2023, 27 (5) , 831-846. https://doi.org/10.1021/acs.oprd.3c00086
    15. James I. Murray, Liang Zhang, Adam Simon, Maria V. Silva Elipe, Carolyn S. Wei, Seb Caille, Andrew T. Parsons. Kinetic and Mechanistic Investigations to Enable a Key Suzuki Coupling for Sotorasib Manufacture─What a Difference a Base Makes. Organic Process Research & Development 2023, 27 (1) , 198-205. https://doi.org/10.1021/acs.oprd.2c00332
    16. Scott H. Watterson Steven R. Wisniewski . A Twisted Road to the Discovery and Chemical Development of BMS-986142: A Reversible Inhibitor of BTK Conformationally Constrained by Two Rotationally Stable Atropisomeric Axes. , 173-202. https://doi.org/10.1021/bk-2022-1423.ch004
    17. Christian Moessner Fabienne Hoffmann-Emery Jean-Michel Adam Serena Fantasia Dan Fishlock Roland Meier Georg Wuitschik Hasane Ratni . Development and Optimization of the Manufacturing Process for RNA-Splicing Modifier Risdiplam RG7916. , 301-332. https://doi.org/10.1021/bk-2022-1423.ch008
    18. Youngchun Kwon, Dongseon Lee, Jin Woo Kim, Youn-Suk Choi, Sun Kim. Exploring Optimal Reaction Conditions Guided by Graph Neural Networks and Bayesian Optimization. ACS Omega 2022, 7 (49) , 44939-44950. https://doi.org/10.1021/acsomega.2c05165
    19. Melissa Cadena, Roberto Silva Villatoro, Jyoti Shah Gupta, Cody Phillips, Jonathan B. Allen, Hadi D. Arman, Daniel J. Wherritt, Nicholas A. Clanton, Alexander L. Ruchelman, Eric M. Simmons, Albert J. DelMonte, John R. Coombs, Doug E. Frantz. Pd-Catalyzed Chemoselective O-Benzylation of Ambident 2-Quinolinone Nucleophiles. ACS Catalysis 2022, 12 (16) , 10199-10206. https://doi.org/10.1021/acscatal.2c02783
    20. Lukas V. Hoff, Gleb A. Chesnokov, Anthony Linden, Karl Gademann. Mechanistic Studies and Data Science-Guided Exploration of Bromotetrazine Cross-Coupling. ACS Catalysis 2022, 12 (15) , 9226-9237. https://doi.org/10.1021/acscatal.2c01813
    21. Nahiane Pipaón Fernández, Gregory Gaube, Kyla J. Woelk, Mathias Burns, Damian P. Hruszkewycz, David C. Leitch. Palladium-Catalyzed Direct C–H Alkenylation with Enol Pivalates Proceeds via Reversible C–O Oxidative Addition to Pd(0). ACS Catalysis 2022, 12 (12) , 6997-7003. https://doi.org/10.1021/acscatal.2c01305
    22. Francesco D’Amico, Costanza Papucci, Daniele Franchi, Gianna Reginato, Massimo Calamante, Lorenzo Zani, Alessio Dessì, Alessandro Mordini. Sustainable Pd-Catalyzed Direct Arylation of Thienyl Derivatives with (Hetero)aromatic Bromides under Air in Deep Eutectic Solvents. ACS Sustainable Chemistry & Engineering 2022, 10 (9) , 3037-3047. https://doi.org/10.1021/acssuschemeng.1c08466
    23. Yining Ji, Cecilia Bottecchia, François Lévesque, Karthik Narsimhan, Dan Lehnherr, Jonathan P. McMullen, Stephen M. Dalby, Kai-Jiong Xiao, Mikhail Reibarkh. Benzylic Photobromination for the Synthesis of Belzutifan: Elucidation of Reaction Mechanisms Using In Situ LED-NMR. The Journal of Organic Chemistry 2022, 87 (4) , 2055-2062. https://doi.org/10.1021/acs.joc.1c01465
    24. Pierre-Adrien Payard, Antoine Bohn, Damien Tocqueville, Khaoula Jaouadi, Emile Escoude, Sanaa Ajig, Annie Dethoor, Geoffrey Gontard, Luca Alessandro Perego, Maxime Vitale, Ilaria Ciofini, Simon Wagschal, Laurence Grimaud. Role of dppf Monoxide in the Transmetalation Step of the Suzuki–Miyaura Coupling Reaction. Organometallics 2021, 40 (8) , 1120-1128. https://doi.org/10.1021/acs.organomet.1c00090
    25. Anastasia Hager, Nicolas Guimond, Lars Grunenberg, Christine Hanisch, Sebastian Steiger, André Preuss. Palladium-Catalyzed C–O Cross-Coupling as a Replacement for a Mitsunobu Reaction in the Development of an Androgen Receptor Antagonist. Organic Process Research & Development 2021, 25 (3) , 654-660. https://doi.org/10.1021/acs.oprd.0c00484
    26. Santiago Barroso, Markus Joksch, Pim Puylaert, Sergey Tin, Stephen J. Bell, Luke Donnellan, Stewart Duguid, Colin Muir, Peichao Zhao, Vittorio Farina, Duc N. Tran, Johannes G. de Vries. Improvement in the Palladium-Catalyzed Miyaura Borylation Reaction by Optimization of the Base: Scope and Mechanistic Study. The Journal of Organic Chemistry 2021, 86 (1) , 103-109. https://doi.org/10.1021/acs.joc.0c01758
    27. Maxwell J. Moore, Shiwei Qu, Ceheng Tan, Yu Cai, Yuzo Mogi, D. Jamin Keith, Dale L. Boger. Next-Generation Total Synthesis of Vancomycin. Journal of the American Chemical Society 2020, 142 (37) , 16039-16050. https://doi.org/10.1021/jacs.0c07433
    28. Ekta Nag, Sai Manoj N. V. T. Gorantla, Selvakumar Arumugam, Aditya Kulkarni, Kartik Chandra Mondal, Sudipta Roy. Tridentate Nickel(II)-Catalyzed Chemodivergent C–H Functionalization and Cyclopropanation: Regioselective and Diastereoselective Access to Substituted Aromatic Heterocycles. Organic Letters 2020, 22 (16) , 6313-6318. https://doi.org/10.1021/acs.orglett.0c02138
    29. Péter Pál Fehér, András Stirling. Theoretical Study on the Formation of Ni(PR3)(Aryl)F Complexes Observed in Ni-Catalyzed Decarbonylative C–C Coupling of Acyl Fluorides. Organometallics 2020, 39 (14) , 2774-2783. https://doi.org/10.1021/acs.organomet.0c00387
    30. Alena M. Vasquez, John A. Gurak, Jr., Candice L. Joe, Emily C. Cherney, Keary M. Engle. Catalytic α-Hydroarylation of Acrylates and Acrylamides via an Interrupted Hydrodehalogenation Reaction. Journal of the American Chemical Society 2020, 142 (23) , 10477-10484. https://doi.org/10.1021/jacs.0c03040
    31. Lauren E. Sirois, David Lao, Jie Xu, Rémy Angelaud, Jerry Tso, Brandon Scott, Paroma Chakravarty, Sushant Malhotra, Francis Gosselin. Process Development Overcomes a Challenging Pd-Catalyzed C–N Coupling for the Synthesis of RORc Inhibitor GDC-0022. Organic Process Research & Development 2020, 24 (4) , 567-578. https://doi.org/10.1021/acs.oprd.0c00012
    32. Junhao Xing, Wanjiang Zhu, Bihai Ye, Tao Lu, Tamio Hayashi, Xiaowei Dou. Rhodium-Catalyzed Diverse Arylation of 2,5-Dihydrofuran: Controllable Divergent Synthesis via Four Pathways. ACS Catalysis 2020, 10 (5) , 2958-2963. https://doi.org/10.1021/acscatal.0c00265
    33. Gabriel Schäfer, Tony Fleischer, Muhamed Ahmetovic, Stefan Abele. Development of a Scalable Route for a Key Thiadiazole Building Block via Sequential Sandmeyer Bromination and Room-Temperature Suzuki–Miyaura Coupling. Organic Process Research & Development 2020, 24 (2) , 228-234. https://doi.org/10.1021/acs.oprd.9b00495
    34. Qui-Hien Nguyen, Shu-Min Guo, Titouan Royal, Olivier Baudoin, Nicolai Cramer. Intermolecular Palladium(0)-Catalyzed Atropo-enantioselective C–H Arylation of Heteroarenes. Journal of the American Chemical Society 2020, 142 (5) , 2161-2167. https://doi.org/10.1021/jacs.9b12299
    35. Meng Xue, Dan-Ling Zhuang, Hao Li, Piao He, Chao Liu, Jun Zhu, Xiao-Yi Yi. Formation of Iridium(III) Complexes via Selective Activation of the C–H and N–H Bonds of a Dipyridylpyrrole Ligand. Inorganic Chemistry 2020, 59 (2) , 960-963. https://doi.org/10.1021/acs.inorgchem.9b02560
    36. Na Li, Baozhen Sun, Shuang Liu, Jinbo Zhao, Qian Zhang. Highly Enantioselective Construction of Dihydrooxazines via Pd-Catalyzed Asymmetric Carboetherification. Organic Letters 2020, 22 (1) , 190-193. https://doi.org/10.1021/acs.orglett.9b04123
    37. Daniel D. Caspi, Moiz Diwan, Jean-Christophe C. Califano, Daniel J. Mack, Shashank Shekhar. Development of an Operational Space Using Mechanistic Models for a Pd-Catalyzed Amidation Reaction Used in the Synthesis of ABT-530. Organic Process Research & Development 2019, 23 (8) , 1509-1521. https://doi.org/10.1021/acs.oprd.9b00170
    38. Richard J. Fox, Nicolas L. Cuniere, Lopa Bakrania, Carolyn Wei, Neil A. Strotman, Michael Hay, Dayne Fanfair, Christopher Regens, Gregory L. Beutner, Michael Lawler, Paul Lobben, Maxime C. Soumeillant, Benjamin Cohen, Keming Zhu, Dimitri Skliar, Thorsten Rosner, Chester E. Markwalter, Yi Hsiao, Kristy Tran, Martin D. Eastgate. C–H Arylation in the Formation of a Complex Pyrrolopyridine, the Commercial Synthesis of the Potent JAK2 Inhibitor, BMS-911543. The Journal of Organic Chemistry 2019, 84 (8) , 4661-4669. https://doi.org/10.1021/acs.joc.8b02383
    39. Camilla Mayer, Carolyn L. Ladd, André B. Charette. Utilization of BozPhos as an Effective Ligand in Enantioselective C–H Functionalization of Cyclopropanes: Synthesis of Dihydroisoquinolones and Dihydroquinolones. Organic Letters 2019, 21 (8) , 2639-2644. https://doi.org/10.1021/acs.orglett.9b00627
    40. Jin-Bao Peng, Fu-Peng Wu, Da Li, Hui-Qing Geng, Xinxin Qi, Jun Ying, Xiao-Feng Wu. Palladium-Catalyzed Regioselective Carbonylative Coupling/Amination of Aryl Iodides with Unactivated Alkenes: Efficient Synthesis of β-Aminoketones. ACS Catalysis 2019, 9 (4) , 2977-2983. https://doi.org/10.1021/acscatal.9b00774
    41. Pravin A. Mane, Sandip Dey, Arup Kumar Pathak, Mukesh Kumar, Nattamai Bhuvanesh. Xantphos-Capped Pd(II) and Pt(II) Macrocycles of Aryldithiolates: Structural Variation and Catalysis in C–C Coupling Reaction. Inorganic Chemistry 2019, 58 (5) , 2965-2978. https://doi.org/10.1021/acs.inorgchem.8b02726
    42. Leyah A. Schwartz, Michael Holmes, Gilmar A. Brito, Théo P. Gonçalves, Jeffery Richardson, J. Craig Ruble, Kuo-Wei Huang, Michael J. Krische. Cyclometalated Iridium–PhanePhos Complexes Are Active Catalysts in Enantioselective Allene–Fluoral Reductive Coupling and Related Alcohol-Mediated Carbonyl Additions That Form Acyclic Quaternary Carbon Stereocenters. Journal of the American Chemical Society 2019, 141 (5) , 2087-2096. https://doi.org/10.1021/jacs.8b11868
    43. Robert Dugger Bryan Li Paul Richardson . Discovery and Development of Lorlatinib: A Macrocyclic Inhibitor of EML4-ALK for the Treatment of NSCLC. 2019, 27-59. https://doi.org/10.1021/bk-2019-1332.ch002
    44. J. Terence Blaskovits, Paul A. Johnson, Mario Leclerc. Mechanistic Origin of β-Defect Formation in Thiophene-Based Polymers Prepared by Direct (Hetero)arylation. Macromolecules 2018, 51 (20) , 8100-8113. https://doi.org/10.1021/acs.macromol.8b01142
    45. Renu Bhaskar, Alpesh K. Sharma, Ajai K. Singh. Palladium(II) Complexes of N-Heterocyclic Carbene Amidates Derived from Chalcogenated Acetamide-Functionalized 1H-Benzimidazolium Salts: Recyclable Catalyst for Regioselective Arylation of Imidazoles under Aerobic Conditions. Organometallics 2018, 37 (16) , 2669-2681. https://doi.org/10.1021/acs.organomet.8b00246
    46. Stephen J. Tereniak, Clark R. Landis, Shannon S. Stahl. Are Phosphines Viable Ligands for Pd-Catalyzed Aerobic Oxidation Reactions? Contrasting Insights from a Survey of Six Reactions. ACS Catalysis 2018, 8 (4) , 3708-3714. https://doi.org/10.1021/acscatal.8b01009
    47. Dian Wang, Adam B. Weinstein, Paul B. White, Shannon S. Stahl. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions. Chemical Reviews 2018, 118 (5) , 2636-2679. https://doi.org/10.1021/acs.chemrev.7b00334
    48. Li-Qun Hu, Rong-Li Deng, Yan-Fen Li, Cui-Jin Zeng, Dong-Sheng Shen, and Feng-Shou Liu . Developing Bis(imino)acenaphthene-Supported N-Heterocyclic Carbene Palladium Precatalysts for Direct Arylation of Azoles. Organometallics 2018, 37 (2) , 214-226. https://doi.org/10.1021/acs.organomet.7b00784
    49. Gustavo M. Borrajo-Calleja, Vincent Bizet, Céline Besnard, and Clément Mazet . Mechanistic Investigation of the Pd-Catalyzed Intermolecular Carboetherification and Carboamination of 2,3-Dihydrofuran: Similarities, Differences, and Evidence for Unusual Reaction Intermediates. Organometallics 2017, 36 (18) , 3553-3563. https://doi.org/10.1021/acs.organomet.7b00483
    50. Aaron S. Holmes, Brian O. Patrick, Taleah M. Levesque, and Peter Legzdins . Hemilability of the 1,2-Bis(dimethylphosphino)ethane (dmpe) Ligand in Cp*Mo(NO)(κ2-dmpe). Inorganic Chemistry 2017, 56 (18) , 11299-11309. https://doi.org/10.1021/acs.inorgchem.7b01733
    51. Mitchell H. Keylor, Zachary L. Niemeyer, Matthew S. Sigman, and Kian L. Tan . Inverting Conventional Chemoselectivity in Pd-Catalyzed Amine Arylations with Multiply Halogenated Pyridines. Journal of the American Chemical Society 2017, 139 (31) , 10613-10616. https://doi.org/10.1021/jacs.7b05409
    52. Nicholas A. Weires, Daniel D. Caspi, and Neil K. Garg . Kinetic Modeling of the Nickel-Catalyzed Esterification of Amides. ACS Catalysis 2017, 7 (7) , 4381-4385. https://doi.org/10.1021/acscatal.7b01444
    53. Scott D. McCann, Jean-Philip Lumb, Bruce A. Arndtsen, and Shannon S. Stahl . Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst. ACS Central Science 2017, 3 (4) , 314-321. https://doi.org/10.1021/acscentsci.7b00022
    54. Margot N. Wenzel, Philippa K. Owens, Joshua T. W. Bray, Jason M. Lynam, Pedro M. Aguiar, Christopher Reed, James D. Lee, Jacqueline F. Hamilton, Adrian C. Whitwood, and Ian J. S. Fairlamb . Redox Couple Involving NOx in Aerobic Pd-Catalyzed Oxidation of sp3-C–H Bonds: Direct Evidence for Pd–NO3–/NO2– Interactions Involved in Oxidation and Reductive Elimination. Journal of the American Chemical Society 2017, 139 (3) , 1177-1190. https://doi.org/10.1021/jacs.6b10853
    55. Carolyn L. Ladd and André B. Charette . Access to Cyclopropyl-Fused Azacycles via a Palladium-Catalyzed Direct Alkenylation Strategy. Organic Letters 2016, 18 (23) , 6046-6049. https://doi.org/10.1021/acs.orglett.6b02982
    56. Jean-Rémi Pouliot, François Grenier, J. Terence Blaskovits, Serge Beaupré, and Mario Leclerc . Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chemical Reviews 2016, 116 (22) , 14225-14274. https://doi.org/10.1021/acs.chemrev.6b00498
    57. Hui Li, Xuelu Ma, Baohua Zhang, and Ming Lei . DFT Study on the Mechanism of Tandem Oxidative Acetoxylation/Ortho C–H Activation/Carbocyclization Catalyzed by Pd(OAc)2. Organometallics 2016, 35 (19) , 3301-3310. https://doi.org/10.1021/acs.organomet.6b00503
    58. Vincent Bizet, Gustavo M. Borrajo-Calleja, Céline Besnard, and Clément Mazet . Direct Access to Furoindolines by Palladium-Catalyzed Intermolecular Carboamination. ACS Catalysis 2016, 6 (10) , 7183-7187. https://doi.org/10.1021/acscatal.6b02238
    59. Xu-Xian He, Yinwu Li, Bei-Bei Ma, Zhuofeng Ke, and Feng-Shou Liu . Sterically Encumbered Tetraarylimidazolium Carbene Pd-PEPPSI Complexes: Highly Efficient Direct Arylation of Imidazoles with Aryl Bromides under Aerobic Conditions. Organometallics 2016, 35 (16) , 2655-2663. https://doi.org/10.1021/acs.organomet.6b00391
    60. Gustavo M. Borrajo-Calleja, Vincent Bizet, and Clément Mazet . Palladium-Catalyzed Enantioselective Intermolecular Carboetherification of Dihydrofurans. Journal of the American Chemical Society 2016, 138 (12) , 4014-4017. https://doi.org/10.1021/jacs.6b02158
    61. Hiroyuki Kawai, William J. Wolf, Antonio G. DiPasquale, Matthew S. Winston, and F. Dean Toste . Phosphonium Formation by Facile Carbon–Phosphorus Reductive Elimination from Gold(III). Journal of the American Chemical Society 2016, 138 (2) , 587-593. https://doi.org/10.1021/jacs.5b10720
    62. George E. Clarke, James D. Firth, Lyndsay A. Ledingham, Chris S. Horbaczewskyj, Richard A. Bourne, Joshua T. W. Bray, Poppy L. Martin, Jonathan B. Eastwood, Rebecca Campbell, Alex Pagett, Duncan J. MacQuarrie, John M. Slattery, Jason M. Lynam, Adrian C. Whitwood, Jessica Milani, Sam Hart, Julie Wilson, Ian J. S. Fairlamb. Deciphering complexity in Pd–catalyzed cross-couplings. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47939-5
    63. Chenghui Dai, Yanling Zheng, Haiyan Fu, Jiaqi Xu, Xueli Zheng, Hua Chen, Yicen Ge, Ruixiang Li. Highly efficient palladium‐catalyzed hydroesterification of functionalized alkenes. Applied Organometallic Chemistry 2024, 38 (8) https://doi.org/10.1002/aoc.7513
    64. Chenghui Dai, Yan Chen, Jiaqi Xu, Xueli Zheng, Hua Chen, Haiyan Fu, Ruixiang Li. Highly selective and additive-free Pd(OAc) 2 /CPP catalyzed hydroaminocarbonylation of alkynes. Organic & Biomolecular Chemistry 2024, 22 (27) , 5534-5539. https://doi.org/10.1039/D4OB00644E
    65. Velabo Mdluli, Dan Lehnherr, Yu-hong Lam, Mohammad T. Chaudhry, Justin A. Newman, Jimmy O. DaSilva, Erik L. Regalado. Electrosynthesis of iminophosphoranes and applications in nickel catalysis. Chemical Science 2024, 15 (16) , 5980-5992. https://doi.org/10.1039/D3SC05357A
    66. Fotini Moschona, Maria Tsitopoulou, Margarita Efstratiou, Maria Koutiva, Gerasimos Rassias. Scalable Synthesis of Cinnamylamines Via the Heck Reaction: Application in the Synthesis of Abamine, Naftifine and Reboxetine. European Journal of Organic Chemistry 2024, 27 (15) https://doi.org/10.1002/ejoc.202400079
    67. K. Downey, K. Ronda, K. Steiner, K. Jobst, S. Kleywegt, M. J. Simpson, A. J. Simpson. The Importance of NMR as a Discovery Tool. 2024, 10-56. https://doi.org/10.1039/BK9781837671250-00010
    68. Tomás G. Santiago, Pilar Palma, Juan Cámpora. A tale of two metals: The Mizoroki-Heck reaction as a guide to compare the chemical characters of nickel and palladium in catalysis. 2024, 1-179. https://doi.org/10.1016/bs.adomc.2024.04.002
    69. Eric D. Slack, Peter D. Tancini, Thomas J. Colacot. Prozessökonomie und Atomeffizienz für industrielle Kreuzkopplungsanwendungen mit LnPd(0)-basierten Katalysatoren. 2024, 173-214. https://doi.org/10.1007/978-3-031-52858-3_5
    70. Nihad Salameh, Federica Valentini, Olivier Baudoin, Luigi Vaccaro. A General Enantioselective C−H Arylation Using an Immobilized Recoverable Palladium Catalyst. ChemSusChem 2023, 16 (23) https://doi.org/10.1002/cssc.202300609
    71. Rita de Jesus, Kerstin Hiesinger, Manuel van Gemmeren. Anwendungen der C−H‐Aktivierung im präparativen Maßstab in der medizinischen Chemie. Angewandte Chemie 2023, 135 (45) https://doi.org/10.1002/ange.202306659
    72. Rita de Jesus, Kerstin Hiesinger, Manuel van Gemmeren. Preparative Scale Applications of C−H Activation in Medicinal Chemistry. Angewandte Chemie International Edition 2023, 62 (45) https://doi.org/10.1002/anie.202306659
    73. Deepali Sharma, Anurag Bahuguna, Saumya Rawat, Arun Kumar, Ajai Kumar Singh. Organosulphur and organoselenium ligands in designing metal‐based catalytic systems for C—H arylation of imidazole. Applied Organometallic Chemistry 2023, 37 (7) https://doi.org/10.1002/aoc.7106
    74. J. Caleb Hethcox, Heather C. Johnson, Jungchul Kim, Xiao Wang, Lili Cheng, Yang Cao, Melissa Tan, Daniel A. DiRocco, Yining Ji. Nickel‐Catalyzed Sulfonylation of Aryl Bromides Enabled by Potassium Metabisulfite as a Uniquely Effective SO 2 Surrogate. Angewandte Chemie 2023, 135 (19) https://doi.org/10.1002/ange.202217623
    75. J. Caleb Hethcox, Heather C. Johnson, Jungchul Kim, Xiao Wang, Lili Cheng, Yang Cao, Melissa Tan, Daniel A. DiRocco, Yining Ji. Nickel‐Catalyzed Sulfonylation of Aryl Bromides Enabled by Potassium Metabisulfite as a Uniquely Effective SO 2 Surrogate. Angewandte Chemie International Edition 2023, 62 (19) https://doi.org/10.1002/anie.202217623
    76. Sai Manoj N. V. T. Gorantla, Kartik Chandra Mondal. The Labile Nature of Air Stable Ni(II)/Ni(0)‐phosphine/Olefin Catalysts/Intermediates: EDA‐NOCV Analysis. Chemistry – An Asian Journal 2022, 17 (19) https://doi.org/10.1002/asia.202200572
    77. Lukas Veth, Paweł Dydio. Shapeshifting xantphos. Nature Chemistry 2022, 14 (9) , 1088-1088. https://doi.org/10.1038/s41557-022-01031-x
    78. Yael Ben-Tal, Patrick J. Boaler, Harvey J.A. Dale, Ruth E. Dooley, Nicole A. Fohn, Yuan Gao, Andrés García-Domínguez, Katie M. Grant, Andrew M.R. Hall, Hannah L.D. Hayes, Maciej M. Kucharski, Ran Wei, Guy C. Lloyd-Jones. Mechanistic analysis by NMR spectroscopy: A users guide. Progress in Nuclear Magnetic Resonance Spectroscopy 2022, 129 , 28-106. https://doi.org/10.1016/j.pnmrs.2022.01.001
    79. Meng Xianghui, Yang Liangru, Liu Qilin, Dong Zhenhua, Yuan Jinwei, Xiao Yongmei, Mao Pu. Amide Functionalized Pyridine/Pyrimidine Chelating N -Heterocyclic Carbene Palladium Complexes: Synthesis, Structure, and Catalysis for C-5 Arylation of Imidazoles. Chinese Journal of Organic Chemistry 2022, 42 (11) , 3747. https://doi.org/10.6023/cjoc202206005
    80. Sunil Kumar, Sohan Singh, Jitendra Gadwal, Parvesh Makar, Hemant Joshi. Regioselective C-H arylation of imidazoles employing macrocyclic palladium(II) complex of organoselenium ligand. Journal of Organometallic Chemistry 2021, 946-947 , 121907. https://doi.org/10.1016/j.jorganchem.2021.121907
    81. Kerry C. Casey, Alexander M. Brown, Jerome R. Robinson. Yttrium and lanthanum bis(phosphine-oxide)methanides: structurally diverse, dynamic, and reactive. Inorganic Chemistry Frontiers 2021, 8 (6) , 1539-1552. https://doi.org/10.1039/D0QI01438A
    82. Benjamin J. Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus I. Martinez Alvarado, Jacob M. Janey, Ryan P. Adams, Abigail G. Doyle. Bayesian reaction optimization as a tool for chemical synthesis. Nature 2021, 590 (7844) , 89-96. https://doi.org/10.1038/s41586-021-03213-y
    83. Oleksandr Vyhivskyi, Anton Kudashev, Takeru Miyakoshi, Olivier Baudoin. Chiral Catalysts for Pd 0 ‐Catalyzed Enantioselective C−H Activation. Chemistry – A European Journal 2021, 27 (4) , 1231-1257. https://doi.org/10.1002/chem.202003225
    84. Ramprasad Bhatt, Alpesh K. Sharma, Himanshi, Nattamai Bhuvanesh, Hemant Joshi. Palladium complexes of chalcogenoethanamine (S/Se) bidentate ligands: Applications in catalytic arylation of C H and O H bonds. Polyhedron 2020, 185 , 114597. https://doi.org/10.1016/j.poly.2020.114597
    85. Mengna Tao, Youshao Tu, Yu Liu, Haihong Wu, Lu Liu, Junliang Zhang. Pd/Xiang-Phos-catalyzed enantioselective intermolecular carboheterofunctionalization under mild conditions. Chemical Science 2020, 11 (24) , 6283-6288. https://doi.org/10.1039/D0SC01391A
    86. Meng Xue, Chang-Feng Xiong, Xiu-Fang Mo, Hao Li, Xiao-Yi Yi. The synthesis and characterization of an ortho-metallated iridium(III) hydride based on a pyridylpyrrole ligand. Polyhedron 2020, 183 , 114515. https://doi.org/10.1016/j.poly.2020.114515
    87. Oliver T. Ring, Andrew D. Campbell, Barry R. Hayter, Lyn Powell. Significant rate enhancement via potassium pivalate in a Miyaura borylation approach to verinurad. Tetrahedron Letters 2020, 61 (10) , 151589. https://doi.org/10.1016/j.tetlet.2019.151589
    88. Ramprasad Bhatt, Nattamai Bhuvanesh, Kamal Nayan Sharma, Hemant Joshi. Palladium Complexes of Thio/Seleno‐Ether Containing N ‐Heterocyclic Carbenes: Efficient and Reusable Catalyst for Regioselective C‐H Bond Arylation. European Journal of Inorganic Chemistry 2020, 2020 (6) , 532-540. https://doi.org/10.1002/ejic.201901259
    89. Jhen‐Yi Lee, Debalina Ghosh, Ya‐Ting Kuo, Hon Man Lee. Dimetallic Palladium‐NHC Complexes: Synthesis, Characterization, and Catalytic Application for Direct C−H Arylation Reaction of Heteroaromatics with Aryl Chlorides. Advanced Synthesis & Catalysis 2020, 362 (3) , 648-658. https://doi.org/10.1002/adsc.201901189
    90. Yoshifumi Sasano, Yohei Haketa, Hiroki Tanaka, Nobuhiro Yasuda, Ichiro Hisaki, Hiromitsu Maeda. Peripheral Modifications of meso ‐Hydroxyporphyrins: Formation of π‐Electronic Anions and Ion‐Pairing Assemblies. Chemistry – A European Journal 2019, 25 (27) , 6712-6717. https://doi.org/10.1002/chem.201901095
    91. Eric D. Slack, Peter D. Tancini, Thomas J. Colacot. Process Economics and Atom Economy for Industrial Cross Coupling Applications via LnPd(0)-Based Catalysts. 2019, 161-198. https://doi.org/10.1007/3418_2019_28
    92. Peter W. Sutton, Joseph P. Adams, Charles Wade, Katherine Wheelhouse. New Technologies in Process Development. 2018, 73-124. https://doi.org/10.1002/9783527801756.ch5
    93. Sunisa Akkarasamiyo, Supaporn Sawadjoon, Andreas Orthaber, Joseph S. M. Samec. Tsuji–Trost Reaction of Non‐Derivatized Allylic Alcohols. Chemistry – A European Journal 2018, 24 (14) , 3488-3498. https://doi.org/10.1002/chem.201705164
    94. Piet W. N. M. van Leeuwen, Paul C. J. Kamer. Featuring Xantphos. Catalysis Science & Technology 2018, 8 (1) , 26-113. https://doi.org/10.1039/C7CY01629H
    95. Matthew Mudge, Alpesh Ramanlal Patel, Murat Bingül, Mohan Bhadbhade, Stephen B. Colbran. An aryl-bridged dixanthene scaffold for building multinucleating ligands and supramolecular assemblies: Syntheses and structures. Tetrahedron 2017, 73 (45) , 6401-6409. https://doi.org/10.1016/j.tet.2017.09.026
    96. Jaime R. Cabrera‐Pardo, Aaron Trowbridge, Manuel Nappi, Kyohei Ozaki, Matthew J. Gaunt. Selective Palladium(II)‐Catalyzed Carbonylation of Methylene β‐C−H Bonds in Aliphatic Amines. Angewandte Chemie 2017, 129 (39) , 12120-12124. https://doi.org/10.1002/ange.201706303
    97. Jaime R. Cabrera‐Pardo, Aaron Trowbridge, Manuel Nappi, Kyohei Ozaki, Matthew J. Gaunt. Selective Palladium(II)‐Catalyzed Carbonylation of Methylene β‐C−H Bonds in Aliphatic Amines. Angewandte Chemie International Edition 2017, 56 (39) , 11958-11962. https://doi.org/10.1002/anie.201706303
    98. Carolyn S. Wei, Eric M. Simmons, Yi Hsaio, Martin D. Eastgate. Development of Robust, Scaleable Catalytic Processes through Fundamental Understanding of Reaction Mechanisms. Topics in Catalysis 2017, 60 (8) , 620-630. https://doi.org/10.1007/s11244-017-0736-x
    99. Yining Ji, Hongming Li, Alan M. Hyde, Qinghao Chen, Kevin M. Belyk, Katrina W. Lexa, Jingjun Yin, Edward C. Sherer, R. Thomas Williamson, Andrew Brunskill, Sumei Ren, Louis-Charles Campeau, Ian W. Davies, Rebecca T. Ruck. A rational pre-catalyst design for bis-phosphine mono-oxide palladium catalyzed reactions. Chemical Science 2017, 8 (4) , 2841-2851. https://doi.org/10.1039/C6SC05472B
    100. Dina Schwarz G. Henriques, Katharina Zimmer, Sven Klare, Andreas Meyer, Elena Rojo‐Wiechel, Mirko Bauer, Rebecca Sure, Stefan Grimme, Olav Schiemann, Robert A. Flowers, Andreas Gansäuer. Hochaktive Titanocen‐Katalysatoren für Epoxid‐Hydrosilylierungen – Synthese, Theorie, Kinetik, EPR‐Spektroskopie. Angewandte Chemie 2016, 128 (27) , 7801-7805. https://doi.org/10.1002/ange.201601242
    Load all citations

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2015, 137, 41, 13272–13281
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jacs.5b01913
    Published September 29, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    11k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.